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Abstract

Recently, a qualitative approach was proposed for 3-D shape recovery based on a hybrid object
representation. In this approach, aspect recovery is the most important stage which binds regions
in the image into meaningful aspects to support 3-D primitive recovery. There is no known poly-
nomial time algorithm to solve this problem. The previous approach dealt with this problem by
using a heuristic method based on the conditional probability. Unlike the previous method, in this
paper, we present a novel parallel voting scheme to conquer the problem for efficiency. For this
purpose, the previous global aspect representation is replaced with a distributed representation
of aspects. Based on this representation, we propose a three-layer parallel voting network to com-
plete aspect recovery. For evaluating likelihood, a continuous Hopfield net is employed so that
we can enumerate all aspect coverings in decreasing order of likelihood. We describe this method
in detail and demonstrate its usefulness with simulation.
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1 Introduction

Recently, a hybrid object representation was presented !} in which objects are composed of a set of
chosen 3-D object-centered volumetric primitives; the primitives, in turn, are mapped to a set of 2-D
viewer-centered aspects. Based on this novel object representation, for unexpected object recognition,
one of the authors also presented a bottom-up approach to recovery of qualitative 3-D volumetric
primitives from a 2-D imagel?l. Using this approach, the primitive recovery was formulated as a
heuristically guided search through the various groupings of image regions into aspects, each repre-
senting a view of a volumetric part. Moreover, an attention mechanism was also developed to extend
this approach to top-down expected object recognition!®!, by using prior knowledge of the target ob-
ject to focus the various search procedure inherent in the previous unexpected object recognition
paradigm.

A major limitation of the aforementioned approach was its dependency on a complete and con-
sistent covering of the image regions in terms of a set of aspects. As a result, an aspect recovery is
necessary for the current framework of object recognition. However, the problem can be formulated
as partition into isomorphic subgraphs problem!!); there is no known polynomial time algorithm to solve
it!]. For this problem, in the previous approach, a heuristic mechanism was employed with the con-
ditional probability matrices which provide constraints so as to the problem trackable. In addition,
some efforts were also made for developing a connectionist approach to conquer this problem!®!,
Unfortunately, both approaches cannot still avoid suffering from quite high computational burden.
Voting techniques have been developed for handling object recognition problems with high computa-
tional complexity. Its efficiency lies in its parallel working mechanism. The previous techniques, like
Hough transform!®! and geometric hashing!”, usually employ elaborate transforms and invariance
for mapping data from one space to the other space so as to accumulate evidence in the new space
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parallely. Unlike the previous methods, in this paper, we propose a novel parallel voting scheme
for aspect recovery so that an approximated solution can be achieved simply using local constraints.
Instead of using a transform, we employ a distributed representation of aspects to accumulate evi-
dence. Moreover, a network structure is also presented for parallel implementation of the proposed
voting scheme. In addition, some connectionist techniques are also employed to rank likelihood for
ordering aspect coverings.

This paper is organized as follows. First we review the hybrid object representation and describe
the 3-D shape recovery framework based on the voting scheme. After that, a distributed representa-
tion of aspects is proposed, followed by the parallel implantation techniques of this scheme. More-
over, a neural computing technique is described to rank likelihood. A line drawing is used to justify
our method in instance. Some problems and possible solutions are given in the section of discussion.
In the final, conclusions are drawn.

2 The Hybrid Object Representation

It is well known that there are two object representations, hamely, object-centered representa-
tion and viewer-centered representation. Both of them have been used in object recognition exten-
sively. For object-centered representation, moreover, a set of 3-D volumetric primitives can be used
to construct the object models instead of 3-D objects themselves. For the set of volumetric modeling
primitives chosen, they may be mapped to a set of viewer-centered aspects.

In the current hybrid object representation, a set of ten primitives is employed according to Bie-
derman’s RBC theory!®. As a subset of Biederman’s geons, basically, the set of primitives can in-
clude three properties of the geons, namely, cross-section shape, axis shape and cross-section size
variation!®l. To construct objects, the primitives are attached to one another with the restriction that
any junction of two primitives involves exactly one distinct surface from each primitive.

