NEUROCOMPUTING

3
AN L”.

ELSEVIER Neurocomputing 16 (1997) 33-48

A self-generating modular neural network architecture for
supervised learning

Ke Chen™*, Liping Yang®, Xiang Yu?® Huisheng Chi®

* National Lab of Machine Perception and Center for Information Science, Peking University,
Beijing 100871, China
5JBM China Research Lab, Beijing 100085, China

Received 2 October 1995; accepted: 7 November 1996

Abstract

In this paper, we present a self-generating modular neural network architecture for super-
vised learning. In the architecture, any kind of feedforward neural networks can be employed as
component nets. For a given task, a tree-structured modular neural network is automatically
generated with a growing algorithm by partitioning input space recursively to avoid the
problem of pre-determined structure. Due to the principle of divide-and-conquer used in the
proposed architecture, the modular neural network can yield both good performance and
significantly faster training. The proposed architecture has been applied to several supervised
learning tasks and has achieved satisfactory results.

Keywords: Modular neural networks; Self-generating architecture; Supervised learning

1. Introduction

Traditional neural network architectures such as the multilayer perception (MLP)
have proved successful as universal function approximators and have been used in
many different classification problems. However, there are still several open problems
in these architectures, such as pre-determination of structure, very slow training in
real-world problems and local minima, etc. To deal with these problems, an alternative
way is to develop a novel architecture for attacking them instead of giving an
improved learning algorithm for alleviating the aforementioned problems based on
the original architecture.

* Corresponding author. E-mail: chen@cis.pku.edu.cn.

0925-2312/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved
PIT S0925-2312(96)00057-4

|

34 Ke Chen et al. | Neurocomputing 16 (1997) 33—48

The principle of divide-and-conquer is often used to attack a complex problem by
dividing it into simpler problems whose solutions can be combined to yield a solution
to the complex problem. Based on this principle, there has recently been widespread
interest in the use of multiple models for supervised learning in the neural network
community [8, 9, 12, 13, 16]. Unfortunately, the problem of pre-determined structure
can still not be avoided in the most of these architectures. Self-generation is a function
of the neural network whose structure can be automatically generated by using an
elaborate algorithm for a given task during training. Some kinds of neural networks
with self-generation appeared in recent years [6, 15, 18]. However, these approaches
do not specify in what exact sequence a neuron should be added to give the maximum
effect in classifying training examples and still keep the slow convergence property.
On the other hand, many researchers have recently considered hybrid structures [4,
11, 17, 19] between neural networks and decision trees which are hierarchical and
self-generating classification structures. However, they are not the modular architec-
ture yet. It may result in a complicated architecture with many hidden layers and
a large number of hidden nodes. In this paper, we present a self-generating modular
neural network architecture, based upon the principle of divide-and-conquer, in which
any kind of feedforward nets may be chosen flexibly as component nets and any
existing learning algorithm for feedforward neural nets may also be employed for
training these component nets. In the tree-structured architecture, linear discriminant
functions or hyperplanes play a ‘divide’ role to heuristically partition a large and
complex problem into several smaller and simpler problems, while neural networks
play a ‘conquer’ role to solve those smaller and simpler problems. Motivated by the
idea underlying the model of mixture of experts [12], we also adopt a ‘soft’ method to
partition the input space in which there may be an overlapping between two adjacent
partitioned input data subsets. To demonstrate the usefulness of the proposed archi-
tecture, we have applied it to both classic benchmark problems and a real-world
problem. The experimental results show that the proposed architecture can not only
achieve satisfactory performance in both classification and universal function approx-
imation but also yield significantly faster training.

The rest of the paper is organized as follows. The architecture of the modular neural
network and the self-generating algorithms are described in Section 2. Experimental
results are reported in Section 3 and some discussions are presented in Section 4.

2. Architecture and self-generating algorithms
2.1. Architecture of the modular neural network

The basic idea underlying the proposed method is to use hyperplanes for partition-
ing a large task into several smaller subtasks and to use neural networks, hereinafter
called component nets, to work for these subtasks. Based upon the idea, a tree-
structured architecture is automatically generated by a controlled growing process
for a specific supervised learning task. As illustrated in Fig. 1, the proposed method
leads to a binary tree structure in which hyperplanes sit at nonterminal nodes and

Ke Chen et al. [Neurocomputing 16 (1997) 33—48 35

Fig. 1. A typical tree-structured architecture generated by the proposed method.

