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Abstract
Reinforcement learning often struggles to accomplish a sparse-reward long-horizon task 
in a complex environment. Goal-conditioned reinforcement learning (GCRL) has been 
employed to tackle this difficult problem via a curriculum of easy-to-reach sub-goals. In 
GCRL, exploring novel sub-goals is essential for the agent to ultimately find the pathway 
to the desired goal. How to explore novel sub-goals efficiently is one of the most chal-
lenging issues in GCRL. Several goal exploration methods have been proposed to address 
this issue but still struggle to find the desired goals efficiently. In this paper, we propose a 
novel learning objective by optimizing the entropy of both achieved and new goals to be 
explored for more efficient goal exploration in sub-goal selection based GCRL. To opti-
mize this objective, we first explore and exploit the frequently occurring goal-transition 
patterns mined in the environments similar to the current task to compose skills via skill 
learning. Then, the pre-trained skills are applied in goal exploration with theoretical justifi-
cation. Evaluation on a variety of spare-reward long-horizon benchmark tasks suggests that 
incorporating our method into several state-of-the-art GCRL baselines significantly boosts 
their exploration efficiency while improving or maintaining their performance.

Keywords  Goal-conditioned reinforcement learning (GCRL) · Exploration · Sub-goal 
selection · Skill learning · Long-horizon and sparse-reward tasks
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1  Introduction

Reinforcement learning (RL) has successfully solved some complex problems, e.g., board 
games (Silver et  al., 2017), protein prediction Jumper et  al. (2021) and robotic locomotion 
tasks (Levine et  al., 2016), where rewards as supervision signals play a crucial role in the 
learning process. Generally, it is possible to solve most if not all tasks via RL as long as the 
rewards are designed properly (Silver et  al., 2021). In contrast to non-trivial reward design 
principles, setting valuable rewards only for states that reach the desired goals is easier and 
can generalize across different tasks. Those tasks therefore can be easily framed as goal-condi-
tioned reinforcement learning (GCRL) problems to target at reaching the desired goals. How-
ever, the simple reward design also makes it extremely hard for RL to learn how to reach the 
goals as it is hard for the agent to explore them to obtain valuable rewards for learning. The 
problems have become more severe in long-horizon tasks where the goals are only reachable 
beyond a long-horizon. Thus, under the sparse-reward design, how to explore the goals effi-
ciently in long-horizon tasks remains a key problem for the wider applications of RL.

In sparse-reward long-horizon GCRL tasks, instead of directly targeting at the desired 
goals, the agent often learns to reach an implicit curriculum of sub-goals that are easier to 
reach and help the agent to discover the pathway to the desired goals. Following the curricu-
lum, the agent gradually expands its reachable sub-goals to cover the desired goals. In the 
process, the efficiency of exploring new sub-goals for the agent to learn is essential for discov-
ering the desired goals efficiently. Several strategies have been proposed to explore new sub-
goals efficiently (Florensa et al., 2018; Pong et al., 2020; Pitis et al., 2020; Mendonca et al., 
2021; Liu et al., 2022). However, there still exists a large gap to the level of efficiency required 
by wider RL applications.

The efficient exploration of human beings often establishes on various patterns in 
the interactions with the environment. Even a baby would master how to explore the 
room more efficiently via crawling, a kind of behavior patterns that enables the baby 
to move to nearby positions. We hypothesize that a key component for efficient goal 
exploration is to utilize the behavior patterns of the agent transitioned to goals nearby, 
like the baby crawling. However, existing GCRL strategies do not take such kind of 
patterns into consideration. In our work, we learn such kind of behavior patterns in 
the form of skills (Florensa et al., 2017; Eysenbach et al., 2018) that are pre-trained 
on the environments of the properties shared by downstream tasks. Each skill corre-
sponds to an individual policy for the agent to conduct specific behavior patterns. The 
agent is trained in the pre-training environments to visit a set of different nearby goals 
following each skill and those skills are transferred to downstream tasks for more 
efficient exploration. From the viewpoint of exploration, we are interested in behavior 
patterns that visit goals as widely as possible as it tends to discover more novel goals. 
Thus, we propose a maximum entropy objective on the distribution of achieved goals 
induced by following those skills.

Our main contributions are summarized as follows: (1) We propose a maximum 
entropy goal exploration method, goal exploration augmentation via pre-trained 
skills (GEAPS), to augment exploration in GCRL. (2) We introduce the entropy of 
goals in skill learning, which stabilizes skill learning and helps the agent gain more 
efficiency in goal exploration on challenging downstream tasks. Furthermore, we 
conduct a theoretical analysis of this entropy-based skill learning method. (3) We pro-
vide theoretical analyses for the benefits of utilizing pre-trained skills and the effec-
tiveness achieved through our exploration strategy under specific conditions. (4) We 
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demonstrate that incorporating our GEAPS algorithm into the state-of-the-art GCRL 
methods boosts their exploration efficiency for several sparse-reward long-horizon 
benchmark tasks.

2 � Related work

Exploration for New Goals.   Using uniformly sampled actions, like �-greedy algorithm, 
and introducing noises to policy actions are common strategies for exploration in RL. 
However, they are not sufficient to solve sparse-reward and long-horizon tasks. Different 
goal exploration methods have been proposed to accomplish those challenging tasks. A 
class of methods focus on a sub-goal selection strategy that helps with better goal explo-
ration. Skew-Fit (Pong et al., 2020) samples sub-goals from a skewed distribution that is 
approximately uniform over historical achieved goals, and OMEGA (Pitis et  al., 2020) 
selects sub-goals by maximizing the entropy of achieved goals from low-density regions. 
Goal GAN (Florensa et  al., 2018) and the AMIGO (Campero et  al., 2020) select sub-
goals of intermediate difficulties that prevent the agent from getting trapped in too easy 
tasks and avoiding too difficult ones. By and large, however, such methods still rely on 
uniformly sampled actions and action noise to find new goals while pursuing sub-goals, 
which restricts the goal exploration to neighboring states along the trajectory to the sub-
goal. To overcome this limitation, Pitis et al. (2020), Hoang et al. (2021) and Hartikainen 
et al. (2020) additionally explore goals via random actions after reaching the specific sub-
goal, which gives the agent larger freedom to explore beyond the sub-goal. Nevertheless, 
random actions do not involve any learned knowledge about tasks other than the action 
space, which restricts them from exploring a wide range of goals. In contrast, we involve 
behavior patterns transitioned to nearby goals in the form of skills pre-trained in similar 
tasks. The pre-trained skills enable transition to nearby goals quicker so that a wider range 
of goals can be explored within the same time steps. As a model-based method, LEXA 
(Mendonca et al., 2021) trains an exploration policy in a world model of the environment 
to discover novel goals and perform exploration via the trained exploration policy in the 
environment. However, a notable lack of experiences around the novel goals makes the 
simulated dynamics inaccurate around them. The inaccurate simulated dynamics also pre-
vent the exploration policy from exploring a wider range of novel goals. As a model-free 
method, our method does not rely on the exact dynamics around the novel goals. Instead, 
we explore new goals with the behavior patterns transitioned to nearby goals to increase 
the chance for the agent to reach the nearby goals faster than those methods without any 
knowledge of goal transition.