Unlike traditional aspect graph representation of 3-D objects model, the current method differs in
that we use aspect to represent a (typically small) set of volumetric primitives is constructed, rather
than representing an entire object directly. Consequently, our goal is to use aspects to recover the 3-D
primitives that make up the object in order to carry out a recognition-by-parts procedure, rather than
attempting to use aspects to recognize entire objects. The advantage of this approach is that since
the number of qualitatively different primitives is generally small, the number of possible aspects is
limited and, more important, independent of the numbers of objects in the database. The disadvantage
is that if a primitive is occluded from a given 3-D viewpoint, its projected aspect in the image will also
be occluded. Thus we must accommodate the matching of occluded aspects, which we accomplish
by use of a hierarchical representation called the aspect hierarchy.
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Fig 1. The Augmented Aspect Hierarchy.

The aspect hierarchy includes three levels, consisting of the set of aspects that model the chosen
primitives, the set of component faces of the aspects, and the set of boundary groups representing all
subsets of contours bounding the faces. The ambiguous mappings between the levels of the aspect
hierarchy were originally captured in a set of upward conditional probabilities!!!2], mapping bound-
ary groups to faces, faces to aspects, and aspects to primitives. Fig. 1 illustrates a portion of the
augmented aspect hierarchy.

3 3-D Shape Recovery Based On The Hybird Representation

In the context of the aspect hierarchy, a framework of 3-D shape recovery has been proposed.
Working with the bottom-up style, the framework consists of three stages, viz. face recovery, aspect
recovery and primitive recovery.

rom an analysis of the conditional probabilities!*, we can conclude that the best mapping to the
aspect is from faces rather than from the boundary groups. This suggests that faces are an appropri-
ate starting point in the 3-D shape recovery process so as to extract a set of contours from the image.
Once a set of contours has been extracted from the image, the next step is to partition the contours
at significant curvature discontinuities. The segmented contours are captured in a contour graph in
which nodes represent junctions, and arcs are the actual bounding face contours. Given the contour
graph representation of an input image, we can also its corresponding face graph in which nodes
represent faces and arcs represent face adjacencies. For the faces extracted, a classification process
follows to label faces. The classification of a face consists of comparing its graph to those graphs rep-
resenting the faces in the aspect hierarchy. If there is an exact match, then we immediately generate
a face hypothesis for that image face, identifying the label of the face. If, due to occlusion, there is
no match, we must descend to the boundary group level of the aspect hierarchy. We then compare
subgraphs of the graph representing the image face to those graphs at the boundary group level of the
aspect hierarchy. For each subgraph that matches we generate a face hypothesis with a probability
determined by the appropriate entry in the conditional probability matrix mapping boundary groups
to faces.

Once the face graph(FG) has been extracted, the following work is to generate possible aspect
coverings for aspect recovery. We can formulate the problem of extracting aspects as follows: Given
a region topology graph and a set of face hypotheses(labels) at each region, finding an aspect cov-
ering of FG using aspects in the aspect hierarchy, such that no region is left uncovered and each
region is covered by only one aspect. There is no known polynomial time algorithm to solve this
problem!™2l. In this paper, we will present a parallel voting scheme for conquering the problem.
Using this scheme, we may recover all aspect instantiations(AINs). We will describe this scheme in
detail in the following section.

From an aspect covering of faces in the image, a set of primitive labels and their corresponding
probabilities is inferred (using the aspect hierarchy) from each AIN. Primitive recovery is formulated
as a search through the space of primitive labelings of the aspects in the aspect covering, guided
by a heuristic based on the probabilities of the primitive labels. Each solution, or primitive covering,
found by the search is a valid primitive interpretation of the input image. The connections in the
resulting primitive covering are then hypothesized. Each primitive covering is a graph in which
nodes represent qualitatively defined primitives and arcs specify primitive connectivity. Encoded in
each primitive is the aspect in which it is viewed; the aspect, in turn, encodes the faces that were used
in instantiating the aspect, while each face specifies those contours in the image used to instantiate
the face.

In this framework, aspect recovery is the most difficult in the aforementioned three stages. So we
will focus our attention on this problem in the rest of the paper.



4 The Distributed Representation of Aspects

As described in section 2, an aspect in the aspect hierarchy is represented as a model which con-
sists of an labeled graph; nodes represents faces, arcs represent face adjacencies and arc labels indi-
cate those contours shared by adjacent faces. Using such a representation, during aspect recovery, we
have to encounter the problem called partition into isomorphic subgraphs which is a NP problem. After
investigation, we found that such a centralized representation is hard to be employed to develop a
parallel method of aspect recovery since the global information is integrated in the single model and
components depend on each other. To develop a parallel voting scheme, we are going to present
a new distributed representation of aspects called the submodel representation for encoding voting
knowledge.

