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TDAS: A Touch Dynamics based Multi-Factor
Authentication Solution for Mobile Devices

Abstract

Purpose

The use of mobile devices in handling our daily activities that involve the storage or access of sensitive data (e.g. on-line banking,
paperless prescription services, etc.) is becoming very common. These mobile electronic services typically use a knowledge-based
authentication method to authenticate a user (claimed identity). However, this authentication method is vulnerable to several security
attacks. To counter the attacks and to make the authentication process more secure, this paper investigates the use of touch dynamics
biometrics in conjunction with a PIN-based authentication method, and demonstrates its benefits in terms of strengthening the security of
authentication services for mobile device.

Design/methodology/approach
The investigation has made use of three light-weighted matching functions and a comprehensive reference dataset collected from 150
subjects.

Findings

The investigative results show that, with this multi-factor authentication approach, even when the PIN is exposed, as much as 9 out of 10
impersonation attempts can be successfully identified. It has also been discovered that the accuracy performance can be increased by
combining different feature data types and by increasing the input string length.

Originality/value

The novel contributions of this paper are two-fold. Firstly, it describes how a comprehensive experiment is set up to collect touch dynamics
biometrics data, and the set of collected data is being made publically available, which may facilitate further research in the problem
domain. Secondly, the paper demonstrates how the dataset may be used to strengthen the protection of resources that are accessible via
mobile devices.

Keywords

Mobile Authentication, Touch Dynamics, Biometrics, Keystroke Dynamics, Benchmark Dataset.

1. INTRODUCTION

Mobile devices have become an integral part of our routine activities. This is particularly the case with the rapid growth and widespread
use of smartphones and digital tablets. The processing capability of these devices has advanced up to the point that most digital activities
that can be accomplished on workstations or laptops can also be performed on these portable devices. Routine activities, such as personal
and corporate e-mail communications, on-line banking transactions, accessing paperless prescriptions services, route navigation, etc. can
also be carried out ubiquitously with these devices.

According to a forecast by networking giant Cisco (Cisco, 2015), there will be approximately 11.5 billion mobile-connected devices by
2019, and the global mobile data traffic will increase nearly tenfold between 2014 and 2019, reaching 24.3 exabytes per month by 2019.
This shows our increasing reliance on mobile devices, and also implies that our private and sensitive date will increasingly be handled,
managed and processed by these devices. Therefore, the security of accessing mobile devices and accessing data, services and other
resources through the mobile devices is of a prime concern. More stringent security services (or measures) should be embedded in mobile
devices. One of these services is user authentication, i.e. how to securely verify a claimed identity.

Authentication is the first-line of defence in any computer system or device as it is a pre-requisite for several other security services such as
authorisation and accountability. In a mobile device context, authentication is typically achieved via a knowledge-based authentication
method, and with this method, a user proves their identity by demonstrating the knowledge of a secret. This secret could be a PIN (Personal
Identification Number), a password, a shared secret (which is similar to a password, but with higher entropy) or a private key
corresponding to a public key certified in a digital certificate. Authentication by using a low entropy secret (such as a PIN or a password) is
vulnerable to a number of security attacks, e.g. theft of a mobile device, shoulder spoofing and brute force attacks. Authentication by using
a high entropy secret (using a shared secret or a private key) usually requires some means to store the secret securely and this may hinder
usability and/or introduce a higher cost. To address these issues and to make the authentication service more secure, while, at the same
time, without hindering usability, we have been working on integrating a biometric-based (touch dynamics) authentication method with a
knowledge-based (PIN) authentication method, called a Touch Dynamic based multi-factor Authentication Solution (TDAS).

This paper reports our effort on the creation and use of a touch dynamics dataset to investigate the benefits of integrating touch dynamics
with a PIN-based authentication method. It describes the process of collecting a comprehensive reference dataset consisted of two sets of
input PINs from 150 subjects, the extractions of feature data from the dataset, and the use of the extracted feature data as a second
authentication factor. The extracted feature data are timing, finger touch size and pressure feature data. The data are classified by using
three light-weight classification algorithms, and are used to support the identification of a user in addition to using the PIN-based
authentication method. The experiments show that this two-factor approach to authentication can make impersonation attacks much more
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difficult, significantly increasing the assurance level of the authentication process. The paper has also discussed various factors that may
impact the accuracy performance of TDAS, such as the timing resolution of feature data type, combinations of feature data types, subject
size and input string length.

The structure of this paper is as follows. The next section gives an overview of touch dynamics biometrics. Section 3 explains the
experimental setup and the methods and procedures used in collecting (i.e. acquiring) the touch dynamic biometrics data. Section 4
describes the properties of the dataset. Section 5 describes potential feature data that can be extracted from the dataset and, for proof-of-
concept, it illustrates how the captured feature data may be used for authenticating users in a mobile context and the level of improvements
in terms of accuracy performance (Section 6). Section 7 critically analyses the related work in the problem context, compares our dataset
with other public datasets and outlines open issues and potential research directions. Finally, Section 8 concludes the paper.

2. BACKGROUND

2.1 Overview of Touch Dynamics

Prior to the emergence of touch dynamics, one of the earliest research work on using keystroke dynamics (i.e. the patterns of interactions
between human input and a physical keyboard) to identify users was by (Gaines et al., 1980). They attempted to recognise 6 professional
secretaries by analysing the way they typed three passages of text consisting 300 to 400 words each. Since then, keystroke dynamics either
on workstations (Bleha et al., 1990; Obaidat, 1995) or in a web-based environment (Cho et al., 2000; Stewart et al., 2011) have been the
major topic of research. With the rapid development of mobile communication technologies, recent research efforts in the area have been
focusing on mobile devices with physical keypads (Campisi et al., 2009; Clarke and Furnell, 2007). According to the literature survey of
related works in the topic area of keystroke dynamics (Teh et al., 2013), since 2007, there has been growing efforts on examining the
possibility of applying the concept of keystroke dynamics to user authentication on mobile platforms. More recently, the research activities
are largely carried out in the context of touchscreen mobile devices (Saravanan et al., 2014; Dhage et al., 2015).

Touch dynamics refers to the process of measuring and assessing human touch rhythm on mobile devices, such as digital tablets,
smartphones, or touchscreen panels. When a human interacts with a mobile device, a digital signature is generated. The signatures
generated by different individuals are believed to be rich in discriminative properties, which hold potentials as personal identifiers. The
availability of higher resolution sensors in recently released mobile devices provide added opportunities to the development of touch
dynamics biometrics, as these sensors allow the extraction of more discriminative feature data types. Touch dynamics biometrics can be
integrated with an existing knowledge-based authentication method to form a so-called multi-factor authentication solution. Such a solution
can make unauthorised accesses to mobile devices harder, thus strengthening the security level of mobile devices. Using touch dynamics to
identify a user has its unique advantages, and, at the same time, it also introduces challenging issues. The following highlights the
advantages and challenging issues.

