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Abstract

A novel method is proposed for combining multiple probabilistic classifiers on different
feature sets. In order to achieve the improved classification performance, a generalized finite
mixture model is proposed as a linear combination scheme and implemented based on radial
basis function networks. In the linear combination scheme, soft competition on different feature
sets is adopted as an automatic feature rank mechanism so that different feature sets can be
always simultaneously used in an optimal way to determine linear combination weights.
For training the linear combination scheme, a learning algorithm is developed based on
Expectation—Maximization (EM) algorithm. The proposed method has been applied to a typi-
cal real-world problem, viz., speaker identification, in which different feature sets often need
consideration simultaneously for robustness. Simulation results show that the proposed
method yields good performance in speaker identification. ( 1998 Elsevier Science B.V. All
rights reserved.

Keywords: Combination of multiple classifiers; Soft competition; Different feature sets;
Expectation—maximization (EM) algorithm; Speaker identification

1. Introduction

The problem of pattern classification can be stated as follows: Given a set of
training data, each with an associated label, find a classification system that will
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produce the correct label for any data drawn from the same source as the training
data. As illustrated in Fig. 1a, in general, such a classification system is composed of
three stages: preprocessing, feature extraction, and classification. In particular, feature
extraction is necessary to avoid a so-called curse of dimensionality problem [18]
which may lead to prohibitively expensive computation in the stage of classification.
Therefore, the performance of a classification system highly depends upon a feature
set used. For a classification task, numerous types of features can be extracted from
the same raw data by means of different methods. A selection technique is often
adopted to find an optimal feature set for use in classification [6]. Sometimes,
however, it is impossible to find such an optimal feature set. Instead several different
feature sets can result in similar classification performance so that none of them can be
optimal or robust for a specific classification task. Because different feature sets
represent raw data from different viewpoints, the simultaneous use of different feature
sets can lead to a better or robust classification result. As illustrated in Fig. 1b, this
kind of problems are called pattern classification on different feature sets in this paper.
There are many real-world problems belonging to this category. A typical example is
speaker identification that classifies an unlabeled voice token as belonging to one of
reference speakers. For this problem, several different spectrum feature sets have been
turned out useful, but none of them can be regarded as an optimal or robust one. It
has been suggested that multiple spectrum feature sets need consideration simulta-
neously for robustness in speaker identification [20,21]. As a result, a technique that

Fig. 1. Pattern recognition systems. (a) The general schematic structure of a pattern recognition system
based on a robust feature set. (b) The schematic structure of a pattern recognition system based on different
feature sets.
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efficiently utilizes different feature sets becomes a solution to pattern classification on
different feature sets.

For simultaneous use of different feature sets, a traditional method is to lump
different feature vectors together into a single composite feature vector. Although
there are several methods to form a composite feature vector, the use of a composite
feature set may result in the following problems: (1) Curse of dimensionality; the
dimension of a composite feature vector becomes much higher than any of component
feature vectors. (2) Difficulty in formation; it is often difficult to lump several different
feature vectors together due to their diversified forms. (3) Redundancy; the compo-
nent feature vectors are usually not independent of each other. Therefore, the
composite-feature based method can simply achieve limited success. Recently, com-
bination of multiple classifiers has been viewed as a new direction for the develop-
ment of highly reliable pattern recognition systems. Preliminary results indicate that
combination of several complementary classifiers may lead to the improved per-
formance [26,25,3,38,33,32,35,23,46]. There are at least two reasons for necessity of
combining multiple classifiers. On the one hand, there are a number of classification
algorithms developed from different theories and methodologies in almost all the
current pattern recognition application areas. Each of these classifiers may reach
a certain degree of success, but none of them is totally perfect or so good as expected in
practical applications. On the other hand, the demand for a solution to pattern
classification on different feature sets becomes the other reason to do so. A combina-
tion technique allows multiple classifiers to work on different feature sets so that
different feature sets can be utilized simultaneously. Therefore, a method of combining
multiple classifiers on different feature sets provides an alternative way to solve the
problem of pattern classification on different feature sets.

From the viewpoint of statistics, combination of multiple classifiers can be viewed
as combination of multiple probability distributions if each classifier is interpreted as
an estimator of probability distribution. In general, there are two frameworks to
perform such a combination [27]. One is that of a decision maker who consults
several classifiers regarding some events. The classifiers express their opinions in the
form of probability distributions. The decision maker must aggregate the classifiers’
distributions into a single distribution that can be used to make the final decision. The
other is the framework of linear opinion pools in which the decision maker forms
a linear combination of classifiers’ opinions. Under the two frameworks, there have
been extensive studies in combination of multiple probabilistic classifiers
[27,22,44,46,10,1]. In terms of pattern classification on different feature sets, combina-
tion techniques under the framework of a decision maker, e.g. a supra Bayesian
procedure [27,46], can be directly used for this problem since outputs of the classifiers
are merely considered for combination regardless of their inputs. On the other hand,
several combination techniques under the framework of linear opinion pools can be
also directly applied for combination of multiple classifiers on different feature sets
[33,32,35,23,7,43]. These techniques are based on constrained or unconstrained least-
squares regression with model selection to make a system achieve good generalization
properties. However, the existing techniques of linear opinion pools with weights as
veridical probabilities [27,45,44] cannot be used to deal with a problem of pattern
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classification on different feature sets unless a single composite feature set is used since
the process of generating weights used for linear combination highly depends upon
inputs of multiple classifiers.

In this paper, we propose a new linear combination scheme to extend the existing
techniques of linear opinion pools with weights as veridical probabilities for pattern
classification on different feature sets. In contrast to the winner-take-all mechanism,
soft competition is a concept that a competitor and its rivals can work for the same
task together, but the winner plays a more important role than losers. In the linear
combination scheme, we adopt such a soft competition mechanism on different
feature sets to determine weights in an optimal way for linear combination. An EM
learning algorithm is also proposed for parameter estimation in the linear combina-
tion scheme. To demonstrate its effectiveness, we have applied the proposed method
to a real-world problem, viz., speaker identification, in which diversified feature sets
need consideration simultaneously for robustness. Simulation results show that the
proposed method yields satisfactory performance in speaker identification.