For the proposed voting scheme, we expect that it can work parallelly by accumulating evidence
of each face in a face graph and voting for a specified aspect simultaneously. After investigation, we
think it is necessary and sufficient for a face to accumulate local evidence from face types of it and its
immediate neighbors as well as connections between the face and its immediate neighbors. There are
at least two facts to support this opinion. contributions in Psychology have shown that the proximity
is the necessary condition for grouping features into a meaningful structure or perceptual grouping. On
the other hand, there is always one face connecting with other face(s) in every aspect model except
aspect 34 (numbered in the previous representation!*!), which can capture most of global information
about an aspect. Based on two facts, we can develop a new representation of aspects to support the
parallel voting scheme.

In order to develop the submodel representation of aspects, we define new labels for faces and
arcs in an aspect at first. For each face in an aspect, we focus on it once a time and prune the graph
representing the aspect so that only the focused face and its immediate neighbors be left in a two-
layer tree. For such a tree, we call root node or focused face seed face and call its leaf node(s) or
neighboring face(s) evidence face(s). As a result, we assign the label sf to the seed face and the label
ef to an evidence face. As for a connection between faces in an aspect, we also define a connection
type called co-termination connection labeled with cc which means a contour shared by two faces in
an aspect must be co-terminated if the contour is a line segment. That is, instead of a part of the line
segment, the entire one must be a component of both neighboring faces in an aspect. After adding
some labels in an aspect model, we can give a algorithm to produce submodels of an aspect. Assume
that aspect A, consists of K faces f1,..., fx.

Algorithm 1: (Produce submodels of an aspect)

1. Initialization: ¢ < 1.

2. Assign f; to a feed face and prune the graph representing A, so that only f; and its immediate neighbors,
say fi,, ..., fi,, are left as a tree Ty, are left as a tree.

3. For the tree T,, label f; with sfand f;,, ..., f;, with ef.

4. According to the definition of connection, assign the corresponding label (e.g. cc) to the arc between f;
and f;, (j =1,...,s).

5. i+ i+ 1,ifi < Kthengotol.
6. Check the sequence T4, = {TY},,...,Ts,} and remove some tree(s) from T4, so that all trees in T},

is different each other in configuration including structure or attributes(face types, labels of faces and
connections). So a new sequence is created, say TA,, ={Ty,...Ty., } (K' < K).

7. For each treein T;,p, merge leaf nodes labelled ef with the same configuration, viz. the same face type
and the same type of connection with the root node. Relabel the final node labelled ef with the number
of merged nodes and face type instead of the previous face type.
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(b) The current definition using local features

Fig. 2 Anexample used to state the encoding mechanism.

After running with this algorithm, we can achieve the distributed representation of aspect A,,.
So we call each tree in TAP a submodel of aspect 4,. Fig. 2 illustrates a process that the algorithm
works on aspect 31 for instance. Fig. 2(a) shows the previous model and Fig. 2(b) gives a process of
producing submodels of aspect 31. In the example, two submodels are generated as the distributed
representation of aspect 31.

It should be pointed out that for each aspect, we need to define a reference face and label it with
rf within its submodel(s) for locating the aspect instantiations of the aspect during voting. As a
reference face, one face must be the seed face of a submodel. Within all seed faces of an aspect, we
assign one of them as the reference face according to the following criteria; (1) The face must connect
all other component faces appearing in the previous aspect model.? (2) The face type of the face
should be different from ones of other component faces in an aspect as possible as it can. (3) Only
one submodel’s seed face is defined as in all submodels of its even though there are more than one
face satisfying constraints described in (1) and (2).> Using these criteria, in Fig. 2, we may assign
the seed face with F'9 to the reference face and label it with rf. Moreover, we have developed the
distributed representation of all 40 aspects!®! with the aforementioned method!?!.

5 A Parallel Voting Network For Aspect Recovery

5.1 The Extracting Input Array from Face Graph

After face recovery, a face graph(FG) can be achieved in which each face is labelled with either
a face type or multiple ones. Based on the aspect hierarchy and the contour graph, we can extract
easily a vector for each face type of a face as follows:

(ft;, CS;, P;) (1)

where ft; is the face type, CS; is a set of all seed contour subsets of the face which can be used
for generating ft¢; and P, is the set of corresponding probabilities of ft; generated by each subset in
C'S;. When a face in FG has more than one face type, it may own a set of aforementioned vectors

2The selection of reference face for aspect 34 is an exception since we cannot find such a face in its previous definition.
Instead we will deal with it as a special case in the section of discussions.