Skill Learning.   To learn the behavioral patterns transitioned to nearby goals, we per-
form skill learning in pre-training environments with each skill learning to reach a differ-
ent set of goals. To achieve this, a well-known idea is to maximize the mutual information 
between skills and the goals that are going to be visited, which can be expressed as follows: 

 where G is the goal space and Z denotes the latent space of the skill policy where each 
skill is represented by the skill policy conditioned on an individual latent vector. As the 
state itself can be considered as a goal, we would review the related works below in terms 

(1a)I(G;Z) = H(Z) − H(Z|G)

(1b)= H(G) − H(G|Z)
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of goals for simplicity. With Eq. 1a, SNN4HRL (Florensa et al., 2017) and DIYAN (Eysen-
bach et al., 2018) learn skills by fixing the distribution of latent vectors and minimizing the 
conditional entropy H(Z|G) . DADS (Sharma et al., 2019) estimates H(G) and H(G|Z) with 
the help of a skill-dynamics model and learns the skills via Eq. 1b. However, their learned 
skills can cover only a small portion of reachable goals due to the fact that mutual informa-
tion may have many optima and covering more goals does not necessarily contribute to 
higher mutual information. EDL (Campos et al., 2020) explores the goal space at first, then 
encode those goals into discrete latent vectors Z via a trained VQ-VAE (Van Den Oord 
et al., 2017), and finally learn each skill from the rewards based on the likelihoods of the 
achieved goals that are predicted by the VQ-VAE decoder. Though the skills learned via 
EDL can reach goals further away, they are not optimized to reach all reachable goals. 
As the pre-training environments do not reveal the exact structures of downstream tasks, 
some behavioral patterns transitioned to nearby goals may not work out as expected. Thus, 
we expect the learned behavioral patterns to support as many transitions to nearby goals 
as possible so that they can be more robust to different situations in downstream tasks. 
To achieve this, we introduce an alternative objective for skill learning based on mutual 
information maximization. The maximized entropy of goals ensures that skills can reach a 
wider range of nearby goals and avoid bad local optima in goal covering. as demonstrated 
in our experiments reported in Sect. 5.3.4.

3 � Preliminary

While traditional reinforcement learning is often modeled as a Markov decision process 
(MDP), GCRL augments the MDP with a goal state to form goal-augmented MDP (GA-
MDP) (Schaul et al., 2015). A GA-MDP MG is denoted by a tuple (S,A, T,G, r, � ,�, pdg, T) 
where S,A, � , T  are state space, action space, discount factor and the horizon, respectively. 
T∶ S ×A × S → [0, 1] is the transition function, G is the goal space, pdg is the desired goal 
distribution and � ∶ S → G is a tractable mapping function that maps a state to its cor-
responding achieved goal. The reward function r ∶ S × G ×A → ℝ provides the learning 
signals for the agent, but valuable rewards can only be obtained when the agent reaches 

Fig. 1   A generic goal-conditioned reinforcement learning (GCRL) framework for long-horizon and sparse-
reward tasks



2531Machine Learning (2024) 113:2527–2557	

1 3

the desired goals in the sparse-reward setting. GCRL requires the agent to learn a policy 
� ∶ S × G ×A → [0, 1] to maximize the expected cumulative return:

In GCRL1, the agent makes actions either in pursuit of a goal or trying to explore more 
goals. As depicted in Fig. 1, we divide the entire interaction process in an iteration into 
goal pursuit and goal exploration, depending on whether the decision policies are con-
ditioned on goals. During policy training in the kth iteration, let �g

k
 , �c

k
 and �e

k
 denote the 

policy deciding a behavioral goal for an agent to pursue, the goal-conditioned policy for 
the agent to achieve a goal and the exploration policy for the agent to explore new goals, 
respectively. Before goal pursuit, a goal gk will be sampled from �g

k
(G) , gk ∼ �

g

k
(G) . During 

goal pursuit, the agent takes an action at ∼ �c
k
(st, gk) at each time step t until Tc

k
≤ T  . For 

clarity, Tc
k
 refers to the number of steps required to reach the goal gk at iteration k in goal 

pursuit. In the goal exploration process, the agent takes actions at ∼ �e
k
(st) until Te

k
≤ T  . To 

make the best use of interaction steps, we perform goal exploration subsequently after the 
agent achieves the goal during goal-pursuit (Pitis et al., 2020; Hoang et al., 2021; Harti-
kainen et al., 2020) instead of conducting goal exploration separately. Thus, the total steps 
in iteration k is T = Tc

k
+ Te

k
 , meaning that the number of steps taken for goal exploration, 

Te
k
 , depend on Tc

k
 in iteration k. The data collected from both goal pursuit and exploration 

are stored in the replay buffer Bk at iteration k. In the (k+1)th iteration, �g

k
,�c

k
,�e

k
 would 

be updated to �g

k+1
,�c

k+1
,�e

k+1
 , respectively, based on the training data in the current replay 

buffer Bk . Then, the updated policies will be used in the new round of data collection. Fur-
thermore, we denote the achieved goals as the set GB ∶ {�(s)|s ∈ Bk} , their distribution in 
the goal space G as pag,k(G) and their entropy as Hag,k(G) at iteration k. To simplify the pres-
entation, we shall drop off the explicit iteration index, k, from the subscript of the above 
notation in the rest of the paper.

4 � Method

In this section, we propose a new learning objective for goal exploration, then present skill 
learning via the goal-transition patterns to optimize our learning objective, which leads to 
our GEAPS algorithm.

4.1 � Learning objective for goal exploration

Unlike the previous works reviewed in Sect. 2, we focus on the goal exploration associated 
with goal-independent behavior. As it is hard to directly explore desired goals in long-hori-
zon and sparse-reward tasks, a well-known learning objective is to maximize the entropy of 
historical achieved goal H(G) . OMEGA (Pitis et al., 2020) has shown how to optimize the 
entropy of already achieved goals, Hag(G) , in the goal pursuit process. We make a step for-
ward by analyzing how to further optimize Hag(G) via goal exploration immediately after 

J(�) = �
g ∼ pdg, at ∼ �(⋅|st, g)

st+1 ∼ T(⋅|st, at)
[

T∑

t=1

� tr(st, at, g)].

1  Some GCRL methods may not have all the components in the generic framework shown in Fig. 1.
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goal pursuit in each trial. Let pe(G) and He(G) denote the distribution of goals encountered 
in goal exploration and its entropy, respectively. In the goal exploration process starting 
with the initial state s02 and going through Te transitions, we have

After goal exploration (c.f. Fig. 1), the updated distribution of achieved goals p�
ag
(G) is a 

weighted mixture distribution of pag(G) and pe(G) as follows:

where c = |B|+Tc

|B|+Tc+Te
 and |B| is the size of the current replay buffer.

To develop our learning objective for goal exploration augmentation, we formulate a 
proposition as follows:

Proposition 1  Let H�
ag
(G) represent the updated entropy of achieved goals following the 

goal exploration. This entropy is bounded from below by the sum of the weighted entropies 
of the original achieved goals and the goals encountered during goal exploration, namely, 
c Hag(G) and (1 − c) He(G) . That is,

The proof of Proposition 1 can be found in Appendix 1. According to Eq. 3, an increase 
in Hag(G) and He(G) elevates the lower bound of the resulting entropy H�

ag
(G) . As the 

OMEGA (Pitis et  al., 2020) asserts, Hag(G) can be maximized by selecting low-density 
goals as sub-goals. However, optimizing He(G) is challenging due to the agent’s limited 
understanding of new sub-goal dynamics, which may necessitate arbitrary exploration.

Despite unknown dynamics, we observe that overlapping elements may exist between 
the agent’s transition mechanisms and a pre-training environment. These shared features 
form goal-transition patterns, beneficial for exploring unfamiliar goals. When all goal-tran-
sition patterns are available in a new sub-goal, the generic entropy of explored goals He(G) 
is denoted by Ĥe(G) . To optimize Ĥe(G) , an exploration policy must aim to visit as many 
goals as feasible within a given time frame, while avoiding revisits and maintaining sto-
chasticity. Backed by theoretical justification presented in Sect. 4.5.1, we suggest develop-
ing an exploration policy based on an array of stochastic pre-trained skills. Each skill tar-
gets a maximum set of sub-goals, leading to a maximized Ĥe(G) . Although this assumption 
may not apply during actual exploration, Ĥe(G) still acts as an upper bound of He(G) even 
though missing goal-transition patterns lead to failed transitions. Hence, enhancing Ĥe(G) 
could significantly improve the agent’s exploration efficiency.