Component
Net
Condition (1) is satisfied i
1”[\ —_- Component Component
Replaced Net Net

- S —~Z

Fig. 2. A one-step splitting process when condition (1) is satisfied in the growing algorithm.

component nets sit at leaves of the tree. During training, each hyperplane at the
nonterminal node can be determined according to a heuristic splitting rule in the
growing algorithm described in the sequel. A component net is trained on a data set ..
The training will stop once a pre-specified condition described in the growing
algorithm is satisfied. In this circumstance, the current component net is aborted from
the node and a new hyperplane determined by the splitting rule is created and sits at
the current node instead of the aborted component net. As a result, the data set & is
partitioned by the hyperplane into two adjacent subsets &, and &, where & = ¥, U %,
and ¥ NS, # 0 (@ denotes the null set) is probable in use. Accordingly, two new
component nets are created and trained on &, and %,, respectively. Such an one-step
splitting process is illustrated in Fig. 2. The aforementioned recursive procedure
proceeds until all created component nets at leaves of the tree reach steady states. As
a result, the proposed method transfers the problem of determining an appropriate
architecture of a neural network for a given task to the problem of finding a tree of
right size. During test, the unknown sample is fed to the root node and a series of
decisions are made traversing paths down to leaves of the tree due to the overlapping
(#10S, #0). In each specified terminal node, the component net works for and
produces a result. Then both an elaborate credit-assignment algorithm and a combin-
ing mechanism are used for the final result. The final result is obtained by combining
results produced by component nets at the leaves of the tree.

36 Ke Chen et al. /| Neurocomputing 16 (1997) 33—48
2.2. Self-generating algorithms

In the proposed architecture, self-generating algorithms consist of growing and
credit-assignment algorithms. The growing algorithm is used to generate a tree
structure automatically for a given data set during training. The credit-assignment
algorithm is used to assign credits to component nets at terminal nodes which
produce results for an unknown pattern. Based on these credits, a combining mecha-
nism may draw the final result by combining all of local results during test.

For use in describing the growing algorithm, here we define the mean square error
(MSE), E, of a neural network as E = (1/2nN) Y™, |d; — y;||?, where n and N are
respectively the dimension of the output vector of the neural network and the number
of samples in the given training set. d; and y; are respectively the desired and practical
output of the neural network for sample i, respectively, and || - || is the Euclidean norm.
As a result, the growing algorithm is described as follows.

Growing Algorithm.

1. Choose a feedforward neural network architecture and an existing learning
algorithm accordingly. Set a maximal epoch number .#,,,, and an MSE threshold Er.
For a supervised learning task, input the training set. Create a terminal node and put
the feedforward neural network at it.

2. Initialize the feedforward neural network(s).

3. Let .# and E, denote the epoch number that the neural network has been trained
and the MSE value at epoch .#, respectively. Train the feedforward neural network(s)
by using the chosen learning algorithm and the available training set until one of the
following conditions® is satisfied: (1) .# > £ .,, (2) E, < Er.

4. If condition (1) is satisfied, remove the current trained neural network and
replace the terminal node with a non-terminal node. Accordingly, generate a hyper-
plane according to a criterion and put it at the node. A splitting rule based on the
achieved hyperplane partitions the current training set . into two adjacent training
subsets ¥, and .%,. Then create two terminal nodes for this non-terminal node and put
two new feedforward neural networks (whose architectures have been chosen in step
1) at them for training on & and %,, respectively. Go to step 2.

5. Repeat from step 2 to step 4 until condition (2) is satisfied for those feedforward
networks at all created terminal nodes.

Obviously, the criterion mentioned in step 4 plays a crucial role in the growing
algorithm. The criterion serves for solving the problem about how to determine
a hyperplane for partitioning a training data set into two appropriate subsets. For the
different learning tasks, i.e. classification and function approximation, we develop two
different heuristic criteria to determine the hyperplane. The general idea underlying
these two criteria is that the determined hyperplane could partition the training set

! One might also enhance condition (1) by incorporating more complicated constraints for escaping
a possible local minima so as to terminate the current training at a more appropriate point.

Ke Chen et al. | Neurocomputing 16 (1997) 33—48 37

into two smaller training subsets so that two pre-chosen feedforward neural network
can deal with two easier sub-problems with less computational cost.