2.2 Advantages

Transparency. A touch dynamics based authentication method requires little or no additional interventions from a device user. This is
because the capture and processing of touch patterns can be carried out in the background while the user is using the device. Users may not
even be aware that they are being authenticated periodically or are being protected by an extra layer of authentication. This is in a stark
contrast to other biometrics based authentication methods that usually requires explicit alignment of a biometrics feature to a specific
sensor. For example, in the case of iris recognition, a user is required to look straight into an intra-red camera to take an iris image, and in
the case of finger based authentication, a user needs to put one of his/her fingers on the fingerprint sensor.

Familiarity. The touch dynamics feature data used for authentication is collected during mobile users’ routine input activities. This is a
process which mobile users are already familiar with, so the feature data collected tend to have a gentler learning curve with a higher
usability level.

Revocability. The touch dynamics feature data can be replaced should a passcode associated to a touch dynamics pattern is compromised,
as a new touch dynamics template can easily be associated to a new passcode. However, this is not the case for other physiological
biometrics, e.g. for iris or face biometrics, once they are compromised, there will be no replacement, and for fingerprints, the number of
replacements are limited (there are only 10 fingers to use after all).

Non-dependency. The feature acquisition of touch dynamics is less sensitive to environmental factors. Therefore, it is more suited to, and
can be more easily deployed in, a mobile context. A mobile device is usually operated in an on-the-go manner, so the values of some
environmental factors, such as the screen lighting level and background noise level, are constantly changing. Other biometrics features such
as iris or voice biometrics are sensitive to these environmental factors.

Cost Effectiveness. In contrast to other physiological biometrics systems such as iris and fingerprint recognitions, which typically require
the use of some specialist hardware, touch dynamics recognition only requires the use of build-in mobile sensors. This can reduce device
costs and it is ideal for large-scale deployments.

2.3 Challenging Issues

Algorithm and Communication Costs. Computational capabilities of mobile devices are typically lower than desktop computers. This
means that certain criteria such as algorithm complexity, communication cost and authentication delay are important and should be
considered in the design of touch dynamics based authentication solutions. In other words, computational and communication costs
introduced as the result of deploying this authentication means should be minimal.

Energy Consumption. Mobile devices, unlike their desktop counterparts, are typically battery powered, so the less the energy an application
consumes, the longer the device can operate. Though communication is the major consumer of the power of a device, the number and
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usage frequencies of various sensors embedded in a mobile device, which are used to extract touch feature data, also have a direct impact
on the mobile device battery consumption level. Various measures, such as reducing the sampling rate or frequency of data sensing (Niu
and Chen, 2012), or performing complex computations only when a device is being recharged (Crawford et al., 2013), have been proposed
to reduce power consumption of a mobile device.

Non-Permanence. Usually, human behavioural characteristics change more frequently than physiological characteristics. Similarly, a user’s
touch dynamics may change gradually as the user is getting more familiar with the passcode, input method, device, and other external
factors. Adaptive approaches (Xu et al., 2014) have been proposed in literature to take into account of any gradual changes in touch
patterns.

2.4 Operational Process

Figure 1 shows a typical touch dynamics biometrics authentication system. From the figure, we can see that the operation of this system
can largely be captured in two major phases: (i) User Enrolment, where touch pattern feature data are collected, processed and stored as a
reference template, and (ii) User Authentication, where a test sample is compared against the stored reference template(s) to determine the
similarity. The two operational phases are accomplished by a number of functional blocks (i.e. architectural components), each of which
performs a well-defined function or operation. These components and their respective operations are described below.

User @ User

Enrolment Authentication

Data
Acquisition

Data
Pre-processing

Template
Generation

Template
Storage

2|2
|

=N

Figure 1. Touch dynamics biometrics authentication framework

Data Acquisition. Data acquisition is an operation by which raw touch feature data are collected. This is usually carried out as the first step
and during the setup stage of a touch dynamics biometrics authentication system. The collected raw feature data typically consist of
repetitive input samples or collections of input samples over a specified period of time. Devices commonly used in the data acquisition
experiments are commercial off-the-shelf smartphones (Buschek et al., 2015) or in some occasions digital tablets (Saravanan et al., 2014).

Data Pre-processing. Once the raw feature data are collected, a data pre-processing operation is carried out to remove outliers in the raw
feature data, improving data quality and accuracy performance. Additionally, to optimise computational efficiency on resource limited
mobile devices, a dimension reduction technique may also be used to ensure that the selected raw feature data remain small yet
representable (de Mendizabal-Vazquez et al., 2014).

Feature Extraction. Feature extraction is another mandatory operation which is carried out in both the enrolment and authentication phases.
The main task of this operation is to identify and extract distinctive features common to a subject from the collected raw data. These
features will later be used for template generations.

Template Generation. Depending on the classification algorithm selected, the template generation can be an operation that is used to
transform the extracted touch feature into a compact form or an operation that trains, selects and stores classification models that uniquely
represent each user’s touch dynamics characteristics.

Data Classification. This is the major operation for most biometrics systems, where feature data are categorised and compared against
reference templates or models. The outcome of this operation is normally associated with a matching score used for decision-making.

Decision Making. This is the last operation carried out by a touch dynamics authentication system in authenticating a user. It is to
determine if a presented touch pattern is indeed originated from the target subject. The decision is usually made by comparing the similarity
or dissimilarity score generated from a classifier against a predefined threshold (Bo et al., 2014).

3. EXPERIMENT SETUP

This section describes and justifies the experiment setup in which raw touch feature data are collected.

3.1 Deployment and Working Modes

A touch dynamics biometrics system may be deployed in one of the two modes, identification and verification. Each of these modes
functions uniquely and serves a different purpose and use case scenario. The purpose served by the identification mode is to classify
unknown touch dynamics samples. This mode is typically deployed for forensic investigations and intrusion detections. Its use on mobile
devices is rather limited. The verification mode, on the other hand, is typically used to prove or verify a claimed identity.

The verification mode of touch dynamics biometrics can be further divided into two working modes: a static and a dynamic working mode.
In the static working mode, a user is authenticated at the initial instance of, or at some pre-defined intervals during, the user-to-system
interaction. Unlike the case for the static working mode, in the dynamic working mode, a user may be authenticated at any instant of a user-
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to-system interaction or for every service access (i.e. continuously) throughout a service access session (in addition to the initial
authentication). The functions performed in both modes are complimentary, which means that they can be deployed alongside each other to
enhance the security of mobile devices or the security of service access using mobile devices. Our experiment is conducted under the
assumption that the static working mode of the verification mode is used.