3When faces in an aspect is situated in rotation symmetry, each face is able to become a reference face. As a result, we
simply choose one of them as the reference.



henceforth called input-array. In general, if face k in FG has t face types, its input-array is represented
as follows:

(1) (k1) (1) (k1)
Fr(1) (CSFI'“)’ CSFk,in) (PFW, PFkl(D)
Fi(2) (CSy) ) CSE200)  (PEnys o PR2)) ?
...... R A
Fi(t)  (CSR) s oy OB (P o P

where¢ > land k; > 1, i = 1,...,t. All input-array of a face graph will constitute the unique
information source of voting.
5.2 The Structure of the Voting Network

In the aspect hierarchy, all 40 aspects can be classified into two types, viz. aspects composed of
at most 2 faces and aspects composed of at least 3 faces. For the former, we can deal with this case
as follows: (1) When an aspect consists of only one face, we can easily determine a face is an AIN
of this aspect if it has a face type consistent with the one required in the aspect. (2) When an aspect
consists of two faces, what we need to do is only to locate all faces consistent with the face labelled
with rf in the submodel and to enumerate all AINs of this aspect when such a face has neighbor(s)(as
evidence face(s)) satisfying constraints defined in the submodel. Obviously, all tasks in this case can
be completed parallelly. For the latter, it will be insufficient if we simply use this method and we
shall discuss this case in the rest of this section.

For aspects composed of at least 3 faces, we introduce a three layers network to it. Since each as-
pect hypothesis is independent each other, we can deal with them parallelly by mapping them onto
several independent subnetworks called clusters. A cluster is a mechanism used for finding all AINs
of the aspect from an input image. Fig. 3 illustrates a general structure of such a cluster correspond-
ing to aspect A,,.

O
Cluster-Ap
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Fig. 3 The general structure of a cluster corresponding to aspect A4,,.

Suppose that aspect A, consists of & submodels. For the purpose of parallel computation, we
establish a correspondence between each face in a face graph(FG) and each seed face in submodels
of the aspect base on the fact that each face in FG is a possible candidate of each component face
of the aspect before processing. In addition, if we focus one of faces in FG graph on the seed face,
other faces may be evidence faces of the face. Therefore, we can design this cluster naturally. In input
layer, each cell maps a node in FG in which there is a buffer storing its input-array with the form
of (2). If there are n nodes in FG, n cells are required in input layer. The middle layer is usually a
2-D array* used to accumulate evidence, called EC layer. In this array, the rows correspond to all

It may be a 1-D vector of cells if an aspect consists of only one submodel in which there is only one evidence node.



evidence faces in submodels of A,, and the columns correspond to all » faces in FG. The number of
cellsin EC layer isn x N (N = Zle s¢), if there are sq, s, ..., s evidence faces in & submodels of
A,, respectly. Each EC cell may connect all n cells in input layer for collecting evidence parallelly and
connects only one cell in the higher layer as an evidence cell. Since evidence faces are independent
each other in the submodel representation, there is no lateral connection among them in EC layer.
The output layer is usually a 2-D array to evaluate scores of accumulated evidence for tolling the
final vote, henceforth called SC layer. In this layer, the rows correspond to seed faces of all submodels
of A,, and the columns also correspond to n faces in FG. For aspect A, hence, there are n x k cells
in SC layer. According to the submodel representation, Cell (3, ) |n SC layer only connects evidence
cells belonging to it, viz. cell (¢,7 + 1), ..., cell (4,7 + s;) (T = Zt ] ! s;) in EC layer. In addition, for
the purpose of collecting voting results, there may be lateral connections in SC layer. If a SC cell is
also labelled rf, it may connect all cells which are not located in both the same row and column with
itself.®> In addition, the general structures of EC cell (connecting n input cells) and SC cell (connecting
s EC cells) are illustrated in (a) and (b) of Fig. 4.

: s EC EC. SCy
ft fl f, fn EChias 1 ECy S bias

(a) Evidence-Cell(EC) (b) Score-Cell(SC)
Fig. 4 The structures of EC cell and SC cell.