The remainder of this paper is organized as follows. Section 2 presents the meth-
odology on the linear combination scheme through soft competition. Section 3
describes an EM learning algorithm for parameter estimation in the linear combina-
tion scheme. Section 4 reports simulation results on speaker identification. Con-
clusions are drawn in the final section.

2. Methodology

In this section, we first give the basic idea underlying the proposed linear combina-
tion scheme. Then we present a generalized finite mixture model as the linear
combination scheme and give its implementation based on radial basis function
networks.

2.1. Soft competition on different feature sets

For pattern classification on different feature sets, we assume that there are
K (K'1) different feature extraction methods so that K different feature sets can
achieved from a raw data set. For an input sample D(t) in the raw data set,
X"MD(t), y(t)NT

t/1
, therefore, K different feature vectors, x

1
(D(t)),2, x

K
(D(t)), can be

extracted from the sample D(t). To simplify the presentation, hereinafter, we drop the
specific sample term, D(t), from these different feature vectors as x(t)

1
,2, x(t)

K
.

Suppose that there is an optimal feature vector among those different feature
vectors to represent the corresponding raw datum. Thus, a problem can be raised:
which one is the optimal feature vector of the sample, D(t), among its K different
feature vectors, x(t)

1
,2, x(t)

K
? Apparently, a feature selection technique should be a solu-

tion to the problem. As pointed out in introduction, unfortunately, such a method is
often not available in many real world problems. Here, we attempt to present an
alternative solution to the problem. Prior to addressing the solution, we first intro-
duce a set of binary indicator variables to represent the optimal feature vector. An
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indicator, I(t)
k
, for feature vector x(t)

k
is defined as I(t)

k
"1 if x(t)

k
is the optimal feature

vector; otherwise, I(t)
k
"0. According to the optimal feature definition, +K

k/1
I(t)
k
"1

is always guaranteed. If we always use such an optimal feature vector to represent
a raw datum and ignore the other feature vectors, there will exist a probabilistic
relation between the raw datum and its optimal feature vector via. the indicator as
follows:

P(x(t)
k
)"P(D(t)DI(t)

k
"1). (1)

Obviously, a solution to the aforementioned problem would be always available if
such indicators were known. In practice, however, the indicators remain unknown or
are typically missing data. It is more likely that there is no unique feature highly
superior to other features for representing all the input samples. Therefore, the basic
idea is to jointly use all the achieved feature vectors to represent a raw datum via.
indicator variables. For doing so, we specify a finite mixture model as

P(D(t))"
K
+
k/1

P(D(t)DI(t)
k
"1)P(I(t)

k
"1). (2)

This mixture model provides an optimal way to utilize different feature sets through
soft competition. In Eq. (2), those probability terms, P(I(t)

k
"1), will be used to

determine the winner or losers. Obviously, the open problems are how to utilize the
mixture model to combine multiple classifiers on different feature sets. In the sequel,
we shall propose a generalized finite mixture model based on Eq. (2) and give its
implementation to solve the problem.

2.2. Linear combination scheme

Consider a task of pattern classification on different feature sets, we assume that
N(N*K) probabilistic classifiers, e

1
,2, e

N
, are employed to learn the classification

task on a training set, respectively, in which the input of classifier e
j
is the feature

vector x
kj

(j"1,2,N; 1)k
j
)K). Note that we simply consider a single sample

here and, therefore, we drop its order t for simplicity. Suppose that the task is an
M-category classification with class labels, C

1
,2,C

M
. For a probabilistic classifier, e

j
,

its output vector, p
j
(x

kj
), must satisfy the following conditions:

p
j
(x

kj
)"[p

j1
(x

kj
),2, p

jM
(x

kj
)]T, p

jm
(x

kj
)50 and

M
+

m/1

p
jm

(x
kj
)"1.

Here, p
jm

(x
kj
) denotes the probability that the sample D belongs to class C

m
recognized by classifier e

j
in terms of input feature vector x

kj
. Note that we use x

kj
in the output vector to emphasize classifier e

j
’s input. The direct instances of proba-

bilistic classifiers include those based on parametric or nonparametric density
estimation, while other kinds of classifiers can be transformed into such classifiers,
e.g. distance classifiers and neural network classifiers. Given the output vector of
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classifier e
j
, u

j
(x

kj
)"[u

j1
(x

kj
),2, u

jM
(x

kj
)]T that does not satisfy u

jm
(x

kj
)50 and

+M
m/1

u
jm

(x
kj
)"1, a transformation is defined as

p
jm
"

f (u
jm

)

M
+

m/1

f (u
jm

)

, (3)

where f(u
jm

)50 for m"1,2, M. There are various forms of the function f ( ) )
used in Eq. (3) such as f (u

jm
)"u

jm
, f (u

jm
)"1/u

jm
, and f (u

jm
)"e~ujm

when u
jm
50 (m"1,2, M) or f(u

jm
)"u2

jm
, f(u

jm
)"1/u2

jm
, and f(u

jm
)"e~u2jm when

u
jm
40 (m"1,2,M). Note that we drop the input feature vector, x

kj
, in Eq. (3) for

simplicity.
For an input—output pair Mx

kj
,yN, where y"[y

1
,2, y

M
]T, y

m
3M0,1N, and

+M
m/1

y
m
"1, classifier e

j
in terms of input x

kj
specifies a distribution as

P (yDx
kj
,H

j
)"

M
<
m/1

[p
jm

(x
kj
DH

j
)]ym, (4)

where H
j

is the parameter vector of classifier e
j

and has been already fixed
as a constant vector after the classifier is trained. For a fixed x

kj
, it is reduced to the

multinomial distribution, while we can achieve a distribution specified by one of
p
jm

(x
kj
DH

j
)’s for a fixed y. Moreover, we assume that there are priors, U"M(a

kj
(x

k
),b

k
) D

k"1,2, K; j"1,2,NN, for all the classifiers, where a
kj
(x

k
) is associated with P(x

k
) in

Eq. (1) and b
k
is an equivalent of P(I

k
"1) in Eq. (2). For a generic input—output pair

MD, yN, we define a generalized finite mixture distribution on the basis of those priors
in U as