3.2 Data Collection Devices

As mentioned above, there are different types of mobile devices, e.g. featured phones, smartphones, digital tablets and laptops. Most
research works in relation to touch dynamics are carried out using various mobile phones. In comparison with mobile phones, digital tablets
have a relatively larger screen resolution, which means that a higher subject input variation, and therefore a better feature discrimination,
can be captured (Saravanan et al., 2014). For this reason, we have chosen to use a digital tablet as our data collection device. The device is
a commercial off-the-shelf Samsung Galaxy Tab 10.1 (GT-P7510) digital tablet. It has a 10.1” widescreen, and is powered by 1GHz dual-
core processor and equipped with a 1-GB RAM. The device runs under Android 4.0.4 (Ice Cream Sandwich) and a data collection tool that
was developed using Java and Android API Level 15. The entire data collection process was performed using this tablet. The justification
for using a predefined device, rather than the devices chosen by the subjects, is to remove any uncontrolled variables such as subject
preferences, program compatibility and functionality differences. In this way, the results obtained from the experiment can better capture
the discriminative power of touch dynamics feature data and the classification algorithm used.

3.3 Data Collection Environments

There are three main environments in which raw touch feature data may be collected: (i) while the subjects carry out their activities as
usual; (ii) under a controlled laboratory environment in a fixed location; or (iii) in multiple fixed locations. The first option is expensive, as
due to the ubiquitous nature of mobile devices, subjects are likely to be on-the-move and following the subjects while collecting the data
may not be convenient and could be costly. The second option is least costly in terms of setting up and running the experiments, but the
data collected may not give a true reflection of real world scenarios. To balance costs/feasibility with real-life situations, we have chosen to
use the third option, i.e. we let subjects to choose their preferred locations where their touch dynamics are extracted. The locations used
included offices, homes, inside cars, classrooms, cafés, and public areas.

3.4 Collection Method

Data should be collected when subjects are in a stable state, i.e. after they are familiar with the device input facility and the data collection
procedure, as, otherwise, data collected may not properly capture subjects’ input features. Data captured improperly may increase false
acceptance and false rejection rates when they are used to authenticate the subjects. According to (Ngugi, Tremaine, et al., 2011), input
patterns, styles or speeds, can vary and stabilise over time. To ensure data are collected after the patterns, styles and speeds, are stabilised,
and to reduce the effect of subjects’ unfamiliarity with the input facility and procedure, one of the two approaches may be used. The first
one is to divide a data collection session into multiple sub-sessions and the sub-sessions are separated by a selected time frame. For
example, we may have 4 sub-sessions each with 1 week apart, and the data collected in multiple sub-sessions are cumulatively merged into
a single set. This approach provides a good level of accuracy, but may suffer from a high dropout rate (De Luca et al., 2012), as the data
collection process is usually carried out on a voluntary basis and we cannot expect all the participants to take part in all the sub-sessions. As
a result, the sample size of the dataset may be reduced. The second approach is to collect data in a single session, but the subjects are asked
to familiarise with the input facility and procedure as many times as necessary before a data collection process actually takes place. The
entire data collection process takes an average of 15 to 20 minutes (in addition to the time taken to familiarise the input device and
procedure). This latter approach is commonly used in experiments reported in the literature (Chong et al., 2010; Kim et al., 2010; Loy et al.,
2007). So in our experiments, we have chosen to use the second approach.

4. DATASET
4.1 Subject Size

The subject size refers to the number of subjects from whom data are collected. Typically a subject size of greater than 100 subjects is
regarded as a large subject size (Teh et al., 2013). Using a larger subject size can provide more data to verify the scalability of a chosen
classifier as mentioned in (Clarke and Furnell, 2007). Most of the relevant works in the touch dynamics domain were carried out with a
subject size smaller than this value. Only a handful published works (Gascon et al., 2014; Serwadda et al., 2013; Trojahn et al., 2013) use a
subject size greater than 100 subjects. However, in the latter group of works, the subjects involved were restricted to a certain profession
and the datasets were not made publically available for evaluation. At the time of this writing, our dataset contains touch dynamics data of
150 subjects with a diverse range of professions. The dataset is grouped in 3 different packages. The first package contains data from 50
subjects, the second package contains data from 100 subjects, and the third package contains data from all of the 150 subjects. In this way,
the datasets may be used, in different ways, for comparisons between different subject sizes within the same subject grouping.

4.2 Subject Demography

Experimental subjects are typically selected based on some criteria. The commonly used criteria are age distribution, population mixture,
and profession diversity. Subjects from different age groups, with different backgrounds and/or different professions tend to use their
devices at different frequencies. Therefore, if the subjects are not selected properly, there may be unintended bias in the experimental
results. To reflect real world situations as much as possible, the demography of the subjects taking part in the data collection should be as
diverse as possible. In other words, people from different age groups, of different genders and with different device usage frequencies
should be represented as much as possible.

Most of the published works are based on subjects that are selected from: (i) a narrow age distribution (i.e. 19-26) (Antal and Szabd, 2014),
(ii) confined to only people within the same organisation (i.e. within research institute) (Giuffrida et al., 2014), or (iii) restricted to limited
profession (i.e. students) (Draffin et al., 2014). These options are frequently selected because they are less costly and may be easier to
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conduct the experiments. Data collected in this way may not properly capture the biometric features from a wider community. (El-Abed et
al., 2014; Kolly et al., 2012; Trojahn et al., 2013) are the few pieces of work we are able to find in the literature, which recruited subjects
from dissimilar age groups, and diverse population groups and professions. Inspired by these works we have made our best effort to reach
out to the general public within our resource budget. Table 1 summarised the demography of the subjects recruited in our experiment.

Table 1. Subject demography of our dataset

4.3 Input Type

Input string types are an important experimental variable that should be considered in touch dynamics biometrics research. This is because
the feature used for touch dynamics biometrics is extracted from a subject’s input string. Generally, experimental subjects are required to
provide character-based, numerical-based (PIN) or other non-specific touch events. PIN input has been the most widely used authentication
method for mobile devices, so we first used a 4-digit numerical input (“5560”), and then a 16-digit numerical input
(“1379666624680852”). The use of two different PIN lengths allows us to evaluate the effects of different input string lengths
experimentally. These two predefined numbers were carefully chosen with the following key positioning combination strategies:

e  Apart: keys are separated by at least one key apart.

e Repetition: reoccurrence of identical key.

e Adjacent: keys located diagonally to each other.

e Sequence: keys situated horizontally or vertically to each other.

These positioning strategies were used to spread the variety of input strings. A graphical illustration of the approach is depicted in Figure 2.
Requiring all the subjects to use a single predefined input string (for each string length) allows us to increase the number of impersonation
samples available for our testing phase (Section 6.2) without the need for collecting additional data.

1379 6666 2468

Apart Repetition Adjacent Sequence

Figure 2. Four different key positioning strategies

4.4 Sample Size

The input sample size affects the accuracy, robustness and outcome of an experiment (Sen and Muralidharan, 2014). A larger number of
samples used would allow us to gain a better representation of a subject’s touch dynamics behaviour, and, as a result, achieve a higher level
of accuracy (Tasia et al., 2014). Though it is desirable to have a large number of sample data, it is not always practical to expect subjects to
repeat the input for a large number of times during the enrolment stage. This is because subjects may not be available for a long stretch of
time, or may feel uncomfortable with a lengthy acquisition procedure (Tasia et al., 2014). Therefore, selecting an optimal input sample size
for each data acquisition session is necessary.