Considering the classification task, we assume that there are N samples belonging
to K classes in the data set &, thatis, & = {{p;;})<, w;}i=1 where w; is the label of
class i, p;; is the jth input pattern with the label w;, N; is the number of samples
belonging to class i and T~ | N, = N. On the other hand, no class label is available in
the function approximation task. For consistency of the notation, in the case of
function approximation, we still denote the data set & = {{p,;}}*,} which refers to
that all samples in .% are viewed as belonging to the same class (here it is called class
1 and N; = N). For class i, thus, its centroid can be achieved by p; . = 1/N izy‘: Dije
Based on the notation, we give the following two criteria.

Criterion 1. For the K classes (K > 2), centroid p;, . and centroid p; . can be found as
follows,

d(pi()vc’pilv‘:) = max d(pi.c’pj,c)’ (1)

1<ij<K

where d(-, -) is the Euclidean distance metric. Let p. be 3 (p;, . + pi,..) which represents
the central point of the line segment between p; . and p;, .. If d(p; ., pi,,c) =0, the
hyperplane is determined as the one through the point p. and orthogonal to the vector
Pio,c —Pi,o» that iS,

166) = (Piyyc — Py,)" (x —p) = 0. 2

If no prior knowledge on the distribution of data is available, intuitively, the criterion
suggests that the hyperplane should be determined so that data in the two classes with
the furthest distance might be put into two different data subsets.

Criterion 2. When d(p;, ., p;,) = 0in Eq. (1), obviously, Criterion 1 cannot be used to
determine a hyperplane. In addition, Criterion 1 does not work yet for the function
approximation task since no class label information is available. Here, we present
another criterion to deal with the case. As a result, a hyperplane may be determined
according to the following criterion that the data set should be divided into two
subsets with almost equal number of samples. Intuitively, it suggests that two feedfor-
ward neural networks might keep balance in solving two smaller problems. For this
purpose, first of all, we compute the centroid of input patterns in the current data set
&, ie.p.=1/N Zf‘zl Zf’ , pij where p_ is the centroid of all N input patterns. Then, we
construct a hyperplane as follows,

Ix) =plx —p) =0 if p.#0 or Ix)=px=0 if p.=0 (3)

where p, is an input pattern randomly chosen from N input patterns in the data set &.

In general, Criterion 1 is basically used in the case of classification, in particular,
multiway classification and Criterion 2 is readily used in the case of function approxi-
mation and some special cases of classification. For classification, moreover, two

38 Ke Chen et al. |Neurocomputing 16 (1997) 33-48

criteria are always used for determining a hyperplane in this order of priority:
Criterion 1 first if d(p; ., p;,,) # O then Criterion 2 if d(p;, ., pi,) = 0. Once a hyper-
plane /(x) = 0 has been determined with either Criterion 1 or Criterion 2, we can
define the splitting rule based on the obtained hyperplane for an input pattern x; in %.
Since we adopt the ‘soft’ method to partition a data set, an overlapping factor f is also
needed for determining size of an overlapping region between two adjacent data
subsets in the splitting rule. The overlapping factor g is currently determined by trial
and error prior to training. As a result, the splitting rule is defined as follows: for an
input pattern x; in &,

X; € y[lf l(x,) < D, x,-E.?} lf l(x,) > — D, (4)

where D = fiD, and f > 0. The value of D, depends upon the criterion used for
determining the hyperplane I(x) = 0 in the splitting rule. In Criterion 1, Dy, is equal to
min{d; , d; } where d; and d;, denote the distances from centroid p;, and centroid p;, to
the hyperplane I(x) =0, respectively. In Criterion 2, D, is equal to dn,., where
dmax denotes the maximal one among distances from all x in & to the hyperplane
I(x) =0. It is worth noting that the value of § must be chosen on condition
max{Ngy, Ny} < N where Ny, and N, are numbers of samples in &, and &,
respectively.

The use of the growing algorithm results in a tree-structured architecture for a given
task after training. During test, however, there is still a problem in combining results
produced by component nets at terminal nodes since several component nets may
have contributions to the final result due to the overlapping between two adjacent
data subsets during training. To solve the problem, we develop a credit-assignment
algorithm. Before presenting the algorithm, we first define a pair of functions for use in
the algorithm.