5.3 The Computational Mechanism of A Cluster

In a cluster, the link between a cell in EC layer and a cell in input layer is used to reflect whether
the face in input layer can become an evidence face consistent with the requirements of the evidence
face to supply necessary evidence for the vote of a seed face. For the purpose of computation, we
define the the link between cell z in input layer and cell (i, j) in EC layer as follows:

link[(i, j), = ®)

] = 1, if face « satisfies with the determinant condition.
- 0, Otherwise.

where the determinant condition will be defined according to the definition of aspects. Intuitively,
for the submodel of a specified aspect, face = (x # i) can become an evidence node corresponding to
4 to support face i to vote for the aspect only if face z has both a specified face type and a connecting
relation with face 7 which are predefined in the submodel. Let ECy;,,(j) denote the number of nodes
with the same attributes(face type, connecting type) in the submodel. Obviously, all links between
input and EC layer can be computed parallelly to accumulate evidence as followings:

Vec(id) = Dol Z link((i, ), 21 P(f1].) (@
"c;ﬁz

where P(ft|f,) is the probability required as the evidence node corresponding to evidence face j in
the submodel, deriving from the probability matrix related to the aspect hierarchy. P[FT(sf)|f;] is
the probability hat face 1 can become the seed face of the submodel, deriving from the corresponding
input-array.

In the SC cell, cell (7, k) implies that face i corresponds to the seed node of submodel % in a
specified aspect. It is used to compute the score that face 7 is a component of a specified aspect

5There is an exception that a SC cell with rf may connect with all SC cells expect itself when an aspect consists of only
one submodel.



according to evidence accumulated in EC layer. Suppose the seed node connects s;, evidence nodes
in submodel k, the score can be computed as follows:

Vs( l k‘ ZVE( %, Z St +] SCbias(k)] sk, k> 1. (5)

j=1 t=1

1
h(z) = { —1: izg
where SCy;qs(k) is a voting threshold depending upon the number of evidence nodes in submodel
k and prior knowledge about the image in the case of expected recognition.

6 Finding All Aspect Instantiations Using The Parallel Network

In the previous section, we described a parallel voting network for aspect recovery. In this section,
we shall describe how to use this network to extract all aspect instantiation(AINs) from FG.

6.1 Generating A Minimal Network for The Face Graph

For a face graph(FG), it usually may not include all 40 aspects. As we have known, the aspect
hierarchy is able to provide a powerful constraint for removing impossible aspects and generate a
minimal network. This process is also called filtering. According to the face-to-aspect mapping in the
aspect hierarchy, using face type Fy (i) of face Fj, inFG (i = 1, ...,t; kK = 1,...,n), we can generate a set
of aspect hypotheses AH p, ;) as follows,

L AHG. Y ®)

AHFk(l) - {AHFk(z)’ - Fp (i)

For FG, the set of aspects hypotheses corresponding a minimal network is a minimal set which only
includes possible aspect hypotheses generated by all faces in FG. For generating such a set, first, we
use the aforementioned mapping to achieve all possible aspect hypotheses of each face in FG. Then
we can achieve a set including the minimal set, AH},, as follows:

n t;
AHpg = UUAHFk(i) )

k=1li=1
Using the information of face types, moreover, we can further remove all false aspect hypotheses
from AH}. Using input-array of faces in FG, we can obtain a set of face types Fyy,.(FG). On
the other hand, for AH; € AH} (i = 1,2,...,t;), we can get all face types of its component faces,
say Fiype(AH;). When Fy,.(AH;) C Fyy,o(FG), AH; remains as a true hypothesis; otherwise, it is
removed from AH, as a false one. Using this method, we can achieve the minimal set of aspect
hypotheses, say AH p¢, used to generate the minimal network corresponding to FG.
6.2 Determining Links in A Cluster

For using the network, it is important to determine the link values between input layer and EC
layer using the input-array and submodels of the aspect corresponding to the current cluster. More-
over, we also need to determine the lateral connection in SC layer.%

According to (3), we can determine the link values between a cell of input layer and a cell of
EC layer. Concerning the connection between any two faces in a face graph, we can describe them
as four possible cases. For face = and y, suppose face x has a face type F,(i) and face y has a face
type F,(j), contours CSy, ;) and C'Sy,(;) are seed contour sets used to generating F';(i) and Fy(j) in
contour sets of two faces, respectlvely Let M is adjacency matrix of the face graph and we describe
three cases as follows:

Case 1. Face z is not adjacent to face y at all in the face graph, namely M (z,y) = 0. This case is also
called no connection.

5Links between EC layer and SC layer in a cluster are fixed in advance since we establish EC layer and SC layer simply
by duplicating all sumbodels of the aspect corresponding the cluster for each face in face graph.



Case 2: Face z is adjacent to face y illegally viz. M(z,y) # 0, CSr, ;) N CSF,(j) = ¢. This case is also
called illegal connection.