P (yDD,U)"
N
+
j/1
C

K
+
k/1

b
k
a
kj
(x

k
)DP(yDx

kj
,H

j
)

"

N
+
j/1

K
+
k/1

b
k
a
kj

(x
k
)

M
<
m/1

[p
jm

(x
kj
DH

j
)]ym, (5)

where a
kj
(x

k
)50, +N

j/1
a
kj
(x

k
)"1, b

k
50, and +K

k/1
b
k
"1. The generalized finite

mixture model suggests a new scheme to combine multiple classifiers on different
feature sets. As illustrated in Fig. 2, there are K subschemes in the linear combination
scheme, where the kth subscheme performs estimation of the weights for combination
of multiple classifiers in terms of the feature vector x

k
. In detail, a

kj
(x

k
) is the weight

produced by the kth subscheme for classifier e
j
for linear combination in terms of the

feature vector x
k
, while b

k
is the probability that the kth subscheme with input x

k
is

used to produce the weights for linear combination. Here, we emphasize that those
b
k
(k"1,2,K) play the role of soft competition on K different feature sets. Since

maximum-likelihood estimation will be applied for learning in the next section, the
linear combination scheme provides an optimal way to simultaneously use different
feature sets for pattern classification.
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Fig. 2. The architecture of our linear combination scheme for pattern classification on different feature sets.
Assume that K different feature sets are extracted from the same raw data set and N classifiers are employed
where the kth feature set is used to train N

k
different classifiers (N

k
51 and +K

k/1
N

k
"N). K subschemes on

different feature sets in the large box are used to produce weights, a
kj
(x

k
) and b

k
( j"1,2, N; k"1,2, K),

for linear combination of N classifiers on different feature sets.

In Eq. (5), all the priors a
kj
(x

k
)3U (k"1,2,K; j"1,2,N) are conditional distri-

butions on corresponding inputs x
k
(k"1,2, K), respectively. As suggested by Xu

et al. [45], in general, the parametric form of a
kj
(x

k
) is defined as

a
kj
(x

k
,j

kj
,W

kj
)"

j
kj
X(x

k
,W

kj
)

+N
j/1

j
kj
X(x

k
,W

kj
)
, (6)

where j
kj
50, +N

j/1
j
kj
"1 for k"1,2, K, j"1,2, N. X(x

k
,W

kj
) is a positive para-

metric function. In this paper, moreover, each X(x
k
,W

kj
) is realized by a Gaussian

distribution1 as

X(x
k
,W

kj
)"X(x

k
,m

kj
,R

kj
)

"

1

(2n)n@2DR
kj
D1@2

expG!
1

2
(x

k
!m

kj
)TR~1

kj
(x

k
!m

kj
)H, (7)

1When x
k

cannot be modeled as a Gaussian distribution, a generalized linear model or a multilayer
perceptron with a softmax output layer can be used as the parametric form of a

kj
(x

k
). The EM learning

algorithms have been also developed for parameter estimation in such models [30,15].
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where n is the dimension of x
k
, and W

kj
"(m

kj
,R

kj
) are parameters of the Gaussian

distribution. The parametric form of a
kj
(x

k
) can be viewed as a radial basis function

network in which X(x
k
, m

kj
,R

kj
) is a basis function and those j

kj
are the corresponding

weights. Thus, all the subschemes dependent on those priors can be implemented by
a number of parametric functions or radial basis function networks. In the linear
combination scheme, the information with respect to the outputs of classifiers, the
desire labels, y, and different inputs, x

k
(k"1,2, K), is jointly considered for the final

decision. Note that so far all the a
kj
(x

k
) and b

k
(k"1,2, K; j"1,2,N) in Eq. (5) are

still unknown. We shall propose a maximum-likelihood learning method for para-
meter estimation in the next section. Suppose that those priors have been already
achieved, a linear combination can be defined based on Eq. (5) in the following
manner. For an input sample D, P(yDD) is achieved by

P (y
m
"1DD,U)"

N
+
j/1

K
+
k/1

b
k
a
kj
(x

k
)p

jm
(x

kj
), m"1,2,M. (8)

Using the linear combination, a decision rule is defined based on the maximum
a posterior (MAP) principle as

m*"argmax
1ymyM

P(y
m
"1DD,U). (9)

Thus, the sample D is classified as class m*.

3. EM Algorithm for maximum-likelihood learning

In this section, we present a maximum-likelihood learning method for parameter
estimation in the linear combination scheme on the basis of Expectation—Maximiza-
tion (EM) algorithm [16].

To present the EM algorithm, we assume that N classifiers have been
already trained on K (K)N) different feature sets extracted from the same training
set, Given a cross-validation set, X"M(D(t), y(t))NT

t/1
, K different feature sets,

Mx(t)
1
NT
t/1

,2, Mx(t)
K
NT
t/1

, can be extracted from the input data set MD(t)NT
t/1

with the same
feature extraction methods. Moreover, all the samples in X are independent. Using
the K different feature sets, Mx(t)

k
NT
t/1

(k"1,2, K), we train the linear combination
scheme. For maximum-likelihood learning, therefore, the log-likelihood function is
defined based on Eq. (5) as

¸"log
T
<
t/1

P (y(t)DD(t),U)

"

T
+
t/1

logP (y(t)DD(t),U)

"

T
+
t/1

logC
N
+
j/1

K
+
k/1

b
k
a
kj
(x(t)

k
)P(y(t)Dx(t)

kj
, H

j
)D. (10)
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Note that x(t)
kj

(14k
j
4K) still stands for the tth input of classifier e

j
. For the

log-likelihood function, we apply an EM algorithm [16] for parameter estimation by
introducing a set of indicators as missing data or unobserved data to observed data in
X. To facilitate the presentation, we skip the detailed derivation of the EM algorithm
here and put it in appendix. As a result, the resulting EM algorithm is summarized as
follows.