1, X< — D, 0, x < - D9
Cl(x) = _%(—3 - l)y —-D<x< Da Cr(x) = %(% + 1)5 -D<x< D’ (5)
0, x> D; 1, x > D.

For Eq. (5), it is easy to show that C;(x) + C,(x) = 1. Thus, the credit-assignment
algorithm is summarized as

Credit-Assignment Algorithm.

1. Initialization. Let x, denote an unknown pattern for test. a =1 and
pointer «——root. I(x) = 0 is the hyperplane which resides at the current nonterminal
node pointed by the pointer.

2. If I(x,) < D, do o« a x C/[l(x,)] and pointer —— pointer — leftchild.

3. If l{x,) > — D, do a « a x C,[l(x,)] and pointer —— pointer - rightchild.

4. Repeat steps 2 and 3 until credits are assigned to all component nets in which
x, can be located.

In the algorithm, «+— and — denote assignment and pointer operators, respectively.
The obtained a is the credit value of a component net at the specified terminal nodes.

Ke Chen et al. | Neurocomputing 16 (1997) 33-48 39

Using the credit-assignment algorithm, we may assign credits to component nets at
leaves of the tree for an unknown pattern x,. For the unknown pattern x,, thus, the
final result O(x,) is drawn as

0 = 3, afx) x 04, ©)

where N; is the number of component nets at which the unknown pattern arrives.
a;(x,) is the credit assigned to the ith component net and Oy(x,) is the result produced
by the ith component net for x,,.

3. Experiments

The proposed architecture has been successfully applied to several supervised
learning tasks. These tasks include 10-parity, 2-spiral problem, function approximator,
and a real-world problem called speaker identification. All programs have been written
in C language and simulations were conducted in Sun Sparc 20 workstation. For all
problems except speaker identification, the experiments were repeated 10 times and
the unique difference in experiments is the initialization on weights of neural net-
works. In addition, the architectures of components nets in all problems except
10-parity are three-layered MLPs.

The N-parity problem is a typical nonlinearly separable problem. Since it has been
a popular benchmark among other researchers, we used the 10-parity problem to
evaluate the performance of the proposed method in nonlinear separability. In the
10-parity problem, there are ten inputs and one output. In our version, any even
number of inputs must be turned on (including 0) for the output to be 1. In the
simulation, we chose a non-hidden layer feedforward neural network with the struc-
ture 10-1 (10 inputs and 1 output with the sigmoid activation function) as the
component net and the gradient descent learning rule was used for training. Other
parameters used in the growing algorithm are listed in Table 1. After the training was
finished, a modular neural network was automatically generated as illustrated in
Fig. 3. For comparison, we also employed an MLP to deal with the same problem.

Table 1
Parameters (epoch, MSE thresholds and overlapping factor) and architecture of component nets (MLPs) in
the growing algorithm for solving four problems reported in Section 3

Problem 10-parity 2-spiral Function Speaker
approximation identification

Epochs S ., 10 10 30 100

MSE E; 0.001 0.005 0.002 0.01

Overlapping § 0.0 0.2 04 0.15-0.2

Architecture 10-1 2-3-1 2-2-1 24-8-10

40 Ke Chen et al. [Neurocomputing 16 (1997) 33-48

Fig. 3. The generated modular neural network for the 10-parity problem.

Table 2

CPU time of training neural networks with the proposed method and other methods for solving four
problems reported in Section 3. Here we abbreviate the proposed architecture as Modular Tree. For the
same problem except speaker identification, the experiments are repeated 10 times. However, only one
result could be achieved using the MLP for the 2-spiral problem. As for speaker identification, there are still
10 results since there are Modular Trees corresponding to digits from O to 9, respectively (Unit: second)

Problem 10-parity 2-spiral Function Speaker
approximation identification
Modular Tree 12+1 76 + 3 492 +5 2528 + 514

MLP 883+ 8 1826 1012+ 9 7889 + 618
Cascade-Correlation — 154 + 14 — _

Grossman et al. suggested using the MLP with the structure N-2N-1 (N inputs, 2N
hidden units and 1 output) to attack the N-parity problem [10]. As a result, we
adopted the MLP with the structure 10-20-1 in the simulation. The standard back-
propagation (BP) algorithm was used to train the MLP. As a result, both methods
works very well and CPU time for training is listed in Table 2.