4.2 � Skill acquisition

For a given environment, optimizing our learning objective in Eq. 3 leads to the maximum 
entropy of goals to be explored in goal exploration (c.f. Fig. 1). However, the exact dynamics 

(2)pe(g|s0) =
1

Te

Te−1∑

i=0

i∏

t=0

p(st+1|st, at)�e(at|st)1(�(st+1) = g).

p�
ag
(G) = c pag(G) + (1 − c)pe(G),

(3)H�
ag
(G) ≥ cHag(G) + (1 − c)He(G).

2  To simplify the notation, we designate the state, s
Tc , reached by the goal pursuit after Tc transitions as the 

initial state, s
0
 , that triggers the goal exploration process (see Sect. 3 and Fig. 1 for clarity).
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around the current state is often unknown, hence it is infeasible to directly maximize the 
entropy of goals to be explored via pe(G) in Eq. 2. Fortunately, this issue can be addressed 
with the auxiliary information named goal-transition patterns. A goal transition always has 
a starting goal gs and an end goal ge but goal transitions of the same gs and ge may involve 
different intermediate states. Here, we define a goal-transition pattern as a goal transition 
process that can transit across different states with actions but preserves the same properties 
independent of gs and ge in the goal space G . It is analogous to image recognition where an 
object’s identity is independent of its location in the image. Exploring with a goal-transition 
pattern from a state tends to make the changes specified by the pattern via goal-independent 
actions in G . Goal-transition patterns enable planning in G to avoid the canceling-out effect of 
different actions used for goal exploration. Composing a set of frequently occurring inherent 
goal-transition patterns, named skills, in a manner that maximizes the entropy of goals to be 
explored enables an agent to expand its achieved goal space more efficiently for better goal 
covering. Such skills can be learned via another policy as described below.

Although we cannot find all the frequently occurring goal-transition patterns without tra-
versing the entire environment, we observe that there are many goal-transition patterns in 
common that can be mined from similar environments via pre-training. A pre-training envi-
ronment should share both the same agent space Sagent (Florensa et al., 2017; Konidaris & 
Barto, 2007) and the same goal space G with the current task. The agent space Sagent is simply 
a shared subspace of the state space S and semantically the same across a collection of rel-
evant tasks. Sagent generally does not convey goal information since the transition dynamics 
in their goal spaces often differ on the pre-training tasks. In our work, Sagent needs to be inde-
pendent of the goal space G of any tasks. Thus, the goal-transition patterns can be transferred 
to a GCRL task within Sagent via learned policies that execute the inherent goal-transition pat-
terns mined in the pre-training environments. As our ultimate goal is to learn the composition 
of goal-transition patterns or skills, we can directly learn another policy that maximizes the 
expected entropy of goals to be explored in the pre-training environments without modeling 
the behavior for each goal-transition pattern explicitly. Thus, the behavior of frequently occur-
ring goal-transition patterns is automatically encoded by the policy via learning. We formulate 
such policy learning as a skill learning process.

4.3 � Skill learning

We denote a skill by a latent vector zzz , the set of all the pre-trained skills by Z , and the cor-
responding multi-modal skill policy by �Z . For each skill, �Z would select an action 
at ∼ �Z(at|s

agent

t , zzz) . To learn a set of diverse skills, we formulate its learning objective as 
the mutual information between the skills and the goals conditioned on initial goal states by 
Eqs. 1a and 1b. However, previous skill learning methods often fail to learn a wide coverage 
of goals, which is attributed to the fact that there exist many optima in the mutual information 
function and covering more goals does not always lead to higher mutual information. With-
out loss of generality, we assume both the goal space G and the latent space Z for skills are 
discrete and it is common to have |G| > |Z| . Even when the mutual information I(G;Z) has 
been maximized to be log|Z| via Eq. 1a, the entropy of goals H(G) can still vary from log|Z| 
to log|G| . When H(G) takes low values, the goal coverage appears poor, which motivates us to 
develop an alternative skill learning strategy.

Unlike the prior skill learning works, e.g., SNN4HRL (Florensa et al., 2017) and DIAYN 
(Eysenbach et al., 2018), we want a diverse set of skills by maximizing both I(Z,G) and H(G) . 
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In our work, we do not maximize H(G) directly but H(G♣Z) instead given the fact that when 
I(Z,G) is maximized, Eq. 1b leads to

In the skill learning process, however, we still cannot obtain the exact p(zzz|g) and p(g|zzz) that 
requires integration over all reachable goals and skills. We approximate p(zzz|g) and p(g|zzz) 
with q(zzz|g) and q(g|zzz) by using the Monte Carlo method. Motivated by the previous works 
(Florensa et al., 2017; Eysenbach et al., 2018), we set the reward for mutual information 
maximization as

To maximize the entropy of H(G|Z) , the distribution p(g|zzz) is expected to be as uniform as 
possible. Thus, we design the reward as follows:

Here, we encourage visiting those goals less explored. Thus, it will converge when the 
distribution of goals to be explored are uniform. Combining the rewards specified in Eqs. 5 
and 6, we achieve the pseudo reward for our skill training as follows:

where � is a coefficient to trade-off between rI
z
 and rH

z
.

In GCRL, transitioning between goals g and g′ is often represented as g → g + Δ(g, g�) , 
where ΔG = Δ(g, g�) signifies the desired goal transition. To optimize Ĥe(G) , we actually 
learn the skills by maximizing H(ΔG) in a pre-training environment.

Algorithm 1   Goal Exploration Augmentation via Pre-trained Skills (GEAPS)

(4)

H(G) = I(Z,G) + H(G|Z)
= H(Z) − H(Z|G) + H(G|Z)
= Ezzz,g[log p(zzz|g) − log p(zzz) − log p(g|zzz)].

(5)rI
z
(st, at) = log q(zzz|�(st)) − log p(zzz).

(6)rH
z
(st, at) = log

[
maxĝq(ĝ|zzz) − q(𝜙(st+1)|zzz)

]
.

(7)rz(st, at) = rI
zzz
(st, at) + �rH

zzz
(st, at).
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4.4 � Goal exploration augmentation strategy

  The trained skill policy is used in �e for goal exploration (c.f. Fig. 1). During goal explo-
ration, goal-transition patterns are not available in all states, hence sometimes the desired 
transition of skills are unreachable. Thus, we switch a skill in every Ts ( Ts < Te ) steps. We 
summarize our GEAPS algorithm in Algorithm 1 that enables the trained skills �Z to be 
used for formulating an exploration policy �e during goal exploration.

As depicted in Fig. 1, our GEAPS algorithm can be easily incorporated into the generic 
GCRL framework to improve exploration efficiency. In the goal pursuit process, an exist-
ing GCRL algorithm, e.g., Goal GAN (Florensa et al., 2018), Skew-Fit (Pong et al., 2020), 
or OMEGA (Pitis et al., 2020), used in our experiments, is employed to learn a policy, �g

k
 , 

for an agent to decide a behavioral goal to pursue and a goal-conditioned policy, �c
k
 , for an 

agent to achieve a goal. After the kth round of goal pursuit is completed, our GEAPS algo-
rithm is invoked in the goal exploration stage to construct an exploration policy, �e

k
 , for the 

agent to explore new goals. Alternating the goal pursuit and exploration processes makes 
the two algorithms reach a synergy to solve a sparse-reward long-horizon reinforcement 
learning task.

4.5 � Theoretical analysis

  In this subsection, we provide theoretical analyses concerning our entropy-maximization-
based methods for skill learning and goal exploration. The proofs of those propositions can 
be found in Appendix 1.