According to the work reported in literature, the benchmark for the number of samples collected per subject per session is somewhere
between 10 to 20 repetitions for a fixed input type (Buschek et al., 2015; Sen and Muralidharan, 2014; Trojahn et al., 2013). Therefore, in
our data collection process, subjects were required to repeat each input string for 10 consecutive times, resulting in 20 samples per subject
(10 for the short digit sample and 10 for the long digit sample). In terms of error handling, any input mistake made by a subject was
automatically discarded and the subject was prompted to repeat that particular input sample, and this is a common practice as explained in
the literature (Campisi et al., 2009; Maiorana et al., 2011; Robinson et al., 1998).

4.5 Raw Feature Representation

A number of application programming interfaces (APIs) have been used to capture a subject’s feature data. In detail, each single screen
touch event (finger touching down or lifting up from the touchscreen) is detected by the onTouchListener API. The timestamps of each key
press and release are logged by invoking the nanoTime() APIL. This API returns the most precise time (in nanoseconds) that is available on
the device. We also use the API functions, getSize() and getPressure(), under the MotionEvent class to retrieve the values of finger
circumference and pressure, respectively. These functions return a normalised decimal value between 0 and 1. However, we have noticed
that getPressure() always returns a value of 1.0. We have tried to resolve this issue but no success. However, as some other devices also
encounter the same problem, we anticipate that this problem will be resolved by the mobile operating system’s provider in their subsequent
API version update. Each completed touch event on a key generates two timestamps (tpress and trereqse), @ finger touch size (ps) and a
pressure value (pv). The data collected from these events will go through feature extraction and template generation process. For each
repeated input sample () of raw touch dynamics data, the feature data and the particular key press (Kpress) and key release (kyejeqse) are
recorded using the format shown below and the recorded data are stored in a separate file for each subject.

T, kpress: tpressv kreleasev treleases DS, DV
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5. METHODOLOGY

5.1 Feature Extraction

Two types of features are captured. These are timing data and finger touch size (ps). Both are captured during the subject-to-device
interactions with the input keys. ps is obtained directly from the returned value of an Android API function without further customisation.
However, for timing data acquisition, some manipulation to the touch event timestamps is required.

A timing data can be extracted in different feature length. The shortest feature length is known as uni-graph, which is the timing data
extracted between touch event timestamp values of the same key. Subsequently, the timing data extracted from two or more keys are called
di-graph and n-graph, respectively. Figure 3 shows the different n-graph sizes for a given sample input string. In our experiments, we have
chosen to extract timing data of uni-graph and di-graph.

di-graph

—

uni-graph

000 0
| 1

Press Release

tri-graph

n-graph
Figure 3. The different timing data feature length

The timing data extracted can be further divided into two categories: (1) Dwell Time (DT), i.e. the time duration for the touch action of the
same key (also known as interval, press or hold time); (2) Flight Time (FT), i.e. the time interval between the touch actions on two
successive keys (also known as latency). As shown in Figure 4, there are four variants of FT.

i3
[

T

P1 R1 P2 Rz

— DT =R,-P,
e FT,=P,-R,
PR > FT,=RyR,

4mmmmmmnnn > FT,=P2-P,

$mmmmmmmmanaaaaas > FT,=R,P,

Figure 4. Types of timing feature data extracted

5.2 Template Generation

Template generation is a process by which a subject’s touch feature samples are combined and transformed into a compact yet
representative structure. A subject’s template should uniquely capture the subject’s touch feature. For each subject, we use six feature data
types, and, for each feature data type, a template data is generated. This template data consists of two items, a mean (u) value and a
standard deviation (o) value. The equations below show how the template data for a feature data type, DT, is calculated. For example,
given a training sample set of n number of DT, the template data for DT is calculated as:

—1><ZDT
ll—n . i

n 2
1 n DT,
o= |=x (E DT? _ G0 >
n e~ n

The same procedure and computation are applied to other feature data types.

5.3 Classifier

We use three matching functions to, respectively, compute and compare the likeliness of a test sample against a reference template feature.
The likeliness, which is measured in terms of a similarity score (s), is computed by feeding the test sample value (7) of a feature vector
element of position (i) and the value of u and ¢ from the reference template into each function, i.e. s; = f(t;, 4;, 0;). The three matching
functions used are Gaussian Estimation (GE), Z-Score (ZS), and Standard Deviation Drift (SD), as given below:

_@i—u?
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We calculate a similarity score for each individual element within the intended feature vector. Then we compare these scores against an
empirical threshold (¢) to make a partial decision (D;) for each feature data element of position (i) in that feature vector, i.e.:
0, si <
p-f0 s
’ S5i> @

Here, 1 and 0, respectively, indicate acceptance and rejection. A final decision is then made to determine if a test sample belongs to the
reference template, and this is done by using the formula:

n.D;
accept, I_Tl > 0.5
Dfinal = n
. i=1Di
reject, 0 <05

where n refers to the total elements in the feature vector considered, and Dfing; is the final acceptance or rejection decision of a given test
sample.

6. PERFORMANCE EVALUATION

6.1 Evaluation Criteria

To evaluate the accuracy level of a biometrics authentication system, three main metrics are commonly used. These are the False
Acceptance Rate (FAR), False Rejection Rate (FRR) and Equal Error Rate (EER). FAR is the percentage ratio of the number of illegitimate
trails that are falsely accepted against the total number of illegitimate trials. A lower FAR indicates fewer illegitimate trails are falsely
accepted, thus the higher the security level of the biometrics authentication method. FRR is the percentage ratio of the number of legitimate
trials that are falsely rejected against the total number of legitimate trials. A lower FRR indicates fewer legitimate trails are falsely rejected,
thus the higher the usability of the method. The third performance matric, EER, is a single-number performance metric, which is commonly
used to measure and compare the overall accuracy of different biometrics systems. EER is obtained by first plotting a graph for each of
FAR and FRR against a matching threshold and then taking the interception point of the two graphs. Typically, the lower the FAR and
FRR values, the lower the EER value. A lower EER value indicates a better performance of the biometrics authentication method.
However, it is impractical to lower both FAR and FRR simultaneously as FAR and FRR are negatively correlated. Therefore, in practice,
we usually choose the threshold value to achieve a required security level.

6.2 Training and Testing Setup

For each subject recruited, 2 sets of 10 input samples are collected, one set for the 4-digit input and the other for the 16-digit input. For
each of the two input length categories, 7 out of 10 are used for training (i.e. for generating a template for the subject) and the remaining 3
for testing (i.e. for estimating the FAR and FRR values). To reduce intra-session variations, the 7 samples are selected randomly from the
10-sample set. The samples used for training are not reused for testing so that the performance assessment can be made independent of the
model development. In a FAR test, a subject’s template was compared against all the other subjects’ testing samples. This process was
reiterated for all the subjects’ templates. As there are a total of 150 subjects recruited and each subject has 3 testing samples, the total
number of illegitimate trials conducted is 150 X (150 — 1) X 3 = 67,050. In a FRR test, a subject’s template is compared against the
subject’s own testing samples. As there are a total of 150 subjects and each subject has 3 testing samples, the total number of legitimate
trials is 150 x 3 = 450.