A well-known benchmark in the neural network community is the so-called
two-spiral problem illustrated in Fig. 4. It consists of 194 two-dimensional vectors
lying on two interlocked spirals that are the classes in this case. The task is to
construct a classifier which can distinguish between the two classes. It seems to be
a rather difficult task for typical feedforward neural networks (e.g. MLPs with
sigmoidal activation functions). It was reported that the problem could not be solved
with a standard MLP and additional connections had to be used for achieving
convergence [14]. Fahlman et al. used a constructive learning algorithm, called
cascade-correlation, to solve the problem successfully [6]. We used the benchmark to
evaluate the generalization of the proposed architecture. All parameters used in the
growing algorithm and the architecture of component nets are listed in Table 1. The

Ke Chen et al. | Neurocomputing 16 (1997) 33—48 41

+ + + .
+
+
+ ° ® 4 °
® ° +
+
° R o
° * + +
+ +
o ° ° o + °
° + °
+ + ® ® *) *
+ ¢
° hd + oy + @ .
+ ° * ° +
+ ° 4 + 0000, + + L4
+ N + e + °
+ °
° + ° + e + ° + ° + ° +
+ L4
°
° + *++ £ ° + °
+ ° +4ett @ + + o
° + ° ° °
4 ® +
° + 'S +
+ © 00 + IS °
° ° +
R P ° *
+
° + o+ ° N °
°© ° °
+ o °
° + o
3 + +
+
+ ®
° * *
° ° ®
° °

Fig. 4. Two-spiral problem.

Fig. 5. Decision regions produced with the proposed method in the two-spiral problem.

standard BP algorithm was used for training component nets. As a result, the
resulting decision regions of the generated modular neural network are shown in
Fig. 5. Accordingly, the generated modular neural network structure is also depicted
in Fig. 6. It should be noted that all of experiments yielded the same architecture. For
comparison, we also conducted the experiments using the MLP with the structure
2-5-5-5-1 and additional connections used by Lang et al. [14] and the cascade-
correlation architecture. In all experiments, the correct resulting decision regions

42 Ke Chen et al. [Neurocomputing 16 (1997) 33—48

(H)

(H) (H) (1) () (1) (H) (H) (H)

el () [wp () [wee] () [l (D [l] ()] Gi)
MmMmmimmimmmmim m i o

(®) Hyperplane MLP with 2-3-1

Fig. 6. The generated modular neural network for the two-spiral problem.

Table 3
Number of feature vectors in the training set and two test sets for speaker identification

Text ‘0 oq o o oy < % o g g
Training-Set 1162 1163 1159 1125 1141 1174 1204 1173 1171 1198
Test-Set-1 2399 2379 2335 2215 2164 2424 2403 2261 2318 2408
Test-Set-2 2204 2175 2210 2149 2192 2348 2270 2148 2194 2298

could be merely obtained by the MLP in one experiment and difference hidden units
(14-17) were needed in the cascade-correlation architecture though all of them could
achieve approximately correct resulting decision regions. As a result, CPU time for
training by using different architectures for the problem is listed in Table 2.
Speaker identification is to classify an unlabeled voice token as belonging to one of
a set of N reference speakers. It is a rather difficult learning task since speakers’ voice
changes in time. Here, the acoustic database consists of 10 isolated digits from ‘0’ to ‘9’
uttered in Chinese with the population of 10 male speakers (N =10) and were
recorded in three different recording sessions. We used the utterances recorded in the
first session for training and utterances recorded in the other two sessions for test.
Accordingly, test results are called Test-1 and Test-2. After preprocessing and feature
extraction, we obtained 24-order feature vectors (LPC spectrum) from raw data. All
numbers of samples used for training and test are listed in Table 3. All parameters
used in the growing algorithm and the architecture of component nets are listed in

Ke Chen et al. | Neurocomputing 16 (1997) 33-48 43

Table 1. In the growing algorithm, we employed Levenberg-Marquat algorithm [7] for
training component nets. As a result, 10 modular neural network structures were
automatically generated and each one corresponds to one digit from 0 to 9. Due to the
limited space here, the generated structure corresponding to ‘9’ is merely illustrated in
Fig. 7 for instance. The complete results have been reported in [2]. Accordingly, the
test results are shown in Table 4. In the speaker identification system, previously, we
adopted four-layered MLPs with the structure 24-20-20-10 as the classifiers (the
structures were obtained by the two-fold cross-validation method) and also employed
Levenberg-Marquat algorithm for training. The test results using the individual
MLPs are shown in Table 5. CPU time for training is also listed in Table 2.