4.5.1 � On the role of skill composition in learning optimal exploration policy

Under the exploration policy �e , we characterize Ω as the set of all possible trajectories 
encompassed within the exploration horizon Te . Each exploration trajectory, represented 
by � , conforms to the distribution portrayed by � ∼ p(Ω) . Consequently, the entropy Ĥe(G) 
can be articulated as the sum of the mutual information I(Ω;G) and the conditional entropy 
H(G|Ω) . This can be represented mathematically as follows:

To maximize the mutual information I(Ω;G) , we strive for each trajectory to cover a dis-
tinct subset of goals. With respect to optimizing H(G|Ω) , we aim for each trajectory to visit 
as many goals as feasible, maintaining uniform probability for visiting each goal within its 
respective subset. In exploration scenarios deploying uniform primitive actions, each tra-
jectory bears an equivalent likelihood 1

|Ω| of being generated. It is crucial to note that some 
trajectories may be limited to a single goal, whereas a specific goal could be visited by 
numerous trajectories.

For the optimal exploration policy, we denote the set of trajectories following the policy 
as Ω∗ ⊆ Ω , with their corresponding distribution represented as pΩ∗ . Consequently, this 
optimal exploration policy culminates in the optimal entropy of prospective goals, denoted 
by Ĥ∗

e
(G) , as given as follows:

Ĥe(G) = I(Ω;G) + H(G|Ω).
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However, directly optimizing the exploration policy within the trajectory space Ω to obtain 
Ω∗ and pΩ∗ poses significant computational challenges. This complexity primarily arises 
from the exponential growth in the size of |Ω| = |A|Te as a function of Te . This difficulty is 
further compounded by the potential continuity of the action space. To mitigate these chal-
lenges, we consider the prospect of simplifying the optimization problem.

Proposition 2  The optimal exploration policy leading to Ω∗ with the distribution pΩ∗ can be 
composed via a set of skills Z ( |Z| << |Ω∗|).

Following this proposition, we firmly advocate the prospect of pre-trained skills as a viable 
mechanism for acquiring optimal settings. This approach offers a captivating alternative to the 
direct optimization method, providing promising opportunities for efficient exploration.

4.5.2 � On the role of pre‑trained skills in improving exploration efficiency

In a given environment, the occurrence of a goal-transition ΔG can be recurrent, and 
this repetitiveness is evident through various distinctive goal-transition patterns. To 
systematically understand these patterns, we formulate a goal-transition pattern as 
� = {s

agent

start , s
agent

end
,ΔG,ΔA} . Within this formulation, sagentstart  and sagent

end
 , which belong to the 

agent state space Sagent , are the initial and terminal states of the agent for the goal-transition 
ΔG , respectively. ΔA denotes a sequence of actions that result in the accomplishment of ΔG . 
The term |ΔA| signifies the length of the action sequence ΔA , and the cardinality of � is 
denoted by |�| = |ΔA| . The entirety of existing goal-transition patterns is symbolized by Ψ.

We now delve into an analysis of how goal-transition patterns can enhance exploration effi-
ciency. Under the assumption that all goal-transition patterns in the pre-training environment 
are accessible, we aim to optimize Ĥe(G) . Our initial focus lies on discerning the associations 
between these goal-transition patterns and individual episodes.

Proposition 3  Given the horizon T, every trajectory � can be decomposed into a sequence 
of goal-transition patterns.

With the established connection between each trajectory and its corresponding goal-tran-
sition patterns in Proposition 3, we proceed to analyze the potential of enhancing exploration 
efficiency based on the goal-transition decomposition of each trajectory.

Proposition 4  Given an exploration horizon of Te , the substitution of goal-transition pat-
terns within each trajectory � ∈ Ω with alternative patterns of smaller cardinality can 
yield equivalent exploration outcomes using an average number of steps that is less than or 
equal to the specified Te.

Proposition 4 presents a potential avenue for enhancing exploration efficiency over the 
exploration policy that relies on uniform primitive actions. In a practical scenario, goal-
transition patterns of different cardinality coexist for the same goal transition, so the employ-
ment of goal-transition patterns typically results in a requirement for fewer time steps than Te . 

Ĥ∗
e
(G) = I(Ω∗;G) + H(G|Ω∗).
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Furthermore, the skill learning methodologies described in Sects. 4.2 and 4.3 are designed 
to exploit the potential of goal-transition patterns, thereby further improving the exploration 
efficiency.

5 � Experiment

In this section, we evaluate the advantage of our GEAPS in terms of success rate and sam-
pling efficiency on a set of sparse-reward and long-horizon GCRL benchmark tasks and 
demonstrate the effectiveness of our pre-trained skills in our GEAPS algorithm via a com-
parative study.

Fig. 2   Four sparse-reward and long-horizon benchmark tasks
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5.1 � Environments and baselines

5.1.1 � Environments

As shown in Fig.  2, we select four common long-horizon and sparse reward environ-
ments in our experiments. (i) PointMaze (Pitis et al., 2020; Trott et al., 2019): a 2-D 
maze task that a point navigates through a 10×10 maze from the bottom left corner to 
the top right one. Its observation is a two-dimensional vector indicating its position in 
the maze. The agent may be easily trapped in somewhere with dead ends hence hardly 
exploring new goals. (ii) AntMaze (Pitis et al., 2020; Trott et al., 2019): a robotic loco-
motion task that controls a 3-D four-legged robot through a long U-shaped hallway to 
reach the desired goal position. Its thirty-dimensional observation includes the robot’s 
status and its location. The agent can only move in a slow and jittery manner, hence 
it is hard to explore new goals and learn goal-reaching behavior. (iii) FetchPick-
AndPlace (Plappert et  al., 2018): a robot arm task where a robot arm grasps a box 
and moves it to a target position. The agent observes the positions of both gripper and 
target box as a 30-D vector, and its goal is a 3-D vector about the target position for 
the box. Another robot arm task, FetchStack2 (Nair et al., 2018), aims to stack two 
boxes at a target location, requiring the agent to move them to target positions in order. 
Its observation and goal are 40-D and 6-D, respectively. The agent receives no reward 
until placing both boxes in the correct positions, and involving two boxes makes it more 
difficult to explore desired goals. Reaching the desired goals once on PointMaze and 
AntMaze is considered as a success, while the agent is only considered to succeed 
on FetchPickAndPlace and FetchStack2 if it still satisfies the conditions of 
desired goals at the end of episodes.

5.1.2 � Baselines

(i) Goal GAN (Florensa et al., 2018): a typical heuristic-driven method where the inter-
mediate difficulty is used as a heuristic to select sub-goals via a generative model. (ii) 
Skew-Fit (Pong et al., 2020): an effective exploration-based method where sub-goals are 
generated via sampling from a learnt skewed distribution that is approximately uniform 
on achieved goals. (iii) OMEGA (Pitis et al., 2020): yet another effective exploration-
based method where sub-goals are generated via sampling from the low-density region 
of an achieved goal distribution. While our GEAPS algorithm is applied to the above 
baselines to augment their goal exploration, we also compare three augmented GCRL 
models to the state-of-the-art (SOTA) model-based exploration in LEXA (Mendonca 
et al., 2021) of which explorer can augment suitable baselines, e.g., GCSL (Ghosh et al., 
2020) and DDPG (Lillicrap et al., 2015).

5.2 � Experimental settings and implementation

5.2.1 � Experimental settings

Our experiments study the following questions: (Q1) How much is the sampling effi-
ciency gained when our GEAPS is incorporated into a baseline on the condition that 
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its performance is maintained or even improved? (Q2) What are the behavioral changes 
resulting from incorporating our GEAPS into a baseline? (Q3) Can our augmented mod-
els reach the performance yielded by compared to the model-based SOTA exploration 
in LEXA (Mendonca et al., 2021)? (Q4) What are the pre-trained skills resulting from 
our skill learning objective in contrast to those generated by the established skill learn-
ing methods such as SNN4HRL (Florensa et al., 2017) and EDL (Campos et al., 2020)?