6.3 Results Discussion

6.3.1 Timing Feature Data Scaling

The accuracy of timing feature data extracted from timestamps is influenced by the timing resolution used, so it is important to choose an
appropriate timing resolution before extracting the timing feature data. As discussed in section 5.1, timing feature data are extracted by
subtracting the timestamps of different touch actions (i.e. a key press or release). By default, the timestamps recorded by a mobile device’s
nanoTime() API has a timing resolution in the order of nanoseconds. This resolution is inappropriate because a human’s tapping speed is
usually at a much slower pace than this order. To solve this problem, an original timestamp (t) should be normalised by a scaling factor (s)
to create a normalised timestamp (T4, ) With the chosen resolution, and this can be done by using the following formula:

Thorm =t xe™*

To investigate the effects of using different scaling factor values, we have calculated the EER values of timing feature data extracted from
timestamps normalised with different scaling factor values. Figure 5 shows the EER values of the timing feature data type FT,. The same
trend has been observed for all the other timing feature data types. As can be seen from the figure, the EER values are higher when the
scaling factor uses a very small or a very big value; the EER values for both input string lengths decrease when the scaling factor value
increases from 1 to approximately 4, plateau from 4 to 8, then they start to increase sharply. This result may be explained as follows. When
timestamps are normalised by using a smaller or moderate scaling factor, the timing feature data gradually resembles better a typical human
tapping speed, and so is the ability to better represent a human’s touch pattern. However, when the scaling factor of 9 is used, the
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timestamp value becomes so small that it conveys little useful timing information. Therefore, when an extreme scaling factor value is used,
the EER value increases sharply. In this experiment, we have chosen to use a moderate scaling factor value of 5.
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Figure 5. Accuracy performances of different scaling factor values.

6.3.2 Single Feature Data Types
Experiments have been conducted to investigate the accuracy performances of different feature data types. As shown in Figure 6, the ps
feature outperforms all timing related feature data types for both the 4-digit and 16-digit input strings. This may be due to the fact that
ps could capture more properties from a subject’s touch pattern. For example, the amount of force used, finger arrangement, touch angle
and finger thickness. The mixture of these properties establishes a distinctive pattern, which can better capture the uniqueness in each
subject’s touch pattern.
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Figure 6. Accuracy performances of single vs different feature data type combinations.

As for timing related feature data types, the accuracy performance of any variant of FT is slightly better than DT. This implies that the time
taken for a subject’s finger to traverse from one key to another has more discriminative power than how long a key is hold down.
Throughout the data collection process, we observed that the key combinations entered by different subjects are different even if the input
strings entered are identical. This may be due to the fact that breaking up an input string into multiple smaller subsets (i.e. chunks) can
make it easier to memorise (Ngugi, Kahn, et al., 2011). The information embedded within the natural short pauses between different
chunks may have increased the uniqueness of FT. This is particularly the case for strings with a longer string length, due to the increased
number of possible chunk combinations as shown in Figure 7.

Input String

5560 1379666624680852
Sample Chunk Combinations

5560 1379:6666:2468:0852
5i5!6/0 13i79:66:66:24.68:0852
556:0 137:966:662:468:0852

13796;66624;680;852
13i79:6666:246 80852
Figure 7. The different possible chunk combinations of different input string.

6.3.3 Combining Different Feature Data Types

Although ps proved to be the best feature data type in terms of EER, its EER performance of 15.98% (the 4-digit string) and 12.44% (the
16-digit string) are still rather unsatisfactory. To improve this performance, we have combined ps with different combinations of timing
feature data types. So, in a given authentication instance, multiple feature data types are used, and the decision made for the authentication
instance is made by combining the decisions made on each chosen feature data type using the AND voting rule. Table 2 shows the best
EER values of different feature data type combinations. The values in brackets indicate the accuracy performance gains for using different
feature data type combinations against single feature data type. As can be seen from the table, the more feature data types used, the lower
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the EER value, the better the accuracy performance. The lowest EER value is achieved when all the six feature data types are used. In this
case, the EER values for the 4-digit and 16-digit input strings are, respectively, 7.71% and 6.27%, which are less than half of the respective
EER values when ps is used alone.

Table 2. EER values of different feature data type combinations

From the results shown in Figure 6, it is clear that combining two or more feature data types can lead to a significantly better accuracy
performance than using a single feature data type. This indicates that when more feature data types are used to train the model, the ability to
distinguish between a legitimate and an illegitimate user sample also increases.

6.3.4 Input String Lengths

Input string lengths may also affect the accuracy performance of a biometrics authentication system. To investigate the effect, we have
calculated the EER values using the three matching functions and two sets of PINs with respective string lengths of 4 and 16 digits. The 4-
digit set represents a short input string case, while the 16-digit set represents a long input string case. The analysis results are plotted in
Figure 8. As can be seen from the figure, a longer input string leads to a lower EER value, which indicates a better accuracy performance.
This result can be explained as follows. When the input string length increases, feature data samples within each input string, and the
number of different chunk combinations also increase, and so is the ability to better capture a subject’s touch pattern. In addition, when the
input string length increases, the number of illegitimate feature data samples required to match that of a legitimate reference template will
also increase. Therefore, the longer the input strings, the better the accuracy performance one could achieve from a PIN based biometrics
authentication system.
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Figure 8. The effects of the input string lengths on the EER values
6.3.5 Subject Size

We have also investigated the effects of subject sizes on the EER values. This experiment is based on three matching functions, GE, ZS,
and SD. Two subject sets are used: one set has 50 subjects and the other 150 subjects. For each subject set, we used two input string, 4-
digits and 16-digits. The experimental results are shown in Table 3. Ideally, an input string tested on a larger subject size should achieve a
lower or at least a comparable error value than when tested on a smaller subject size. If this case holds, it indicates that the proposed
method is scalable at different subject sizes. As shown by the results in the table, when the input string length is 16-digits, the differences in
the EER values produced by using different matching functions remains fairly constant when the subject size goes up from 50 to 150. This
indicates that the 16-digits input string can provide us with more consistent experimental results. From the table, we can also observe that
when the subject size of 50 is used, the average EER value decreases slightly from 7.93 to 6.81 as the input string length increases from 4-
digits to 16-digits. However, when the subject size is 150, this average value decreases considerably from 8.92 to 5.59 as the input string
length increases from 4-digits to 16-digits. This inconsistency may be due to the fact that an input string with a shorter length is less able to
discriminate different touch patterns (as discussed in the previous section).