It is well-known that an MLP with sigmoidal activation function is a universal
approximator which can approximate any continuous multivariate function to any
desired degree of accuracy, provided that sufficiently many hidden neurons are
available. To evaluate the universal approximation ability of the proposed method,

(®) Hyporplane MLP with 24-8-10

Fig. 7. The generated modular neural network corresponding to digit ‘9’ for speaker identification.

Table 4
Test results on Test-Set-1 and Test-Set-2 using the generated modular neural networks for speaker
identification

Text ‘0 ey A ¥ ‘& ‘5 6’ ‘T ‘¥ l Mean

Test-1 880 850 860 8.0 880 8.0 930 900 830 890 872
Test-2 91.0 930 890 920 840 8.0 900 8.0 780 91.0 882

44 Ke Chen et al. [Neurocomputing 16 (1997) 33—48

Table 5

Test results on Test-Set-1 and Test-Set-2 using the individual MLP for speaker identification

Text o o o o @ 5 “ o @ g Mean
Test-1 85.0 810 870 790 850 770 88.0 900 770 880 837
Test-2 880 900 870 850 820 830 840 830 770 890 848

we performed experiments by learning a multivariate function approximation task.
To visualize the results, we selected a function as

f(x,p) = (x* — y*) sin % —10<x,y<10. (7)

In the experiment, we used a training set with 625 samples to learn the mapping. All
parameters used in the growing algorithm and the architecture of component nets are
listed in Table 1 and the standard BP algorithm was used to train component nets.
The 10 experiments with the different initialization still generated the same architec-
ture in which there are 55 hyperplanes and 56 component nets. To evaulate the
generalization ability of the generated architecture, we used three data sets with 1600,
2500 and 4489 samples for test, respectively. Results produced by the function in
Eq. (7) on the training data and the generated architecture on test data are shown
them in Fig. 8. For comparision, we also used the individual MLP with the structure
2-12-8-1 to handle the same problem (the structure was chosen from 10 MLPs with
three or four layers by the 2-fold cross-validation method). The standard BP algo-
rithm was still used to train the MLP. Actually, the MLP can also yield the similar
results. As a result, CPU time for training is listed in Table 2.

In summary, it is evident from all aforementioned simulations that the proposed
method can yield the satisfactory results in both classification and function approxi-
mation. In particular, the proposed method results in significantly faster training for
all problems in simulations.

4. Discussions

In the pattern recognition community, Bayes decision method is a classic theory for
classification [5]. In the framework, for the data set with 2 classes, 2 discriminant
functions can be constructed with the Bayesian rule as

gi(x) = log p(x|y) + log p(ewy), i=1,2. ®)

When the densities p(x|w;) are multivariate normal, i.e. p(x|w;)~ N(y;, Z,), and X, = o,
the optimal decision surface is piece of the hyperplane defined by the linear equations

Ke Chen et al. | Neurocomputing 16 (1997) 3348 45

SRR o
N o
RS RS IIRCCISSITITTZACY
“ S ‘\“‘\\\““20003“0‘0"‘
ORI S OSSR Se SIS
- S S S N I AN
[Z 3 SIS
- S 233
=3

(a)

SRR
‘,.;:‘\: st
RN

.
NN
X

3333
[
st
OO SoRO00SS
R
S ATt
R
NN oo

R
T
< :“\\\\St\\\\\\\§§\~\
SIS
<SRG
5000
Q W
CSRIXIRESN
XSRS AAANY:
ST R
IR
SR

R
R
W
D

R
AR
Nttty

X RN
R

(d)

Fig. 8. The results of universal approximation on the function in Eq. (7} (— 10 < x, y < 10). (a) The
surface produced by the function in Eq. (7) on the training data (625 samples). (b) The resulting surface
produced by the generated modular network on test data (1600 samples). (c) The resulting surface
produced by the generated modular neural network on test data (2500 samples). (d) The resulting surface
produced by the generated modular neural network on test data (4489 samples).