For each baseline, we apply our GEAPS in goal exploration by keeping its original 
settings unchanged. Thus, we achieve three augmented models: Goal GAN+GEAPS, 
Skew-Fit+GEAPS and OMEGA+GEAPS, corresponding to three baselines. Five trials 
with different random seeds in each environment are conducted for reliability. Evalu-
ation is made with a fixed budget; i.e., the training will be terminated after a (pre-set) 
number of steps if an agent still fails to reach the ultimate goals. The performances are 
evaluated in terms of the success rate, the most important performance evaluation crite-
rion in reinforcement learning, and the entropy of achieved goals, a widely used evalua-
tion criterion on sampling efficiency in GCRL.

5.2.2 � Pre‑training settings

(i) PointMaze: We generate 20 small 5×5 small mazes as pre-training environments, 
which include various topographies. In each episode, the agent is initialized in a random 
position of the central grid. In Fig.  3a, we exemplify four typical pre-training environ-
ments. The observation for the skill policy is the relative position with regard to the grid 
where the agent is located. We pre-train the skills of horizon two over those mazes via 
maximizing the average cumulative return averaging over the learning objective. (ii) Ant-
Maze: We pre-train the skills on the Ant environment as shown in Fig. 3b, which keeps 
the same 3-D four-legged robots in an open environment and sets the skill horizon as 100. 

Fig. 3   a Four typical pre-training environments for PointMaze. b The pre-training environment for  
AntMaze 
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(iii) FetchPickAndPlace and FetchStack2: The goals of two robot arm tasks are 
defined as the target positions of the relevant objects. Achieving a sub-goal during goal 
pursuit, typically inferred when the arm continues to hold the object, provides the basis for 
subsequent skill development. Consequently, each skill is deliberately handcrafted to direct 
the object along a random trajectory within a predetermined range, ensuring that collec-
tively, the skills span all possible directions. This strategy guarantees an equal likelihood of 
encountering all potential goals within the boundary established by the exploration horizon 
Te.

5.2.3 � Implementation

Our GEAPS is implemented with the mrl:modular RL codebase (Pitis et al., 2020) and 
all the baselines adopt DDPG (Lillicrap et al., 2015) to train goal-conditioned behavior.3 
For three baselines (Florensa et al., 2018; Pong et al., 2020; Pitis et al., 2020), we use the 
source code provided by the authors and strictly adhere to their instructions in our experi-
ments. LEXA is composed of a model-based exploration policy and a model-based goal-
conditioned policy. As our focus is goal exploration, we use its exploration policy only 
and adopt model-free goal-conditioned policies optimized via GCSL (Ghosh et al., 2020) 
and DDPG (Lillicrap et al., 2015) for a fair comparison. To obtain the pre-trained skills 
for PointMaze and AntMaze, we use a multi-layer perceptron trained with the TRPO 
(Schulman et  al., 2015) for stability in skill learning, while the skills for two robot arm 
tasks are handcrafted as moving along a direction sampled uniformly in various ranges. To 
pre-train the skills, we fix � = 0.1 in Eq. 7 for all our experiments. For goal exploration, we 
set the skill horizon Ts as 2, 25, 8 and 5 for PointMaze, AntMaze, FetchPickAnd-
Place and FetchStack2, respectively.

Appendixes 2 and 3 describe more technical and implementation details regarding the 
baselines and the skill learning used in our comparative study.

5.3 � Experimental results

We report the main experimental results to provide the answers to four questions posed in 
Sect. 5.2.1.

Fig. 4   Test success on the desired goal distribution throughout training on four environments for the base-
lines and the augmented models

3  The code is available at: https://​github.​com/​GEAPS/​GEAPS.

https://github.com/GEAPS/GEAPS
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5.3.1 � Results on goal exploration augmentation

To answer the first question, we report the results yielded by the baselines and their cor-
responding augmented models to gauge the gain made by our GEAPS. In our experiments, 
we terminate the training at one million steps for PointMaze, two million steps for 
FetchPickAndPlace, three million steps for AntMaze and FetchStack2. An epi-
sode consists of 50 steps for PointMaze, FetchPickAndPlace and FetchStack2 
and 500 steps for AntMaze, respectively. We report statistics (mean and standard devia-
tion) over five seeds in each environment.

As shown in Fig. 4, our GEAPS has improved three baselines in different scales across 
the four environments. On PointMaze, Goal GAN is unable to solve the environment 
and Skew-Fit only manages to get 20% success at maximum. OMEGA achieves 100% 
success in about 0.2 million steps. In contrast, our GEAPS enables both Goal GAN and 
Skew-Fit to solve PointMaze to achieve 100% success in about 0.3 and 0.7 million steps. 
OMEGA+GEAPS is approximately twice faster as OMEGA to achieve 100% success. 
On AntMaze, we observe similar results; both Goal GAN and Skew-Fit fail in three mil-
lion steps, while our GEAPS enables Skew-Fit to solve the environment with 60% suc-
cess rates and even boost Goal GAN to have comparable results with OMEGA+GEAPS. 
OMEGA+GEAPS is about three times faster than OMEGA to reach over 90% success. On 
FetchPickAndPlace, our GEAPS boosts the success rates of Goal GAN and Skew-Fit 
by around 10% percent and 20% percent, respectively, for the same time steps. Although 
OMEGA+GEAPS reaches 100% success almost at the same time as the baseline, it is 40% 
faster than the baseline to reach 80% success. On FetchStack2, Goal GAN, Skew-Fit 
along with their augmented versions hardly solve the problems with at most 7% success 
observed for Skew-Fit+GEAPS and OMEGA+GEAPS yields the results comparable to 
OMEGA, which could be explained with the entropy of the achieved goal distribution.

As the entropy of the achieved goal distribution reflects the coverage of achieved goals 
in an environment, we show the empirical entropy of the achieved goals for the base-
lines and the augmented models in Fig. 5. On PointMaze and AntMaze, the entropy 
increases faster with the help of our GEAPS, and the improvements are especially dramatic 
on Goal GAN and Skew-Fit. On FetchPickAndPlace, GEAPS boosts the entropy of 
all three baselines on small scales at the beginning. On FetchStack2, GEAPS improves 
the entropy of OMEGA while deteriorating the entropy of Goal GAN and Skew-Fit mar-
ginally. The reason on the unimproved entropy on FetchStack2 can be attributed to 
GEAPS that controls the goal-transition patterns for one object while making the other 
with little change, which leads to a slightly lower entropy of achieved goals.

We notice that in OMEGA (Pitis et al., 2020), several classical or SOTA baselines were 
tested on the same environments used in our work. As OMEGA beats those baselines with 
a huge margin, e.g., OMEGA is around 100 and 10 times faster than the best performer, 

Fig. 5   Empirical entropy of the achieved goal distribution throughout training on four environments for the 
baselines and the augmented models
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PPO+SR (Trott et al., 2019), in solving PointMaze and AntMaze, respectively. Thus, 
the performance of OMEGA+GEAPS allows us to claim a bigger gain over those baselines 
used for comparison in OMEGA (Pitis et al., 2020).

5.3.2 � Visualization of exploration behavior

To answer the second question, we visualize the final achieved goals and trajectories of 
goal selection at the end of the episodes. The visualization vividly exhibits the behavioral 
changes resulting from our goal exploration augmentation.

Fig. 6   Visualization of the final achieved goals in PointMaze: the baselines (top) versus the augmented 
models (bottom), where the training evolution process is indicated with the heatmap

Fig. 7   Visualization of the final achieved goals in AntMaze: the baselines (top) versus the augmented 
models (bottom), where the training evolution process is indicated with the heatmap
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As shown in the top row of Fig. 6, all three baselines cannot reach the entire area of 
PointMaze at the end of 1600 episodes. Most goals reached by Goal GAN are located 
in the left half of the maze near the starting location. Most goals reached by Skew-Fit are 
located in a smaller area in the left half of the maze and goals mainly get stuck in two small 
areas close to or having a moderate distance to the starting location. OMEGA performs 
much better than other baselines as it covers the entire maze except those goals from the 
desired goal distribution in the top right corner. In contrast, it is evident from the bottom 
row of Fig. 6 that our GEAPS makes all baselines cover a larger area and alleviates the so-
called “rich get richer" problem by sampling goals uniformly towards covering the entire 
maze. In particular, our GEAPS helps the baselines reach goals that spread outward from 
easy to hard goals as training advances and enables OMEGA to quickly transition to goals 
in the desired goal area.