Table 3. EER values vs subject sizes

6.3.6 Classifier Performance

The EER values produced by all the three functions are shown in Table 4. Two input string lengths, i.e. 4-digits and 16-digits, are used and
the subject size chosen is 150. From the results, it can be seen that, generally, the fluctuations in the results produced by the different
classifiers are smaller when the input string length is 16 digits in comparison with the 4 digits input string length. For example, when the
input string length is 16-digits, the differences in the EER values are less than 0.25%, whereas when the input string length is 4 digits, the
differences are at least 0.37%. Among the three functions, the Gaussian Estimator (GE) produces the lowest EER value, i.e. 8.55% when
the input string is 4 digits long and 5.49% when the input string is 16 digits long. This says that, even if the input string is known to the
impersonator, 9 out of 10 impersonation attempts can be successfully identified. As the input string length increases, the success rate in
identifying impersonation attempts also increases. These results are encouraging. They indicate the potential of using touch dynamics in
conjunction with knowledge-based authentication to strengthen the security level of user authentication in mobile devices or service
accesses via mobile devices. In addition, touch dynamics biometrics is cost-effective, as it does not require the use of additional hardware,
and usable, as it is already part of the mobile device interface. So, it can be an attractive building block for other authentication solutions
not only in a physical, but also a virtual environment.

Table 4. Performance between classifiers on different input lengths
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6.3.7 With and Without Touch Dynamics

One potential application area of touch dynamics biometrics is to integrate it into an existing authentication system to extend the system
into a so-called multi-factor authentication system. Assuming a two-factor authentication system is used: one factor is PIN-based
authentication and the other is touch dynamics authentication. Then an impersonator, to successfully sneak through the authentication
verification process, would have to produce an acceptable touch pattern, in addition to successfully pass the PIN verification process. As
shown in Table 5, in the case where the PIN is exposed, the chances for the impersonator to be successfully authenticated is drastically
reduced from 100% (if only a PIN is used) to 12.21% (if both a 4-digit PIN and the touch dynamics are used) or to 9.43% (if both a 16-digit
PIN and the touch dynamics are used). To put things into perspective, assuming that there are 10 impersonation attempts, the system will
only fail to detect once. Conversely, given the same case, the PIN-based authentication will fail to detect any of the impersonation attempts.
However, the price to pay for this enhanced impersonation detection capability (i.e. enhanced security level) is that by using the touch
dynamics based authentication method there is an increase of 4.89% (4-digit) or a 1.56% (16-digit) chance to reject a legitimate subject
incorrectly. In other words, 1 out of 25 legitimate login attempts may be incorrectly rejected. With the PIN-based authentication method, on
the other hand, a login attempt will not be rejected as long as the PIN entered is correct. In summary, with the use of the touch dynamics
based multi-factor authentication method, there is a trade-off between security and usability. Our future effort is to investigate how to
enhance or maintain the security level of this method, while minimising the usability cost.

Table 5. The comparison between FAR and FRR with the presence of touch dynamics
7. RELATED WORK

In this section, we provide a literature review of the related works with regard to evaluating the accuracy performance of touch dynamics
biometrics and touch dynamics biometric data collections. We also highlight open issues and opportunities in the topic area.

7.1 Performance Investigation

Our related work review only focuses on touch dynamics biometrics using PIN-based input strings. The experimental work reported in
paper (Sen and Muralidharan, 2014) was carried out to test the viability of identifying subjects based on touch dynamics biometrics using
numerical input strings. In this experiment, only 10 subjects were recruited and each subject was asked to input a predefine PIN (“1593”)
on a HTC Nexus-One smartphone. To investigate if an impersonator could imitate another subject’s touch pattern in the event if the
subject’s PIN is known to the impersonator, the author designed a visualisation tool to facilitate a separate set of attackers to imitate a
legitimate subject’s input pattern. Even by deliberately exposing the PIN, the timing and pressure feature information via the visualisation
tool to the attackers, the method was still able to achieve a FAR value of 16%. Though some interesting results were obtained from this
experiment, the number of subjects used was too small to draw any conclusive remark. This is also the case for the work conducted by
several other works (Amin et al., 2015; Buriro et al., 2015; Li et al., 2015).

The accuracy performance of touch dynamics applied on 4-digit PIN was also investigated by the authors in (de Mendizabal-Vazquez et al.,
2014). They extracted data with regard to timing, finger touch size and pressure by using device build-in touchscreen sensors, and in
addition, they also extracted linear and angular acceleration as feature vectors using accelerometers and gyroscopes sensors. As the size of
data collected from these two sensors is large, they applied a pre-processing technique to reduce the size of the data. As a result, the
computational resource required for data classification is reduced. However, the dataset in this experiment was collected in a quite
constrained setting, where subjects had to hold the mobile phone in a fixed position. By using a Euclidean distances based classifier, they
obtained a performance of 20% EER on a 4-digit PIN input. The performance comparisons of individual features were not given. Also, the
use of the additional sensors (i.e. accelerometers and gyroscopes) to extract linear and angular acceleration feature data means that this
technique may not be applicable to the mobile devices that are not equipped with these sensors.

(Zheng et al., 2014) also conducted their experiment on several 4- and 8-digit PINs. The authors employed a statistical one-class learning
classifier and obtained average EER values of 3.65%, 6.96% and 7.34% using three different 4-digit PIN numbers, “3244”, “1111” and
“5555”, respectively. This shows that a higher repetition of digits can reduce accuracy performance. The experiment also compared the
accuracy performances of two different 8-digit PINs (i.e. “12597384” and “12598416”). Surprisingly, the EER value of one of the 8-digit
PIN (“12598416”) was 4.45%, marginally worse than the 4-digit PIN (“3244”). This contradicts with our experimental observation that a
longer input string can produce a better accuracy performance. However, similar to our experimental observation, the accuracy
performance provided by a combination of multiple feature data types outperforms that provided by a single feature data type.

The experiment reported in (Tasia et al., 2014) was carried out on a larger number of subjects than the experiments described above, and it
used input PINs ranging from 4 to 8 digits long. An EER of 8.4% was achieved by using a simple statistical classifier. In this paper, the
authors have also studied the time taken to perform the classification and verification of different PIN lengths and feature combinations;
both consumed an average of 12ms each. This experimental result is useful when considering the deployment of touch dynamics biometrics
on power limited mobile devices.

The work reported in (Chang et al., 2015) was rather unique. The author proposed a method to allow subjects to change their PINs without
rebuilding the classification model. The subjects were asked to input 10 different randomly selected 10-digits PINs. To reduce work
burdens on the subjects, each subject was only required to provide 5 samples for each PIN. Based on all the samples collected, the authors
produced a table of all possible feature data type values for each digit. They achieved EER values of 23%, 21% and 18% on three different
PINs with the string lengths of 6, 8 and 10, respectively. This set of results is consistent with our experimental observation that, when the
16-digit PIN is used, a lower EER value can be achieved than using a 4-digit PIN. However, as the subjects involved in this experiment
were at the age 17-20 years old, it is not clear whether the experimental results are applicable to other age groups.