Case 3: Face z is adjacent to face y viz. M(z,y) # 0, CSp,iyNCSk,;) # ¢ More intuitively,
contour(s) shared by two faces is/are seed contour(s) of both faces for generating F, (i) and
F,(j). This case is called basic connection.

Case 4: Face z is adjacent to face y viz. M(z,y) # 0 and both of them have line-segment contours,
CSr, i N CSE, () # ¢- Moreover, suppose

CSr.(iy [ CSry) =05 CCSE ), CSpyiy [ CSraiiy = cs SCSE 1, s # ¢

Fy(j)’

(p)
where CSFI(Z.)
CSF,(;) so that

and CS%) ) are the entire collinear contour sets including cs in CSp, ;) and

(J

< M <T ' andT < M <77 05<T <10
length(CSFw(i>) length(CSFy(].))
More intuitively, the shared contour(s) between faces are complete collinear segments for
both faces instead of a part of them,; that is, endpoints of line segments belonging to different
faces should coincide closely. This case is also called co-termination connection.

Obviously, the last case described here exists only in two adjacent faces bound with line-segment
contours. Thus the determinant condition can be defined so that link values between input layer and
EC layer are determined easily by checking connection between the focussed face and all other faces
in face graph parallelly as follows: (1) If the case is no connection or illegal connection then the link
value is assigned to 0.0. (2) If the case is basic connection, then the link value is assigned to 1.0 only
when two adjacent faces are bound with curve contours; otherwise, it is assigned to 0.0. (3) If the
case is co-termination connection for line-segment contours, then the link value is assigned to 1.0.

In SC layer, a cell with rf may connect all other SC cells without rf except those aspects consisting
of only one submodel. In fact, there is a relation between lateral link values in SC layer and link
values between input layer and EC layer so that we can determine them. by means of link values
between input layer and EC layer achieved before. Suppose there are cell (i, z) with label rf and cell
(4,) without label rf (i # j, z # y) in SC layer” and linksc[(i,z), (4,y)] denotes the lateral link value
between the two cells. In the current network structure, we always arrange cells with rf on row 1 of
SC array, viz. x = 1 so that we can describe the relation as follow:

linksc[(i,1), (4, y)] = link[(i,y), j] ®)
Using this relation, we can determine the lateral link values in SC layer.

6.3 Generating Aspect Instantiations

Once all links values are determined, we can use this network to compute scores parallelly to
vote for all possible aspects appearing in AH g based on the computational mechanism described
previously. when we have voting results, we will encounter another problem how to collect these
voting results and how to locate an AIN of this aspect in the face graph. Since we have the reference
face and lateral links in SC layer, we can design a collecting algorithm for generating all AINs of this
aspect. For an aspect with s + 1 submodels, we have the algorithm as follows:

Algorithm 2: (Collecting Algorithm for Generating AINS)

1. Initialization: AIN < ®.

2. In SC layer, RF < {Cell(1,z1),...,Cell(m,zy)}, only if Cell(1,2;) > 0; (i = 1,...,m) m < n. Intuitively,
collecting all activated rf cells in SC layer and put them into a set called RF.

"For the case of rotation symmetry, SC layer consists of 1-D vector of cells instead of 2-D array of cells, viz. i # j, z = y.



3. For Cell(1,z;), (i = 1,...,m)and row k (k = 2,...,s + 1), V.S(z;,k) < {Cell(k,y1),...,Cell(k,yp)},
only if Cell(k,y;) > 0 and link[(1,z;), (k,y;)] > 0; (j = 1,...,p), p < n. Intuitively, based on a rf cell,
collecting all activated cells without rf which connect with the rf cell in each row of SC layer and put
them into corresponding sets, respectively.

4. Using the submodel including rf node, we can find each number label in its ef nodes, say n1, ..., ns. For
Cell(1,z;) € RF (i = 1,...,m), generating an AIN called ain by selecting n;, cells from V. S(z;,k) (k =
,t). When ain ¢ AIN, AIN + AIN |Jain.