46 Ke Chen et al. [Neurocomputing 16 (1997) 33—48

91(x) = g»(x). If p(w,) = p(w,), moreover, the optimal decision boundary is just the
hyperplane through the point 3(u; + u,) and orthogonal to the vector u, — u,.
Obviously, Criterion 1 described in Section 2 just suggests such a hyperplane for
partitioning. It justifies that the ‘divide’ in the proposed method is the recursive use of
the special linear discriminant and also hints that we might use other powerful linear
discriminant analysis such as Fisher’s linear discirminant. As a result, we have applied
such a linear discriminant to the proposed method as a new criterion for splitting and
tentative results have shown that the performance of a generated modular neural
network can be improved [1, 3].

Catastrophic interference refers to the phenomenon that later training disrupts the
results of previous training. It is well known that there is serious catastrophic
interference in the MLP and other feedforward neural nets. Thanks to the principle of
divide-and-conquer used in the proposed architecture, to some extent, this problem
may be alleviated since only some of all component nets might need updating when
new training samples are added to a generated modular neural network. As same as
the self-generating process during training, some of all added samples are merely
distributed to a component net so that the component net is updated on the data set
with a small number of samples. Thus, the fast update is available using the proposed
method. For instance, a speaker identification system needs updating periodically for
keeping high performance since speakers’ voice always changes in time. We have
investigated the speaker identification systems based on both the proposed method
and the MLP. An empirical study has shown that the proposed method yielded
significantly faster training when the system was updated [2].

For use of the proposed method, there are some tricks in dealing with complicated
problems. The first trick is that we often initialize the generated structure through use
of a sub-tree instead of a root node in the growing algorithm described in Section 2.
The method is to recursively use the splitting rule to partition input space at first until
the number of samples in each data subset is less than a pre-specified threshold. Then
the chosen component nets are trained on these data subsets. Thus, the self-generating
procedure follows the initialization afterwards. Obviously, such a procedure for
initialization is easily implemented automatically using the existing techniques in the
proposed method. In addition, the component net in the current node should be
aborted when the condition (1) in step 3 is satisfied in the growing algorithm. Instead
two new component nets will be generated and work on two adjacent data subsets. In
this case, another trick can be introduced to the growing algorithm, that is, two new
component nets are initialized with the randomly perturbation version of the weight
matrix of the aborted component nets. Both of tricks have been used in problems
except the 10-parity problem reported in Section 3 and result in good performance.
For instance, three layers sub-trees consisting of hyperplanes were used in the 2-spiral,
speaker identification and function approximation instead of a root node consisting
of a hyperplane as the initialization of the self-generating procedure. A compara-
tive study has been done with respect to the initialization. The self-generating
architectures with initialization of sub-tree and a root node could yield similar
performance. The main difference lies in training time and the generated architectures
are also slightly different. Obviously, these two tricks should be integrated into

Ke Chen et al. [Neurocomputing 16 (1997) 33—48 47

the growing algorithm to speed up training. Such work including the relation
between the initialization and generalization has been attempted in our ongoing
research [1].

Acknowledgements

The authors are very grateful to the anonymous referees for their useful comments
which improved the presentation of this paper. This work was partially supported by
Chinese National Science Foundation with Grants 69571002 and 69475007 as well as
the Climbing Program — National Key Project for Fundamental Research in China
with Grant NSC 92097.

References

[1] K. Chen, L. Yang, X. Yu and H.S. Chi, Combining linear discriminant with neural networks
for supervised learning, Technical Report 96-02, National Lab of Machine Perception, Peking
University, Beijing, China, 1996.

[2] K. Chen, X. Yu and H.S. Chi, Text-dependent speaker identification based on the modular tree: an
empirical study, Proc. ICONIP’96, Hong Kong (Springer, Singapore, 1996) 294-299.

[3] K. Chen, X. Yu and H.S. Chi, Combining Fisher’s linear discriminant with neural networks for
classification, Proc. W CNN’96, San Diego, CA (1996).

[4] F. DAlche-Buc, D. Zwierski and J.P. Nadal, Trio learning: a new strategy for building hybrid neural
trees, Internat. J. Neural Systems 5 (4) (1994) 259-274.

[5] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

[6] S.E. Fahlman and C. Lebiere, The cascade-correlation learning architecture, in: D.S. Touretsky, ed.,
Advances in Neural Information Processing Systems, Vol. 2 (Morgan Kaufmann, San Mateo, CA, 1990)
524-532.