3.1. EM Algorithm for the linear combination scheme

1. Initialization at s"0
For j"1,2, N and k"1,2,K, set b(s)

k
"1/K and j(0)

kj
"1/N. Randomly initialize

W
k1

,2, W
kN

so that W(0)
k1
"2"W(0)

kN
for k"1,2, K subject to a(0)

kj
(x

k
)"1/N for

j"1,2, N.
2. The EM procedure at s '0
2.1. E-step: For each pair (D(t), y(t))3X, calculate the posterior probabilities: for

j"1,2, N; k"1,2,K, the posterior probabilities, h(s)
k

(y(t) D x(t)
k
) and h(s)

kj
(y(t) D x(t)

k
), can

be achieved by

h(s)
k

(y(t)Dx(t)
k
)"

b(s)
k

+N
j/1

a(s)
kj

(x(t)
k
)P(y(t)Dx(t)

kj
,H

j
)

+N
j/1

+K
k/1

b(s)
k

a(s)
kj

(x(t)
k
)P(y(t)Dx(t)

kj
,H

j
)

(11)

and

h(s)
kj

(y(t)Dx(t)
k
)"

b(s)
k

a(s)
kj

(x(t)
k
)P(y(t)Dx(t)

kj
,H

j
)

+N
j/1

+K
k/1

b(s)
k

a(s)
kj

(x(t)
k
)P(y(t)Dx(t)

kj
,H

j
)
. (12)

2.2. M-step:. Based on the current posterior probabilities achieved in the E-step,
find a new estimate for each parameter: for j"1,2,N, k"1,2,K, those para-
meters are updated as

m(s`1)
kj

"

1

+T
t/1

h(s)
kj

(y(t)Dx(t)
k
)

T
+
t/1

h(s)
kj

(y(t)Dx(t)
k
)x(t)

k
, (13)

R(s`1)
kj

"

1

+T
t/1

h(s)
kj

(y(t)Dx(t)
k
)

T
+

t/1

h(s)
kj

(y(t)Dx(t)
k
)[x(t)

k
!m(s`1)

kj
][x(t)

k
!m(s`1)

kj
]T, (14)

j(s`1)
kj

"

1

¹

T
+
t/1

h(s)
kj

(y(t)Dx(t)
k
), (15)

b(s`1)
k

"

1

¹

T
+
t/1

h(s)
k

(y(t)DD(t)), (16)

and

a(s`1)
kj

(x(t)
k
)"

j(s`1)
kj

X(x(t)
k
, m(s`1)

kj
,R(s`1)

kj
)

+N
j/1

j(s`1)
kj

X(x(t)
k
, m(s`1)

kj
, R(s`1)

kj
)
. (17)

3. Repeat Step 2 until a pre-specified termination condition is satisfied.
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Using the EM algorithm, all unknown parameters in Eq. (5) are learned based on
the cross-validation set X. After learning, both the linear combination described in
Eq. (8) and the MAP decision rule defined in Eq. (9) can work together to combine
multiple probabilistic classifiers on different feature sets.

4. Simulations

In this section, we demonstrate the effectiveness of the linear combination scheme
as illustrated in Fig. 2. In order to evaluate its performance, we have applied our
method to a real world problem called speaker identification.

Speaker identification is to classify an unlabeled voice token as belonging to one of
a set of registered reference speakers. A speaker identification system can be either
text-dependent or text-independent. By text-dependent, we mean that the text in both
training and test is the same or known. In contrast, the text in a text-independent
speaker identification system should be arbitrary in either training or test. Speaker
identification is a rather hard task for learning since a person’s voice always changes
in time. In addition, many other factors, e.g. short-term sickness, emotion, fatigue, and
the words spoken, may significantly alter personal voice characteristics [21]. Al-
though there is a long history to explore speaker’s feature, the unique robust feature
has still not been discovered so far. Instead many kinds of spectral features have been
reported to be useful to speaker identification [17,34,20,9,21], and there is no sophisti-
cated feature selection technique. Different feature sets have been simultaneously
considered for robustness in speaker identification. To use multiple features simulta-
neously, a traditional method is to lump two or more different feature vectors together
as a single composite feature vector [20,21]. However, the performance of the
composite-feature based system is not significantly improved. To some extent, the use
of a composite feature set results in the curse of dimensionality problem. In particular,
the problem will become quite serious when time-delay neural computation tech-
niques are used [42,5,4,14]. As a result, speaker identification becomes a typical task
of pattern classification on different feature sets. In the sequel, we shall report
simulation results produced by our purposed method for both text-dependent and
text-independent speaker identification, respectively. Moreover, comparative results
will be also presented to show the effectiveness of our method from a different
viewpoint.

4.1. Results on text-dependent speaker identification

We have applied our method to text-dependent speaker identification. In simula-
tions, we chose isolated digits as the fixed text used in both training and test. The
method has been extensively used to test a text-dependent speaker identification
system [17,40,13]. The acoustic database consists of 10 isolated digits from ‘0’ to ‘9’
uttered in Chinese (Mandarin dialect). All the utterances were recorded in three
different sessions and 20 male speakers were registered in the database. For each digit,
200 utterances (10 utterances/speaker) were recorded in each session. The technical
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details of preprocessing are briefly summarized as follows, (1) 16-bit A/D-converter
with 11.025KHz sampling rate, (2) processing the data with a pre-emphasis filter
H(z)"1!0.95z~1, and (3) 25.6ms Hamming window with 12.8 ms overlapping for
blocking an utterance into several feature frames for the short-time spectral analysis.
In simulations, we adopted four common features used in text-dependent speaker
identification, i.e. 19-order delta-cepstrum, 19-order LPC based cepstrum, 19-order
Mel-scale cepstrum, and 15-order LPC coefficients [36].