7 Generate Aspect Coverings of The Face Graph

Once we achieved all aspect instantiations(AINSs), we must be able to enumerate, in decreasing order
of likelihood, all aspect coverings since we cannot guarantee that a given aspect covering represents
a correct interpretation of the scene. Concerning likelihood, an objective is defined as getting a cov-
ering by using minimum number of AINs and the highest prior probabilities of each component
faces in each AIN. Using likelihood we can rank AINSs, which is a constraint-satisfaction problem.
If we employ a neuron to represent an AIN, the problem can be tractable by minimizing the energy

function in the standard continuous Hopfield net!'% as follows:

= Y S - Y ©)
g '

where the first term in this equation is a global consistent constraint of using minimum number of
aspects, and the second term reflects the contribution of all AINs to the whole objective mentioned
above. For AIN;, We may represent it with a quadruplet (i, AT;, S;, PP;), where S; is the set of
component nodes in AIN;, AT; is aspect type of AIN; and P P; is the set of prior probabilities of nodes
in AIN;. Therefore, T;; is defined as follows: there is a mutual stimulation between two AINs if they
share no vertex in FG; otherwise, there is a mutual inhibition between them. I, can be measured
by the number of faces in AIN; and prior probabilities of which component faces in ATN; can be
instantiated as AT;.

(1, iSiNSi =0
T = { 1SS £6 (10)
N(S)) Z”(S)Pk
L= w =%+ w A Zwl =1, P, € PP, (11)

The global minimum is achieved through mean field annealmg. In the steady state, the output of each
neuron expresses the optimal likelihood of the corresponding AIN. As a result, the enumeration of
aspect coverings in decreasing order of likelihood can be easily based on likelihood of each AIN.

8 Experiment

In this section, we use a line drawing to justify our voting scheme. For a line drawing, its face
graph is easily achieved. In the current example, its contour graph and face graph are illustrated in
Fig. 5.

Using face-to-aspect mapping in the aspect hierarchy, we can generate the possible aspect hy-
potheses(AHSs) for each face type appearing in the face graph as follows:

AHpg = {A4, A19, A20, A21, A26, A27, A28, A29, A30, A31, A33, A35, A36, A37, A38, A39, A40}

AHp1y = {A5,A21, A22, A31, A35, A40}

As aresult, all possible AHs for the face graph is included in AH,,

AHY, = AHpo|JAHp1o = {A4, A5, A19, A20, A21, A26, A27, A28, A29, A30, A31, A33, A35, A36, A37, A38, A39, A40}

Furthermore, we can use filtering processing in section 6 to remove false hypotheses from AH J;...

As a result, the minimal set of aspect hypotheses is achieved as follows:
AHL, = {A4, A5, A20, A21, A22, A29, A30, A31, A35, A40}
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From both face graph and contour graph, we can generate an input-array for each face in the face
graph as follows:
F0: [F9 (0198) (1.00)]
fl: [F9 (9(23)410) (1.
(1.

f2: [F9 (5(67)810)
5. [ F9  ((111213) (1213 14) (131415)) (0.86 0.86 0.86)
P35 p1o ((111213) (1213 14) (1314 15))  (0.140.14 0.14) ]

f4: [F9 (1316 (1718 19 20 21 22) (1.00)]

f5: [F9 (1423 (24 25) 26) (1.00)] 19 [

£6: [F9 (18 27 28 29) (1.00)]
F9  (203031) (0.86
00)] T [ F10 E29 30 313 Eo.14§ ]
00)]
( £8: [F9 (213233 34) (1.00)]

F9 (343536) (0.86)
F10 (343536) (0.14) ]

0
F9
1 0 8/ |,
1 2 15
—y 9 21t
3 1 1 26
v 5 3 14
4
13 5/
16 4 2312
17 | 18 9 J20] 2 2 |
31 9
29
271 6 7 | 8 P
35
® Fo {F9,F10}  F9 {F9,F10}
28 33
(1) Contour Graph (2) Face Graph

Fig. 5 The contour graph and face graph of a line drawing.

As pointed out previously, the voting network only serves for aspects composed of at least 3
faces. For such aspect hypotheses in the current minimal set, we can use the proposed network to
complete the voting parallelly. Results of accumulating evidence in EC layer and voting in SC layer
are illustrated in Fig 6.

In addition, we can enumerate all aspect instantiations(AINs) directly for aspects composed of at
most 2 faces as follows:

AIN(As) = {f0, f1,f2,f3, f4, 5,6, [T, f8,[9} AIN(As) = {f3,f7, 9}

AIN(Ag0) = {(f0, £1),(f0, f2), (1, f2), (3, f4), (f3, 5), (4, £5), (f6, f7), (f8, f9)}

AIN(Ag1) = {(f3,f4),(f3, f5),(f6,f7),(f8,f9)} AIN(As2) = { }

Moreover, we can use algorithm 2 and physical features of aspects to locate AINs of aspects composed
of at least 3 faces according to lateral connections in SC layer illustrated in Fig. 7.