Fig. 8   Visualization of the goal pursuit and goal exploration trajectories made by OMEGA (top) and 
OMEGA+GEAPS (bottom) at different training steps for PointMaze 

Fig. 9   Visualization of the goal pursuit and goal exploration trajectories made by OMEGA (top) and 
OMEGA+GEAPS (bottom) at different training steps for AntMaze 
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It is observed from Fig. 7 that by incorporating our GEAPS into three baselines, their 
behavioral changes on AntMaze are similar to those on PointMaze. At the end of 
1000 episodes, no baselines can reach goals beyond the bottom of the hallway, and goals 
reached by Goal GAN and Skew-Fit are even trapped in the small areas close to the start-
ing location. In contrast, the augmented models take advantage of our GEAPS, hence are 
able to reach goals in much larger areas. It is evident from the bottom row of Fig. 7 that 
OMEGA+GEAPS has already explored the goals within the desired goal area and Goal 
GAN+GEAPS has reached quite close to this area.

As OMEGA is the best performer among the three baselines and also uses a Go-
Explore (Ecoffet et  al., 2019) style strategy for exploration, we further visualize the 
goal pursuit and exploration trajectories made by OMEGA and OMEGA+GEAPS at 
different training steps. As described in Sect. 3, reaching a behavioral goal in goal pur-
suit triggers goal exploration. A trajectory can intuitively exhibit goal transitioned at 

Fig. 10   Test success on the desired goal distribution throughout training on four environments for our aug-
mented models and LEXA explorer-based models

Fig. 11   Empirical entropy of the achieved goal distribution throughout training for our augmented models 
and LEXA explorer-based models

Fig. 12   Visualization of the final achieved goals on PointMaze: LEXA+GCSL and LEXA+DDPG, 
where the training evolution process is indicated by the heatmap
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different training steps to allow us to better understand the behavioral change resulting 
from our GEAPS. As shown in Figs. 8 and 9, OMEGA generally explores goals close to 
the reached behavioral goals “conservatively" with a heuristic (Pitis et al., 2020) in goal 
exploration, while OMEGA+GEAPS explores goals in a larger area around the reached 
behavioral goals “aggressively" by means of the frequently occurring goal-transition 
patterns encoded in the pre-trained skills, which vividly demonstrates the advantage of 
our proposed method in improving the exploration effectiveness during learning.

5.3.3 � Comparison to LEXA explorer

To answer the third question, we compare the state-of-the-art LEXA explorer-based 
goal exploration argumentation to our augmented models. As shown in Fig.  10, within 
the same training budget, we only observe up to 7% success rates on PointMaze with 
LEXA+DDPG and no success achieved by the LEXA explorer-based models on other 
experiments. As shown in Fig. 11, the entropy of the LEXA explorer-based models are far 
below that of our augmented models. The reasons may be two-fold: (a) The LEXA explorer 
performs exploration via the disagreement of an ensemble of one-step world models and 
the disagreement is based on the novelty of states. Except for the PointMaze, the state 
space is not equivalent to the goal space and exploring more states does not necessarily 
contribute to exploring more goals. (b) LEXA performs with the goal-pursuit behavior on 
those goals uniformly sampled from the replay buffer only, which prevents it from enhanc-
ing the experience around the explored goals. Form Fig. 12, we observe that the LEXA 
explorer is able to explore those areas near the desired goal distribution on PointMaze 
while it fails to keep exploring those areas later. In contrast, our augmented models use dif-
ferent strategies to select those novel sub-goals to pursue, which enhances the experience 
around those novel goals. Our augmented models prioritize pursuing those novel goals to 
broaden the relevant experience in the replay buffer.

In addition, training a world model in LEXA is time-consuming and requires abun-
dant data, while our GEAPS only needs the skills pre-trained with our alternative learning 
objective. Those skills acquired by pre-training are applicable to any relevant downstream 
tasks. In summary, the above results demonstrates that our model-free GEAPS is highly 

Fig. 13   Trajectories of pre-trained skills acquired by our skill learning method. a PointMaze in an empty 
maze. b Ant in an empty maze
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competitive with the SOTA model-based explorer in LEXA especially for the tasks of 
which state space is not equivalent to their goal space.

5.3.4 � Results on skill learning

To answer the fourth question, we first visualize the pre-trained skills resulting from our 
learning objective presented in Sect. 4.3. Figure 13 illustrates the trajectories of pre-trained 
skills for PointMaze and AntMaze. In Fig. 13a, we plot 50 trajectories for each skill 
pre-trained for PointMaze in an empty 5×5 maze. It is evident that the learned skills 
guide the agent to navigate along different diagonal directions so that the agent can tran-
sit to another grid quickly. The skills are intuitive and their effectiveness in boosting the 
sample efficiency have been demonstrated by the results reported in 5.3.1 and 5.3.2. Fig-
ure 13b shows the trajectories of the robot with the skills on the pre-training environment 
for AntMaze with equal probability for 100 episodes. As seen in Fig. 13b, such skills have 
good coverage of goals in almost all directions. Besides, each skill evenly covers almost the 
same portion and no skill predominates the coverage of goals.

Fig. 14   Trajectories of pre-trained skills learned by SNN4HRL and EDL for AntMaze 

Fig. 15   a The dynamic weight � in OMEGA to trade-off the distributions of achieved goals and desired 
goals in the distributions of sub-goals throughout training on AntMaze. b Test success on the desired goal 
distribution and empirical entropy of the achieved goal distribution on AntMaze for OMEGA+GEAPS 
with the pre-trained skills resulting from different skill learning methods
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For comparison, we further illustrate the trajectories of pre-trained skills by SNN4HRL 
(Florensa et al., 2017) and EDL (Campos et al., 2020) on the same pre-training environ-
ment for AntMaze in Fig. 14. In contrast to the skills acquired by our method in Fig. 13b, 
it is evident from Fig. 14 that both SNN4HRL and EDL cover much smaller areas and leave 
numerous directions uncovered. In our experiment, we observe that the skills acquired by 
SNN4HRL appear unstable, highly depending on the random seeds.

To investigate the impact of pre-trained skills in our GEAPS, we employ the skills 
acquired by the different skill learning methods in OMEGA+GEAPS for performance 
evaluation on AntMaze. In OMEGA (Pitis et  al., 2020), the factor � calculated via 
Eq. 13 in Appendix 2 is inversely proportional to the KL divergence between the distribu-
tion of achieved goals pag and desired goals pdg and its value is capped at one. It serves 
as a dynamic weight to balance both distributions in a mixture distribution for sub-goal 
sampling and recalculated at the end of each episode. When the � reaches one, the agent 
only samples sub-goals from the desired goal distribution, which marks the end of explo-
ration about sub-goals other than desired goals. It is evident from Fig. 15a that the pre-
trained skills by our method allow for reaching � = 1 around 0.7 million steps, while the 
SNN4HRL skills have to take around one million steps and the EDL skills never lead to 
� = 1 . It is further observed from Fig. 15b that our skill learning objective results in earlier 
success on AntMaze; i.e., the agent with our skills starts to explore the desired goal dis-
tribution within 0.2 million steps, while the agents with the SNN4HRL and the EDL skills 
have to take around 0.5 million episodes and 0.3 million steps, respectively. In the later 
training stage, the agent with our skills maintains high success rates regardless of different 
random seeds. In contrast, the performance of the agents with the SNN4HRL and EDL 
skills is degraded substantially. Moreover, we observe that the agent with the EDL skills 
always fails to solve the AntMaze task. In summary, the above results suggest that our 
skill learning objective yields the quality skills required by our GEAPS.