The hierarchical mixture of experts (HME) is a modular neural network architec-
ture recently proposed by Jordan and Jocobs [30]. Our earlier work showed that the
HME architecture yielded better identification results in text-dependent speaker
identification in contrast to conventional methods [12,13]. Based on our earlier work,
we employed the HME architecture as an individual classifier. Therefore, 40HMEs
were used in simulations so that for each digit four two-level HMEs with 2—8
structure2 were trained on the four different feature sets using the EM algorithm
[30,15], respectively. For a digit, five utterances of each speaker recorded in the first
session were merely used for training and all the utterances of this digit recorded in
other two sessions were used for test. Tests on utterances recorded in the second and
the third sessions are called TEST-1 and TEST-2, respectively, for convenience in the
presentation. Note that other utterances recorded in the first session were not used for
test. Indeed, the utterances recorded in the same session used for training could be
employed for test and a very high identification accuracies can be often achieved in
this way. However, it does not indicate that the system is robust since there is little
variation of speaker’s voice recorded in the same session. In contract, the performance
of a speaker identification system should be evaluated by utterances recorded in
different sessions as suggested by many researchers [17,21,9]. In simulations, an HME
classifier worked on a specific feature set to handle the utterances of a digit. As shown
in Tables 1—4, simulation results indicate that no specific feature set can outperform
other feature sets for all the text (digits) though a comparison is available in terms of
the mean identification accuracy. Based on these trained HME classifiers on different
feature sets, our linear combination scheme was trained on a cross-validation set
consisting of 600 utterances where 30 utterances recorded in the second session were
used for each speaker (three utterances of each digit). Other utterances recorded in the
second session and all the utterances recorded in the third session were used for test.
Accordingly, the testing results are called COMB-1 (test on other 1400 utterances
recorded in the second session) and COMB-2 (test on 2000 utterances recorded in the
third session), respectively. We show the identification accuracies of our method in
Table 5. In contrast to individual HME classifiers on specific feature sets, our method
yields considerably better identification accuracies for each digits. In particular, it is
evident from simulation results that the identification accuracies were significantly
improved when utterances recorded in the third session were used for test. It indicates
that our method yields the robust performance.

2 It refers to that there are two mixture of experts (ME) modules in the structure and eight experts in each
ME module [28,30].
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Table 1
Text-dependent speaker identification: identification accuracies (%) of the individual
HMEs on the delta-cepstrum feature set

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Mean

TEST-1 92.0 88.5 94.5 89.5 96.5 94.5 96.0 85.0 88.5 93.5 91.9
TEST-2 81.5 85.0 90.5 83.5 89.0 80.0 80.5 81.5 79.5 84.5 83.6

Table 2
Text-dependent speaker identification: identification accuracies (%) of the HMEs on the
LPC cepstrum feature set

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Mean

TEST-1 89.0 90.0 92.5 90.5 91.5 90.5 91.5 85.5 90.5 95.5 90.7
TEST-2 76.0 85.5 78.5 83.0 88.5 81.0 87.0 78.5 81.5 89.5 82.9

Table 3
Text-dependent speaker identification: identification accuracies (%) of the individual
HMEs on the Mel-scale cepstrum feature set

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Mean

TEST-1 87.0 88.0 89.5 87.0 91.5 93.5 94.5 88.5 86.0 91.5 89.7
TEST-2 78.0 88.5 87.5 81.0 86.5 82.0 79.5 76.0 84.5 78.0 82.2

Table 4
Text-dependent speaker identification: identification accuracies (%) of the individual
HMEs on the LPC coefficient feature set

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Mean

TEST-1 86.0 90.5 86.5 84.5 89.0 87.5 86.5 81.0 82.5 87.0 86.1
TEST-2 77.0 79.0 80.5 76.5 87.0 81.5 79.0 77.5 75.0 77.5 79.1

Table 5
Text-dependent speaker identification: identification accuracies (%) of our method by
combining HMEs on four different feature sets

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Mean

COMB-1 98.5 96.5 95.5 94.5 97.0 97.5 97.5 93.5 95.5 100.0 96.6
COMB-2 95.5 92.5 95.5 96.5 91.5 90.5 97.5 92.5 91.0 97.0 94.0
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For comparison, we also adopted two distinct methods to handle the same prob-
lem. For comparison with a composite-feature based method commonly used in
speaker identification, we conducted an experiment to use a single composite feature
for dealing with the problem on the same condition. In the stages of preprocessing and
feature, an utterance for a digit was segmented into several frames. For each frame, the
composite feature vector was formed by lumping the four corresponding feature
vectors together into a 72-dimensional composite feature vector. Then we adopted 10
HMEs with 2—8 structure as classifiers. The results produced by the individual HMEs
on the composite feature set are shown in Table 6. Although their performance is
slightly better than all the individual HMEs on specific feature sets in general, our
method outperforms the composite-feature-based method for all the digit except digit
‘4’ in TEST-2. On the other hand, there exist numerous methods of combining
multiple classifiers on different feature sets. For comparison with the existing combi-
nation methods, we also conducted an experiment by using an existing method called
Bayesian reasoning combination to deal with the same problem. The Bayesian
reasoning combination scheme proposed by Xu et al. [46] has been used for combin-
ing multiple classifiers on different feature sets. Previous comparative studies showed
that the method yielded the best recognition results for several benchmark OCR
problems among numerous combination methods ranging from voting to evidence-
reasoning based combination methods [46,35]. In simulations, we also used the same
cross-validation set and test sets used in our method for training and test. For
training, the confusion matrix containing the prior knowledge on each classifier was
calculated based on outputs of those HME classifiers in terms of the cross-validation
set [46]. Using the confusion matrix, the combination scheme makes an MAP
decision on the basis of all the HME classifiers’ outputs. In the Bayesian reasoning
combination method, a threshold is required to reject an unknown sample in some
cases. In our simulations, the rejection threshold was set as zero for convenience in
comparison. In addition, the results produced by the Bayesian reasoning combination
method are also called COMB-1 and COMB-2, respectively, corresponding to two
aforementioned testing sets. Accordingly, these results are shown in Table 7. In
comparison with the Bayesian reasoning combination method, our method yields
better performance for all the digits except for ‘1’ and ‘8’ where the Bayesian reasoning
combination method is slightly better than our method in COMB-2 though our
method is better for the same digits in COMB-1.

In practice, the above testing method is not directly used in a speaker identification
system because the utterance of a single digit is too short to produce a robust result.