AIN(Az) = {(f0,1,f2),(f3,f4,[5)} AIN(Az0) = { } AIN(Aa1) = { } AIN(Ass) = { } AIN(Ag) = {}

Using a continuous Hopfield net, we can achieve likelihood of All AINs by using w; = 0.70.
Therefore, we can order all AINs in decreasing order of likelihood and put them into H.
H = {[A29,(f0, f1, f2)], [A29,(f3, f4, [5)], [A20,(f0, f1)], [A20,(f0, f2)], [A20, (f1, f2)], [A20,(f4, f5)], [A20, (f6, f7)],
[A420, (18, f9)], [A20, (f3, f4)], [A20,(f3, f5)], [A4, fO], [A4, f1], [A4, f2], [A4, f4], [A4, f5], [A4, f6], [A4, f8], [A4, fT],
(A4, 9], [A4, f3], [A21, (f6, fT)], [A2L,(f8, f9)], [A21,(f3, f4)], [A2L,(f3, f5)], [A5, fT], [A5, f9], [A5, 3]}
From H, we can enumerate the first three coverings with the highest likelihood.
Covering(1) = {[A29,(f0, f1, f2)], [A29, (3, f4, f5), [A20,(f6, f7)], [A20, (8, f9)]}
Covering(2) = {[A29,(f0, f1, f2)], [A29, (f3, f4, f5), [A20,(f6, f7)], [A4, f8], [A4, 9]}
Covering(3) = {[A29,(f0, f1, f2)], [A29, (3, f4, f5), [A20,(f6, f7)], [A2L, (8, f9)]}
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Fig. 6 Results of voting process. (1) The result of accumulating
evidence in EC layer (2) The result of voting in SC layer.
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A30

Fig. 7 The lateral connection of cluster A29 and A30 in SC layer.

9 Discussion

In the section, we also pay our attention to the distributed representation of aspects since it is the
basis of the proposed method.

In section 4, we mentioned Aspect 34 is an exception of producing submodels using algorithm
1. The problem lies in that we cannot find a face in the previous model of Aspect 34 which satisfies
condition (1) defined in criteria of choosing a reference face. That is, there is no face connecting all
other component faces in Aspect 34 so that we cannot capture any global information. Fig. 8(a) shows
its previous model. In the current method, we modify the original aspect by adding a virtual face as rf
illustrated in in Fig. 9b). The original model is encoded as only one submodel according to algorithm
1 and the adding submodel is defined in Fig. 8(b) in which rf is a virtual face corresponding to an
endpoint shared by four faces and the sum of four angles around the shared endpoint in four faces
must be within 360° & 0. Since there are three endpoints in a component face with face type F'3 in
Aspect 34, as an exception, each face will correspond to three cells with label rf in SC layer. Moreover,
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we compute the score of such a cell as follows:

1 if endpoint j in face 7 is a converging point of at least 4 line segment.

Vie(1, (i,9) = { 0. Otherwise. (12)
wherei =1,2,...n; 7 =1,2,3.
F3
: o\
0 5 F3 F3
3 ©)
F3

(a) theoriginal definition of aspect 34.

F3

O

ef

2*F3
(b) the submodels of aspect 34.

Fig. 8 The submodels of aspect 34 in the encoding mechanism.

As pointed out previously, the generation of an AIN is a process of packing component faces re-
covered from the face graph and locating it in the face graph. However, there are some overlappings
among distributed representation of aspects if we only consider their subgraph representation. For
example, Aspect 30 is just a pure subset of Aspect 29. It results in a new problem that a false AIN of
Aspect 30 is generated when we actually find an AIN of Aspect 29 from an image. Fortunately, we
can conquer this problem by using some physical features of aspects. In the current example, we may
use the location relation of contours shared by two faces, viz. parallel vs intersection, to determine
further whether an AIN of Aspect 29 or Aspect 30 is generated when the score is high enough[7]. In
fact, the enforced representation has been used in the previous experiment.

10 Conclusions

We have proposed a parallel voting scheme for aspect recovery in the context of the hybrid object
recognition!!!. Unlike the previous approach, the parallel voting network simply uses local constraints
for extracting aspect instantiations from the face graph of an image. Moreover, neural computation
techniques are also employed to rank likelihood such that we can enumerate all aspect coverings in
a decreasing order of likelihood. As a consequence, the efficiency of this method has been demon-
strated with our simulations.
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