6 � Discussion

In this section, we discuss the limitations/issues arising from our work and make a connec-
tion between our method and other related works.

While the advantages of our approach have been demonstrated, several limitations and 
open problems still remain. First, our approach relies on the pre-trained skills obtained by 
skill learning in the environments similar to a target task. Our approach will not work if 
such environments are unavailable. It is also worth stating that the skill learning incurs 
an additional computational overhead but is rewarded with great exploration efficiency 
in GCRL to accomplish a sparse-reward long-horizon task. Next, our theoretical analysis 
establishes the theoretical justification for the benefits of utilizing pre-trained skills and 
the effectiveness achieved through our exploration strategy under specific conditions. How-
ever, further theoretical analyses concerning broader conditions are still pending. Then, 
the environments used for evaluation have pre-defined yet well-behaved goal spaces and 
goals have to be in a vectorial form. It is unclear on whether our approach works in the 
same manner for various scenarios, e.g., an agent has to specify and model/learn its own 
goal space (Pong et al., 2020), and goals are in other forms (Liu et al., 2022), e.g., image 
and language goals. After that, all the baselines used in our experiments are sub-goal 
selection based GCRL algorithms (Liu et al., 2022). Without a considerable extra effort, 
our GEAPS method cannot be applied to other types of GCRL algorithms such as the 
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optimization-based and the relabelling GCRL algorithms (Liu et al., 2022) for goal explo-
ration augmentation. Finally, our approach is memoryless and thus treats both achieved and 
new goals to be explored equally during data rollout. Equipped with a memory mechanism, 
our approach would prevent any visited states from being revisited to further improve the 
exploration efficiency. With memory and proper pre-trained skills, an agent may accom-
plish new tasks via searching without any further learning.

It is well known that skills and options have been used in hierarchical reinforcement 
learning (HRL) for for exploration and task simplification (Sutton, 1998). However, in 
the context of GCRL, the direct applicability of pre-trained skills for goal attainment and 
maintenance is quite limited. This is due to the potential for overshooting goals or stochas-
tic reaching, as well as the narrow focus of skills on specific goals (Gehring et al., 2021). 
In contrast, our GEAPS method combines the benefits of pre-trained skills with the preci-
sion of primitive actions, aiming to enhance goal exploration and achieve goals effectively. 
Below, we summarize several key distinctions between our GEAPS method and existing 
works that utilize skills/options for exploration in HRL. First, our GEAPS expands the 
utilization of entropy maximization as a new learning objective in GCRL. By optimizing 
both achieved and prospective goals, our GEAPS enhances the efficiency of goal explora-
tion. We specifically emphasize goal exploration and incorporate goal-transition patterns 
into the learning process, enabling more effective exploration even in the absence of pre-
cise dynamic knowledge. To the best of our knowledge, these distinctive features cannot 
be found in existing works on HRL in the context of GCRL. Next, in HRL, a higher-level 
agent selects from these options, treating them as indivisible actions or atomic actions. 
Despite exploring goals while executing a skill, HRL often necessitates revisiting goals 
using more granular options. In contrast, the skills trained in our GEAPS maximize their 
exploration capabilities based on goal-transition patterns specific to GCRL, allowing for 
interactions with a broader array of goals during execution. Our method enhances the effi-
ciency of goal exploration and distinguishes our work from conventional HRL practices 
that prioritize re-engaging with the same set of goals. Even if the skills are pre-trained 
as sub-policies for specific sub-tasks in HRL (Gehring et  al., 2021), each skill tends to 
primarily focus on a single goal associated with one of the sub-tasks. During execution, 
this narrow focus can severely limit the skill’s ability to interact with a much wider range 
of goals that arise in GCRL. Then, distinct from the HRL approach, which typically pre-
sumes task decomposition through options, our method does not mandate the completion 
of tasks strictly through pre-trained skills. Rather, within the context of our GEAPS, these 
skills are intentionally trained to enhance their efficacy in goal exploration, drawing upon 
goal-transition patterns particular to GCRL. Pre-trained skills, developed with a focus on 
these specific goal-transition patterns, empower our GEAPS to foster efficient exploration. 
Our method aligns closely with the innate exploratory behaviors observed in humans and 
animals, thus encouraging more intuitive interactions with the environment. Finally, we 
acknowledge theoretical analyses on the exploration benefits of skills and options in HRL, 
such as the UCRL-SMDP framework (Fruit & Lazaric, 2017) that provides rigorous regret 
bounds for MDPs with options. However, the direct transfer of UCRL-SMDP to GCRL 
poses challenges due to disparities in reward mechanisms and the lack of historical data for 
novel goals. In contrast, our GEAPS addresses these challenges by efficiently navigating 
exploration in the absence of precise dynamic knowledge. While UCRL-SMDP may not 
directly aid in exploring unknown areas, a big challenge encountered in our work, it holds 
promise for enhancing policy optimization to efficiently reach already explored goals in the 
goal pursuit stage within the generic GCRL framework.
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7 � Conclusion

In this paper, we have proposed a novel learning objective that optimizes the entropy of 
both achieved and new goals in sub-goal selection based goal-conditioned reinforcement 
learning (GCRL). By optimizing this objective, we enhance the efficiency of goal explora-
tion in complex environments, ultimately improving the performance of GCRL algorithms.

Our method incorporates skill learning, where frequently occurring goal-transition pat-
terns are mined and composed into skills. These pre-trained skills are then utilized in goal 
exploration, allowing the agent to efficiently discover novel sub-goals. Through extensive 
evaluation on various sparse-reward long-horizon benchmark tasks and a theoretical analy-
sis, we have demonstrated that integrating our method into state-of-the-art GCRL baselines 
significantly enhances their exploration efficiency while maintaining or improving their 
performance. The results of our research highlight the importance of effective goal explo-
ration in addressing the challenges of sparse-reward long-horizon tasks. By augmenting 
the sub-goal section of GCRL models with our model-free goal exploration method, we 
achieve better coverage of the state space and improve sampling efficiency.

In our future work, there are several avenues for further investigation. First, we plan to 
conduct further theoretical analyses concerning broader conditions to gain deeper insights 
into the properties and guarantees of our proposed method. This will provide a solid foun-
dation for understanding its advantages, limitations and potential extensions. Additionally, 
we aim to explore the application of our method in domains with image data, where the 
state space is more complex and requires specialized techniques.

In conclusion, our work contributes to the advancement of goal-conditioned reinforce-
ment learning by offering an efficient goal exploration augmentation method. We believe 
that our research opens up new possibilities for addressing challenging sparse-reward long-
horizon tasks in complex environments.

Appendix 1: Proof of Propositions

In this appendix, we provide proofs for the propositions formulated in Sect. 4 of the main 
text.

Proposition 1  Let H�
ag
(G) represent the updated entropy of achieved goals following the 

goal exploration. This entropy is bounded from below by the sum of the weighted entropies 
of the original achieved goals and the goals encountered during goal exploration, namely, 
c Hag(G) and (1 − c) He(G) . That is,

Proof  We commence from the entropy definition of H�
ag
(G):

Applying Jensen’s inequality due to the concave property of entropy, we find:

H�
ag
(G) ≥ cHag(G) + (1 − c)He(G).

H�
ag
(G) = −(c pag(G) + (1 − c) pe(G)) log (c pag(G) + (1 − c) pe(G)).

H�
ag
(G) ≥ −c pag(G) log pag(G) − (1 − c) pe(G) log pe(G).
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Recognizing −c pag(G) log pag(G) as cHag(G) and −(1 − c) pe(G) log pe(G) as (1 − c)He(G) , 
we thus establish:

This completes the proof, demonstrating that the updated entropy H�
ag
(G) is bounded by the 

weighted sum of the original entropies.