Most of the experiments reported in literature extracted timing data from the two shortest possible feature lengths (i.e. uni-graph and di-
graph). An exception of these is the work carried out by (Trojahn et al., 2013). In this work, the authors compared the accuracy
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performances of timing features produced from three different feature lengths (i.e. the uni-graph, di-graph and tri-graph) of a 17-digit PIN.
The experimental result suggested that the uni-graph produces a better accuracy performance than the tri-graph. This may be due to the fact
that the timing feature data expressed by a shorter feature length contains a higher level of granularity than a longer feature length. The
authors also remarked that, by combining the results from uni-graph and di-graph, they could achieve a lower error rate. This is similar to
the observations we made in our experiment that combining multiple feature data types produces a better accuracy performance than using
a single feature data type. The similar observation has also been reported in other works such as (Tasia et al., 2014; Zheng et al., 2014).

By far, the best accuracy performance reported in literature was achieved by (Wu and Chen, 2015). They achieved an average EER value
of 0.56%. The work trained a classification model by using the Support Vector Machine (SVM) and both legitimate and illegitimate subject
samples were used. In the experiment, each subject provided four different 8-digits PINs. Two main discoveries were made in their
experiments. Firstly, a PIN with more repetitiveness (e.g. “11111111”) resulted in a lower accuracy performance than a PIN with less
repetitiveness (e.g. “16843752”). Secondly, the accuracy performance can be increased by increasing the size of legitimate subject samples,
by using a combination of different feature data types and by pre-processing feature data in terms of data normalisation and outlier
removal. In their experiment, they imposed a condition that the experimental subjects were selected from those that were very familiar with
touchscreen smartphones. This condition might have played a role in achieving the high accuracy performance. It is not clear if the same
level of accuracy performance could still be achieved if this condition is removed. Also, in their experiment, a two-class classifier was used
to build the classification model. In other words, to build the classification model, samples from both legitimate and illegitimate subjects
are required. However, in real-life, as mobile devices are very much personal devices, illegitimate subject samples may not be always
available.

There were also experiments (Dhage et al., 2015; Giuffrida et al., 2014; Huang et al., 2012; Kambourakis et al., 2014) carried out on
character-based passwords. As the scope of our work is on numerical PIN inputs, we do not discuss character-based experiments any
further. A summary of the comparisons between our work and the related works is given in Table 6.

Table 6. Comparison to existing touch dynamics work carried out on PIN input

7.2 Public Datasets

As touchscreen devices only came along not long ago, there are still limited benchmark datasets publically available; so far, we are only
able to find three such datasets, but only one of the datasets uses PIN based input and none of these is collected on a widescreen digital
tablet.

The data collection process conducted by (El-Abed et al., 2014) involved 51 subjects. The input is a fixed password “rhu.university”
entered on a virtual keyboard of a window touchscreen phone (Nokia Lumia 920). Each subject attended three sessions with an average of
5 days apart. The first of the three sessions was used as a practice session, so the actual data collection started from the second session. A
total of 15 samples were collected from each subject in the two sessions. Only the timing feature was captured from this dataset, whereas
our dataset also captures the finger touch size and pressure feature.

Another related effort on collecting and sharing their datasets publically was made by (Antal and Szabo, 2014). This work differs from ours
in a number of ways. Firstly, the number of subjects involved is more than 3 times smaller than ours. Also the entire subject population
recruited in this work was students, which is different from our case where the population consists of the members of a university as well as
general public. In addition, different from our case where all the data were collected via the use of a single device, the data collection in this
work was done via the use of two types of devices. 37 subjects provided their inputs on a Nexus 7 device, while the remaining 5 via the use
of a LG Optimus L7 P700 smartphone. The paper did not explain if the use of the two device types would have any performance
implications. To allow the sample data be used in EER estimations, the input string was predefined (““.tie5Roanl”), which is also the case in
our data collection. Also, in this work, the touch events captured include not only the input string but also shiff key (toggle between lower
and uppercase characters) and keyboard switch key (toggle between characters and numerical keys). These secondary key events may
capture valuable and distinctive information about a subject. Inspired by this idea, in addition to capturing touch events on digit input, we
have also recorded the Enter key event (pressed upon the completion of a PIN input) in our dataset. Also in this related work, most of the
subjects provided their passwords for 30 times each on 2 isolated sessions in a period of two weeks (the time duration between the two
sessions is not mentioned in the paper). As some invalid inputs were removed, so the resulting dataset only contain 51 input samples per
subject (instead of 60 from both sessions).

(Tasia et al., 2014) has also reported a collection of a dataset based on numerical inputs. In this data collection process, the device used was
an early generation smartphone with a physical keypad running on Android 2.0.1 (Eclair) API level 6, which was released in December
2009. By contrast, we adopted a more recent high resolution digital tablet with a later version of a mobile operating system. The subjects
were only required to provide 2 samples per session and 5 sessions were used with an interval of at least 1 week apart for each session to
eliminate intra-session typing variations. Different from our case where data were collected in a non-restrictive environment, their data
were collected in a classroom, a rather confined environment. The age distribution of the subjects involved is biased towards young people,
where s85% of the total subjects has the age of 25 or younger. This is different from our case, where our dataset were collected from a
diversified population and with different age groups and backgrounds. Also in this dataset, subjects were allowed to freely choose a PIN,
and most of the chosen PINs have a length of 4 to 8 digits long. However, the actual PIN selections by each subject were not recorded in
the shared dataset. In this dataset, raw finger touch sizes and pressure data have been recorded, and the timing feature was only recorded in
a post-processed format (the duration and the latency). In other words, raw timing values were not recorded. This missing information may
hinder the usability of the dataset in a wider context. Finally, different from the usual practice, test samples collected for the FAR test were
collected separately from those for FRR test. 10 subjects are randomly chosen to act as impersonators. These impersonators were given the
PINs of every other subject and were asked to impersonate the subjects by providing 5 samples for each subject. In this way, the samples
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used for the FRR tests cannot be reused for impersonation test samples, thus significantly reducing the size of the samples available for the
FAR tests.

The creation and collection of live data is a time and resource consuming process, and this may be the reason for the lack of open datasets
(Giot et al., 2009). However, the research, design and performance evaluation of touch dynamic biometrics systems require the availability
of such benchmark datasets. To overcome these restrictions, we have collected touch dynamics data from 150 subjects. The dataset is made
available to download at https://goo.gl/sNACUS.

An overview of presently available public datasets is summarised in Table 7, where T, S and P indicate timing, finger touch size and
pressure values, respectively.

Table 7. Comparison of public datasets

7.3 Open Issues and Opportunities
This section outlines open issues and potential research opportunities we have identified in doing our research.

Optimal Input Length. In general, the longer the input length, the better the accuracy performance we may achieve. However, the use of a
longer input length increases the difficulty of remembering it by a subject, thus reducing usability. Further research work is necessary to
study the trade-off between the accuracy performance and the usability.