[7] R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1987).

[8] F. Fogelman, B. Lamy and E. Viennet, Muitimodular neural network architectures for pattern
recognition: applications in optical character recognition and human face recognition, Internat.
J. Pattern Recognition Artif. Intell. 7 (4) (1993) 521-555.

[9]1 P. Gallinari, Modular neural net systems, training of, in: M.A. Arbib ed., The Handbook of Brain
Theory and Neural Networks (MIT Press, Cambridge, MA, 1995) 582-58S5.

[10] T. Grossman, R. Meir and E. Domany, Learning by choice of internal representation, in:
D.S. Touretsky, ed., Advances in Neural Information Processing Systems, Vol. 1 (Morgan Kaufmann,
San Mateo, CA, 1989) 73-80.

[11] H. Guo and S.B. Gelfand, Classification trees with neural networks feature extraction, IEEE Trans.
Neural Networks 3 (6) (1992) 923-933.

[12] R.A. Jacobs, M.L. Jordan, S. Nowlan and G. Hinton, Adaptive mixture of local experts, Neural
Computation 3 (1991) 79-87.

[13] M.L Jordan and R.A. Jocobs, Hierarchical mixture of experts and EM algorithm, Neural Computation
6 (1994) 181-124.

[14] K. Lang and M. Witbrock, Learning to tell two spirals apart, Proc. Connectionist Models Summer
School (Morgan Kaufmann, San Mateo, CA, 1988) 52-59.

[15] J.P. Nadal, New algorithms for feedforward networks, in: Theumann and Kiberle, eds., Neural
Networks and Spin Glasses (World Scientific, Singapore, 1989) 80-88.

[16] M.P. Perrone, Averaging/modular techniques for neural networks, in: M.A. Arbib ed., The Handbook
of Brain Theory and Neural Networks (MIT Press, Cambridge, MA, 1995) 126-129.

48 Ke Chen et al. | Neurocomputing 16 (1997) 33—48

[17] A.Sankar and R.J. Mammone, Growing and pruning neural tree networks, I[EEE Trans. Comput. 42
(3) (1993) 291-299.

[18] R.S. Shadafan and M. Niranjan, A dynamic neural network architecture by sequential partitioning of
the input space, Neural Computation 6 (1994) 1202-1222.

[19] J.A. Sirat and J.P. Nadal, Neural tree: a new tool for classification, Network: Computation in Neural
Systems 1 (4) (1990) 423-438.

Ke Chen received his B.S. and M.S. in computer science from Nanjing University
in 1984 and 1987, respectively, and his Ph.D. in computer science and engineering
from Harbin Institute of Technology in 1990. From 1990 to 1992, he was a post-
doctoral researcher at Tsinghua University. During 1992-1993 he was a JSPS
postdoctoral fellow and worked at Kyushu Institute of Technology. He has been
an associate professor of information science at Peking University since 1993 and
is currently a research scientist at the Ohio State University. He has served as
a reviewer of international journals and conferences. His current research interests
include neural computation and its applications to machine perception. Dr. Chen
is a member of INNS.

Liping Yang is a scientist at IBM China Research Lab, where he works on Chinese
error check and machine translation. Previously, he taught at the Department of
Applied Mathematics in Tsinghua University, worked on neural networks, and
application of neural network to image processing. His areas of interest include
natural language processing and application of neural network. He received Ph.D.
in Applied Mathematics from Tsinghua University, Beijing, China.

Xiang Yu received the B.E. degree in Applied Physics from Tsinghua University in
1994. He is currently a postgraduate student at Peking University and studies as
a visiting research student at Kyushu Institute of Technology in Japan. His
research interest is in neural computation.

Huisheng Chi graduated from the Department of Radio and Electronics at Peking
University in 1964 (six-year system) and has been working in the university since
then. Major research interests are in satellite communications, digital communica-
tions and speech signal processing. In recent years, the research projects conducted
by him involved the neural network auditory model and speaker identification
systems. He received Neural Network Leadership Award in 1994 and 1995 from
INNS. Currently, he is a vice president and a professor at Peking University, and
serves as an associate editor of IEEE Trans. on Neural Networks. Prof. Chi is
a senior member of IEEE, a member of INNS, a member of appraisal group of
NSFC and SEC, fellow of CIE and CIC, and a vice chairman of CNNC and
CAGIS.