Table 6
Text-dependent speaker identification: identification accuracies (%) of the individual
HMEs on the composite feature set consisting of four different feature sets

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Mean

TEST-1 93.0 92.5 87.0 88.5 96.0 97.0 93.5 91.5 91.5 98.5 92.9
TEST-2 88.0 90.5 91.0 87.5 94.5 87.0 90.5 84.0 87.5 94.5 89.5
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Table 7
Text-dependent speaker identification: identification accuracies (%) of the Bayesian
reasoning combination method by combining HMEs on four different feature sets

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Mean

COMB-1 98.0 96.5 94.5 92.5 96.0 97.0 97.5 91.5 93.5 100.0 95.7
COMB-2 94.5 93.5 94.5 95.5 90.5 89.0 95.5 91.5 91.5 96.5 93.3

Table 8
Text-dependent speaker identification: experimental results produced by the our
method in terms of the sequence-based test

Test no. 500 1000 2000 3000 4000 5000

Recognition No. 500 1000 2000 2999 3998 4997
Substitution No. 0 0 0 0 1 1
Rejection No. 0 0 0 1 1 2

Table 9
Text-dependent speaker identification: experimental results produced by the com-
posite-based method in terms of the sequence-based test

Test no. 500 1000 2000 3000 4000 5000

Recognition No. 500 999 1998 2994 3993 4989
Substitution No. 0 0 1 3 3 3
Rejection No. 0 1 1 3 4 8

Table 10
Text-dependent speaker identification: experimental results produced by the Bayesian
reasoning combination method in terms of the sequence-based test

Test no. 500 1000 2000 3000 4000 5000

Recognition No. 500 1000 2000 2999 3997 4996
Substitution No. 0 0 0 0 1 1
Rejection No. 0 0 0 1 2 3

A so-called sequence-based test method is often adopted in a practical speaker
identification system based on the single-digit based test to identify personal identity
[13]. In our simulations, we first produced a sequence consisting of five digits at
random (it may be viewed as a password), then asked a speaker to utter the
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digit-sequence on line. For each digit in the sequence, obviously, an identification
result was available based on the single-digit based method. After obtaining all
the five results, the system polled a vote with the principle of majority that an
unknown speaker can be identified only when there are at least three same identifica-
tion results for the speaker; otherwise, the system rejects the unknown utterance.
Due to the limited space, here we only report the experimental results on the
composite-feature-based method and two combination methods in terms of the
sequence-based test. As shown in Tables 8—10, the results of the sequence-based test
also indicate that our method outperforms other two methods for text-dependent
speaker identification.

In general, simulation results show that our method outperforms not only indi-
vidual HME classifiers on specific feature sets and the composite-feature based
method but also the Bayesian reasoning combination method in text-dependent
speaker identification.

4.2. Results on text-independent speaker identification

Text-independent speaker identification is a more difficult problem. Because the
text may be arbitrary, all the template matching techniques are not applicable. As
a result, speaker’s features play an especially important role in text-independent
speaker identification. In order to further evaluate its performance, we have also
applied our method to a text-independent speaker identification problem.

In simulations, the database was a subset of the standard speech database in China.
This set represents 20 speakers (10 male and 10 female) of the same (Mandarin) dialect.
The utterances in the database were recorded in three separate sessions. In the first
session, 10 different phonetically rich sentences were uttered by each speaker. The
average length of the sentences was about 4.5 s. In the second and the third sessions,
five different sentences were uttered by each speaker, respectively. Their average
lengths of the sentences were about 4.4 and 5.0 s, respectively. All utterances were
recorded in a quiet room and sampled at 11.025KHz sampling frequency in 16-bit
precision. In simulations, we adopted three speech spectral feature sets commonly
used in text-independent speaker identification [17,21,9], i.e., 24-order LPC based
cepstrum (24-LPCCEP), 20-order Mel-scale cepstrum (24-MELCEP), and 24-order
LPC coefficients (24-LPCCOE). For text-independent speaker identification, it is
generally agreed that the voiced parts of an utterance, especially vowels and nasals,
are more effective in contrast to the unvoiced parts [2,39,37,9]. In simulations,
therefore, only the voiced parts of a sentence remained regardless of their contents by
using a common energy measure [36]. The length of the Hamming analysis window
was 64ms without overlapping. Here, we emphasize that the size of analysis window
was slightly larger than the common one (normally 16&32 ms) since it was found
that the identification performance was degraded with a normal analysis window
[24]. Whenever the short-time energy of a speech frame was higher than a pre-
specified threshold, spectral feature vectors would be calculated based on the different
feature extraction methods. In addition, samples were also pre-emphasized by the
filter H(z)"1!0.97z~1. The three different feature sets were achieved after the
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aforementioned processing. For utterances of all 20 speakers, total numbers of speech
frames were 10057 frames, 4270 frames, and 4604 frames corresponding to utterances
recorded in three different sessions, respectively. To simplify the presentation, we
denote SET-i as the data set recorded in session i (i"1,2,3).

The evaluation of a speaker identification experiment was conducted in the follow-
ing manner as suggested by Reynolds [37]. After feature extraction, the testing speech
is to produce a sequence of feature vectors denoted as Mf

1
,f
2
,2,f

T
N. The sequence of

feature vectors is divided into overlapping segments of S feature vectors. The first two
segments from a sequence would be
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Thus, a test segment length of 6.4 s should correspond to S"100 feature vectors for
a 6.4ms frame rate in accordance with the above definition. First of all, we chose
S"100 as the test segment length; accordingly, total numbers of segments were 2290
in SET-2 and 2624 in SET-3, respectively, for utterances of all 20 speakers. Each
segment of S vectors was treated as a separate testing utterance and identified using
the classification procedure of a classifier. Using a segment, the system produced
either an identification result or a rejection. Based on the segment testing method, an
unknown speaker was identified only when there were at least 50% input vectors in
the segment that produced the same identification results for the speaker; otherwise,
the system rejected the unknown speaker. The above steps were repeated for testing
utterances from each speaker in the population. The final performance evaluation was
then computed according to identification rate, substitution rate and rejection rate
defined, respectively, as

identification rate"
A correctly identified segments

total A of segments
]100%, (18a)

substitution rate "

A incorrectly identified segments

total A of segments
]100%, (18b)

rejection rate"100%!identification rate!substitution rate. (18c)

In the sequel, Identification, Substitution, and Rejection are the abbreviations for
identification rate, substitution rate and rejection rate for simplicity.