Feature Data Enrichment. Exiting efforts on increasing the accuracy performance of touch dynamics biometrics have largely been focusing
on using different classification techniques. An alternative way to increase the accuracy performance is by increasing the quality or variety
of feature data. This can be done by deriving different types of feature from raw sensor data.

Effective Classification Technique. As the primary input for a classification technique in this problem context is subjects’ touch pattern
samples, we may also categorise samples based on the types of the samples used and determine the type of classifier that we should use.
For example, a one-class classifier (e.g. distance measure) is modelled or trained by only using legitimate samples, and, a two-class
classifier (e.g. neural network) is modelled or trained by using both legitimate and illegitimate samples. A mobile device is a highly
personal device (rarely shared between multiple users), obtaining illegitimate samples in practice is not easy. So in the mobile device
context, the use of a one-class classifier may be a more viable option. Further research work is necessary to study the accuracy performance
difference between a one-class and two-class classifier.

Adaptive Learning. Human touch patterns are subject to change over time. To accommodate this change, a pattern adaptation method
should be implemented in the underlying authentication system to update existing reference templates or classifier to reflect the most recent
touch pattern of a subject. More work is necessary to evaluate the effectiveness of the adaptation approach.

Standardise Evaluation Criteria. There is an inconsistency in the performance evaluation metrics (as shown in Table 6) used by different
researchers, and this has made it difficult to compare the accuracy performances produced using different methodologies and/or by
different researchers. To facilitate effective comparisons of the related works, all the three standard accuracy performance evaluation
metrics (i.e. FAR, FRR and EER) should be used.

8. CONCLUSION

Touch dynamics based authentication may provide us with a number of benefits, such as it is an inherent feature of a majority of the mobile
devices already in use and it is readily deployable as an additional authentication factor to strengthen e-authentication assurance levels.
This paper has investigated the feasibility and benefits of adopting a touch dynamics based authentication method by integrating it with the
PIN based authentication method. To evaluate the effectiveness of this integrated approach, a proper dataset is required. With this
motivation, we have reported how a comprehensive dataset are collected. The dataset can also serve further research on various issues in
this context, such as further investigation and comparison of different classification methods or the potential use of touch dynamics for
authentication purposes. We have then illustrated the extraction of different feature data from the dataset and how the captured feature data
could be used for authentication to identify a user. We have also applied three light-weight matching functions to the dataset to study their
accuracy performances. The matching functions used in this experiment were chosen on the ground that they are computationally less
expensive than the other functions, so the resulting authentication system could consumes less power and introduces less delay in
authenticating a user. We have also investigated how the accuracy performance may be influenced by variations in factors such as the
timing resolution of timing feature data, combinations of different feature data types, input string lengths and subject sizes. Experimental
results show that, with the use of the two-factor authentication method, even if an impersonator knows the input string (i.e. PIN) of a
legitimate subject, 9 out of 10 impersonation attempts can be successfully identified. We also showed that the accuracy performance can be
increased by combining different feature data types. The results we have obtained so far demonstrate that touch dynamics biometrics can be
an effective solution to strengthen the security level offered to mobile devices.
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Table 1. Subject demography of our dataset

Properties Details
Subjects 50 100 150
Population Acadel.nia 9 11 18
Public 41 88 132
<20 8 13 28
Age 20-40 27 49 66
>40 15 38 56
Gender Male 12 24 45
Female 38 76 105
Rare 16 32 49
Usage Frequency Average 12 20 32
Often 22 48 69
Left-hand 5 8 14
Hand Preference ™ot 1 hand | 45 92 | 136

Table 2. EER values of different feature data type combinations

No. of EER
Feature Data Types | peature 4-Digit 16-Digit
PS I 15.98 12.44

FT,, PS 2| 10.17(+3636%) | 8.12(+49.19%)
DT, FT;, PS 3 7.63 (+52.25%) | 7.67 (+52.00%)
DT, FTy, FTy, PS 4 748 (+53.19%) | 639 (+60.01%)
DT, FTy, FTy, FT,, PS 5 775 (+51.50%) | 6.33 (+60.39%)
DT, FTy, FTy, FT;, FTy,PS | 6 | 7.71(+51.75%) | 627 (+60.76%)

Table 3. EER values vs subject sizes

Classifier 4-Digit 16-Digit
50 Subjects | 150 Subjects | S0 Subjects | 150 Subjects
GE 7.71 8.55 6.27 5.49
A 8.51 9.30 6.70 5.54
SD 7.57 8.92 7.45 5.74
Average EER 7.93 8.92 6.81 5.59

Table 4. Performance between classifiers on different input lengths

4 Digits 16 Digits
FAR | FRR | EER | FAR | FRR | EER
GE 1221 | 489 | 855 | 943 | 1.56 | 5.49
A 1527 | 333 | 930 | 8.64 | 244 | 554
SD 895 | 889 | 892 | 1036 | 1.11 | 5.74

Classifier

Table 5. The comparison between FAR and FRR with the presence of touch dynamics

Feature FAR FRR

PIN 100 0
PIN (4-digits) + Touch Dynamics 12.21 4.89
PIN (16-digits) + Touch Dynamics 9.43 1.56
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Table 6. Comparison to existing touch dynamics work carried out on PIN input

Page 16 of 16

Paper Length | Subjects | Input Device FAR | FRR | EER
(Trojahn et al., 2013) 17 152 Fixed Samsung Galaxy Nexus 4.19 | 4.59 -
(Sen and Muralidharan, 2014) 4 10 Fixed HTC Nexus-One 14.1 14.1 | 152
(Zheng et al., 2014) g 80 Fixed Samsung Galaxy Nexus : 43“612
(de Mendizabal-Vazquez et al., 2014) 4 80 Fixed - - - 20
(Tasia et al., 2014) 4-10 100 Random Motorola Milestone 8.4 8.32 8.4
(Wu and Chen, 2015) 8 100 Fixed - - 0.56
(Buriro et al., 2015) 4 12 Fixed Google Nexus 5 1 -
(Li et al., 2015) 4 15 Fixed HTC Droid DNA - - 4.2
(Amin et al., 2015) 7 12 Fixed | Samsung Galaxy Note N7000 | 13.9 | 0.53 -
6 - 23
(Chang et al., 2015) 8 100 Random HTC Desire Z - 21
10 - - 18
. 4 . 12.21 | 489 | 8.55
This Paper 16 150 Fixed Samsung Galaxy Tab 10.1 043 | 156 | 549
Table 7. Comparison of public datasets
Dataset Subject | Population | Sample Input Feature | Setting | Platform
(El-Abed et al., 2014) 51 Restricted 15 “rhu.university” T Confined Phone
(Antal and Szabo, 2014) 42 Restricted 51 “.tieSRoanl” T,S,P Confined Phone
(Tasia et al., 2014) 100 Restricted 5 6 to 8 digits T,S,P Confined Phone
This Paper 150 Diversified 10 “5560”, “1379666624680852” | T,S,P Flexible Tablet