In simulations, we still adopted the HME architecture as individual classifiers
because of its good performance in classification [30]. For model selection in the
current problem, we examined six different HME structures ranging for two-level to
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four level using a two-fold cross-validation method. Finally, we chose HME with 2—9
structure for the problem. We first trained three individual HMEs with 2—9 structure
on the three different feature sets, respectively, using the EM algorithm [30,15]. All the
short-time speech frames in SET-1 were used to train individual HME classifiers.
Moreover, all the short-time speech frames in SET-2 as a cross-validation data set
were used to train our linear combination scheme. For test, all the short-time speech
frames in SET-3 were used. As shown in Table 11, simulation results indicate that the
HME on the Mel-scale cepstrum feature set slightly outperforms HMEs on the other
two feature sets. In contrast, our method yields significantly improved performance.
The identification rate of our method is at least 6.7% higher than any individual
HME on a specific feature set, while the substitution rate of our method is zero in
terms of 2.2% rejection rate.

Similarly, we also conducted simulations for comparison with the composite-
feature based method and the Bayesian reasoning combination method. In the
composite-feature based method, an HME with 2—9 structure was also applied to the
same task based on a single composite feature set formed from the three different
feature sets. The testing result on SET-3 is also shown in Table 11. From the
simulation results, it is evident that our method is superior to the composite-based
method. Furthermore, we applied the Bayesian reasoning combination method to the
same task. The prior knowledge or confusion matrix was also achieved on the basis of
speech frames in SET-2 and the testing result on SET-3 is shown in the same table.
Simulation results also indicate that our method is slightly better than the Bayesian
reasoning combination method. In particular, both combination methods produce
zero substitution rate with a small rejection rates.

It is well known that the performance of a speaker identification system depends
upon the length of text used. That is, a short text used for test often causes the
performance of a speaker identification system to be degraded, while a long text may
often lead to a better performance. In practice, however, a long text can affect
identification speed and result in a unfriendly user interface. Therefore, the robustness

Table 11
Text-independent speaker identification: experimental results (%) produced by
individual HMEs on specific feature sets, our method (LIN-COM-DIF), the
individual HME on the composite feature set, and the Bayesian reasoning combi-
nation method (BAYES-REASONING). Each test segment contains 100 short-
term speech frames in this test

Classifier (Features) Identification Substitution Rejection

HME (24-LPCCEP) 89.5 5.2 5.3
HME (20-MELCEP) 91.1 3.1 5.8
HME (24-LPCCOE) 86.9 5.7 7.4
LIN-COM-DIF 97.8 0.0 2.2
HME (composite feature) 92.1 3.3 4.6
BAYES-REASONING 97.2 0.0 2.8
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is another critical aspect to evaluate the performance of a speaker identification
system. For this purpose, we conducted some simulations using different testing
segment lengths generated from SET-3. As a result, identification and substitution
rates produced by different methods are illustrated in Figs. 3 and 4, respectively.
Based on the results, basically, our method outperforms other methods used in our
simulations. It is evident that our method yields higher identification rates and lower
substitution rates when short speech testing segments are used. We emphasize that
our method is not only significantly better than an individual HME on either a

Fig. 3. Text-independent speaker identification: identification rates produced by different methods on
speech test segments with different lengths. (a) Results produced by the composite-feature-based method,
the Bayesian reasoning combination method (BAYES-REASONING), and our method (LIN-COM-DIF).
(b) Results produced by individual HME classifiers on specific feature sets.
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Fig. 4. Text-independent speaker identification: substitution rates produced by different methods on
speech test segments with different lengths. (a) Results produced by the composite-feature-based method,
the Bayesian reasoning combination method (BAYES-REASONING), and our method (LIN-COM-DIF).
(b) Results produced by individual HME classifiers on specific feature sets.

specific feature set or the composite feature set but also outperforms the Bayesian
reasoning combination method in robustness. In contrast to the Bayesian reasoning
combination method, in particular, the identification rates of our methods were at
least 2.0% higher, while its substitution rates were at least 1.5% lower when the
speech testing segments containing 20 and 40 frames were used, respectively.

In general, comparative results indicate that our method also yields the best
performance in identification rate and robustness for text-independent speaker identi-
fication.
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5. Concluding remarks

We have presented a novel method of combining multiple probabilistic classifiers
on different feature sets under the framework of linear opinion pools. In the proposed
method, soft competition is adopted as an automatic feature rank mechanism for use
of different feature sets in an optimal way. Based on the soft competition mechanism,
a generalized finite mixture model is proposed as a linear combination scheme and an
EM learning algorithm is also developed for parameter estimation in the linear
combination scheme. To demonstrate its effectiveness, we apply the proposed method
to a typical real world task, viz., speaker identification, which often needs to simulta-
neously use different feature sets for robustness. Simulation results show that our
linear combination scheme outperforms individual HME classifiers on specific feature
sets, the composite-feature based method, and a sophisticated combination method
called Bayesian reasoning combination in speaker identification.

Several issues with respect to our linear combination scheme are worth to be
addressed. First of all, our method can be viewed as an extension of the existing
models on linear opinion pools with weights as veridical probabilities [28,44] in terms
of pattern classification on different feature sets. In those models, the same feature
vectors are input to both the combination scheme and classifiers, and, therefore,
a composite-feature based method is inevitably used for a task of pattern classification
on different feature sets. Moreover, those models can be also regarded as a special case
of our linear combination scheme. When a robust feature set can be available as
illustrated in Fig. 1a, the same feature vector is input to different classifiers and our
linear combination scheme where there is only a subscheme. In this case, our linear
combination scheme is an equivalent to the model proposed by Xu and Jordan [44].
Next, our method is different from a recent combination method proposed by Tresp
and Taniguchi [41]. Their method is also a novel scheme of combining estimators
using non-constant weighting functions under the framework of linear opinion pools.
In their linear combination scheme, the weighting functions are also dependent on the
input. However, estimators in their method are allowed to work on disjoint regions of
input space and the method is applied in a regression task for better generalization
[41]. In contract, our linear combination scheme works on different representation
forms of input space and all the estimators in our method still work on the same input
space though different feature sets are used for pattern classification. This feature
significantly distinguishes our method from their method in terms of motivation and
application. It should be pointed out that our method may be used in several
circumstances. In this paper, we only use the same type of classifiers, i.e., HME
architecture, and only one classifier to deal with a specific feature set for pattern
classification on different feature sets. In fact, our method can be used to combine
multiple different types of classifiers. As a result, an extensive study on this topic has
been done and experimental results show that our method also yields good perfor-
mance in different circumstances [11]. On the other hand, Kanal [31] argued that the
research on combination of multiple classifiers provides a new perspective of pattern
recognition. His argument suggested that we can build a number of different and
complementary classifiers instead of developing a single high-performance classifier.
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Each classifier itself may not produce the desired performance, but an optimal
combination of such classifiers may lead to a highly reliable performance. More
recently, this issue has been examined by different researchers [19,8,29] and their
methods have turned out to be a hopeful way to develop new pattern recognition
systems. In our ongoing research, we shall investigate the performance of our method
in combining “weak” probabilistic classifiers for pattern classification on different
feature sets. In addition, regularization techniques will be introduced to our linear
combination scheme to improve its generalization capability. We expect that our
method will be successfully applied in more problems of pattern classification on
different feature sets.
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Appendix A.

In this appendix, we present the detailed derivation of the EM algorithm described
in Section 3 for parameter estimation in our linear combination scheme.

In order to derive the EM algorithm, we assume that N classifiers have been already
trained on K (K)N) different feature sets extracted from a training data set for
a given task. For a cross-validation set X"M(D(t), y(t))NT

t/1
, K different feature sets,

Mx(t)
1
NT
t/1

,2,Mx(t)
K
NT
t/1

, can be extracted from the input data set, MD(t)NT
t/1

, with the same
feature extraction methods. For the generalized finite mixture model in Eq. (5), we
apply the EM algorithm to estimate all parameters in U"M(a

kj
(x

k
),b

k
)D

j"1,2,N; k"1,2,KN. For use of the EM algorithm, we introduce a set of indi-
cators I"M(II(t)

j
,I(t)
k
)D j"1,2,N; k"1,2,K; t"1,2,¹N as missing data or unob-

served data to the observed data X . These indicators are defined as

II(t)
j
"G

1 if the final decision is made by classifier e
j
,

0 otherwise.
(A.1a)

I(t)
k
"G

1 if weights for combination are generated by the ith subscheme,

0 otherwise.

(A.1b)

Moreover, these indicators satisfy the following conditions: +N
j/1

II(t)
j
"1 and

+K
k/1

I(t)
k
"1, for t"1,2,¹. Thus, the complete data set is achieved and composed of

both the observed data set X and the missing data set I. In general, an EM algorithm
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consists of two consecutive steps: Expectation step (E-step) and Maximization step
(M-step) [16].

In the E-step, the task is to acquire the expectation of the missing data on the
condition of the observed data. At the sth iteration, the expectation is calculated based
on the Bayesian rule as follows.
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j
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k
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Note that the statistical model of classifier e
j
, P(yDx(t)

kj
,H

j
), is independent of indicator
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in terms of the definition in Eq. (A.1a). Therefore, we may apply
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"1, D(t),U) in the above derivation. In addi-

tion, the following relations have been used in the last step of Eqs. (A.2) and (A.3) in
accordance with the definition of indicators:
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Therefore, the posterior probabilities, h(s)
k

(y(t)Dx(t)
k
) and h(s)
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k
), used in the EM
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)"E[I(t)

k
DX] and h(s)

kj
(y(t)Dx(t)

k
)"E[I(t)

k
,II(t)

j
DX].

In the M-step, the task is to maximize a set of simplified objective functions derived
from the log-likelihood function based on the posterior probabilities achieved in the
E-step. In our problem, we simplify the log-likelihood function in Eq.(Eq. (10)) using
a trick suggested by [45]. As a result, we rewrite the generalized finite mixture model
into the following equivalent form:

P(y,D)"P(yDD,U)P(x
k
,()"

N
+
j/1

K
+
k/1

b
k
j
kj
P(x

k
,(

kj
)P(yDx

kj
,H

j
), (A.4)

where P(x
k
,()"+N

j/1
j
kj
P(x

k
,(

kj
) and P(x

k
,(

kj
)")(x

k
,(

kj
). )(x

k
,(

kj
) is as same as

defined in Eq. (7). Utilizing Eq. (A.4), we can simplify the log-likelihood function in
Eq. (10) as the following objective functions:

Q((
kj
)"

T
+
t/1

N
+
j/1

K
+
k/1

h(s)
kj

(y(t)Dx(t)
k
) log)(x

k
,(

kj
), (A.5)

Q(j
kj
)"

T
+
t/1

N
+
j/1

K
+
k/1

h(s)
kj

(y(t)Dx(t)
k
) log j

kj
, (A.6)

and

Q(b
k
)"

T
+
t/1

K
+
k/1

h(s)
k

(y(t)Dx(t)
k
) logb

k
. (A.7)

For our problem, the remaining task in the M-step is to find a new estimate of each
parameter by maximizing the above separate objective functions as

((s`1)
kj

"argmax(kj
Q((

kj
), (A.8)

j(s`1)
kj

"arg maxjkj
Q(j

kj
) s.t. +N

j/1
j
kj
"1, (A.9)

and

b(s`1)
k

"argmaxbk
Q(b

k
) s.t. +K

k/1
b
k
"1. (A.10)

Thanks to the joint distribution from in Eq. (A.4) and the basis function modeled as
a Gaussian distribution in Eq. (7), all the optimization problems in Eqs. (A.8), (A.9)
and (A.10), become analytically solvable and their solutions have been presented in
Eqs. (13)—(16).
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