Proposition 2  The optimal exploration policy leading to Ω∗ with the distribution pΩ∗ can be 
composed via a set of skills Z ( |Z| << |Ω∗|).

Proof  We can cluster |Ω∗| into |Z| clusters and each cluster is represented by a latent vector 
zzz ∼ Z . Then, we have the corresponding distributions related to zzz.

In the above expressions, 1(� ∈ zzz) denotes the indicator function, which equals 1 if � 
belongs to the cluster represented by z and 0 otherwise. In this setting, we can transform 
Ĥ∗

e
(G) with Eqs. 8 and 9 into

Although the mutual information term, I(Z;G) , may decrease, the conditional entropy term, 
H(G♣Z) , increases, maintaining the sum unchanged. For generating the optimal trajecto-
ries within each cluster, we can train a skill to produce those trajectories. The total number 
of such skills is |Z| and the condition |Z| << |Ω∗| can be fulfilled with appropriate clus-
tering. During exploration, each skill corresponding to zzz ∼ Z is sampled with probability 
p(zzz) . In the execution of each skill, the trajectory � is generated with probability p(�|zzz).

Proposition 3  Given the horizon T, every trajectory � can be decomposed into a sequence 
of goal-transition patterns.

Proof  Our proof initiates by deconstructing the trajectory � into two distinct sequences: 
the state sequence S� = (si)

T
i=0

 and the action sequence A� = (ai)
T−1
i=0

 . Upon acquiring S� , 
we derive the corresponding goal sequence G� = (�(si))

T
i=0

 . This goal sequence is subse-
quently partitioned into its maximal homogeneous segments, each embodying repetitions 
of a singular unique goal. The number of such segments is denoted as Ng(�) . For each 
of these segments, we annotate the specific goal and the time step of its first occurrence, 
denoted as ((gi, ti))

Ng(�)−1

i=0
 . Following this, we append the tuple (�(sT ), T) to the sequence, 

resulting in ((gi, ti))
Ng(�)

i=0
 . Consequently, the trajectory can be decomposed into a sequence 

of goal-transition patterns symbolized as {�i}
Ng(�)−1

i=0
 , where each pattern �i is defined as

H�
ag
(G) ≥ cHag(G) + (1 − c)He(G).

(8)p(zzz) =
∑

�∈Ω∗

pΩ∗(�)1(� ∈ zzz),

(9)p(�|zzz) =
pΩ∗(�)p(zzz|�)

p(z)
=

pΩ∗(�)1(� ∈ zzz)

p(zzz)
.

Ĥ∗
e
(G) = I(Z;G) + H(G♣Z).

�i = {s
agent

ti
, s

agent

ti+1
,Δ(gti , gti+1 ), (aj)

ti+1−1

j=ti
}.
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Proposition 4  Given an exploration horizon of Te , the substitution of goal-transition pat-
terns within each trajectory � ∈ Ω with alternative patterns of smaller cardinality can 
yield equivalent exploration outcomes using an average number of steps that is less than or 
equal to the specified Te.

Proof  For any trajectory � ∈ Ω , it can be decomposed into a sequence of goal-
transition patterns {�i}

Ng(�)−1

i=0
 as outlined in Proposition 3. There exists an alter-

native goal-transition pattern to �i for the transition Δ(gti , gti+1 ) as follows: 
∀�i ∈ {�i}

Ng(�)−1

i=0
,∃� = {s

agent

start , s
agent

end
,ΔG,ΔA} ∈ Ψ , where sagentstart = s

agent

ti
 , sagent

end
= s

agent

ti+1
 , 

ΔG = Δ(gti , gti+1 ) and |ΔA| ≤ ti+1 − ti . By substituting �i with the equivalent pattern 
necessitating the fewest steps, we can derive a new sequence of goal-transition patterns 
{𝜓̃i}

Ng(𝜏)−1

i=0
 such that 

∑Ng(𝜏)−1

i=0
�𝜓̃i� ≤ Te.

Appendix 2: Goal exploration

To facilitate the readability, we provide the further details omitted in Sect. 5 of the main text 
in this appendix, including the technical details of baselines and the state-of-the-art method 
LEXA explorer and the implementation details of baselines and LEXA explorer used in our 
experiments.

Technical details

Goal GAN

Goal GAN (Florensa et al., 2018) aims to select sub-goals of intermediate difficulties. 
Given the policy �k at iteration k and a goal g, we denote its expected return as Rg(�k) . 
Thus, the set of Goals of Intermediate Difficulty (GOID) is defined as follows:

where Rmin and Rmax are the minimum and maximum expected return of goals for the agent 
to pursue, respectively. Also, Rmin and Rmax can be interpreted as the minimum and maxi-
mum success rates of reaching a goal within T steps. To identify the goals of intermediate 
difficulties, we adopt the same method used in Pitis et al. (2020); i.e., a discriminator is 
trained to distinguish whether a behavioral goal can be achieved from a specific goal. Dur-
ing training, the start state and the behavioral goal of each trajectory are taken as input, 
and the binary target would be one only if the behavioral goal was achieved within the 
trajectory. During goal sampling, the initial state and goal candidates are fed to a trained 
discriminator as input, which predicts the success probability Rg(�k) of reaching each can-
didate. Based on the prediction, the agent can decide the GOID set to be sampled from. 
Then, the GOID is further ranked according to how far Rg(�k) is close to 0.5.

(10)GOIDk ≜ {g ∶ Rmin ≤ Rg(�k) ≤ Rmax},
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Skew‑fit

The key idea of Skew-Fit (Pong et al., 2020) is to increase the diversities of goals by 
maximising the entropy of achieved goals. Thus, Skew-Fit aims to train a generative 
model qG

�
 that achieves maximum entropy on all the goals. To ensure its entropy is 

monotonically improved, it proposes to skew the distribution via sampling importance 
resampling as follows:

Here, pG
�t

 is the unknown underlying distribution of goals to be achieved via the policy at 
the tth iteration of training the generative model and is estimated via the approximation 
pG
�t
≈ qG

�t
 . �1 ( 𝛼1 < 0 ) is used to balance the reliability of qG

�t
(S) and the speed to increase 

the entropy of goal distribution. Then q�t+1
 is trained to fit pskewedt , resulting in 

q�t+1
≈ pskewedt . At the (t + 1) th iteration, the goals can be sampled from pskewedt or q�t+1

.

OMEGA

Given a distribution of desired goals pdg , OMEGA (Pitis et al., 2020) aims at selecting 
a sub-goal that can minimize the KL divergence between pdg and the distribution of 
achieved goals pag.

The above original learning objective is ill-conditioned and not finite for a long-horizon 
task since pag and pdg do not overlap at the beginning. Therefore, this objective is amended 
via expanding the support of achieved goals to make Joriginal(pag) as soon as possible. It can 
be realized by the Maximum Entropy Goal Achievement (MEGA) objective that maximizes 
the entropy of achieved goals as follows:

where U(supp(pag)) denotes the uniform distribution on the support of pag . Compared to 
MEGA, OMEGA uses a mixture distribution p� = �pdg + (1 − �)U(supp(pag)) as the target 
in the optimization of KL divergence; i.e.,

The way to achieve � suggested in Pitis et al. (2020) is as follows:

where b ≤ 1 . To optimize the OMEGA objective, the agent would sample sub-goals from 
desired goals at �-probability and achieved goals at (1-�)-probability in the following way:

(11)pskewedt (g) ≜
1

Z�1

qG
�t
(g)�1�(g ∈ GB),

(12)Z�1 =
∑

g∈GB

qG
�t
(g)�1 (g), g

iid
∼ pG

�t
.

Joriginal(pag) = DKL(pdg||pag).

JMEGA(pag) = DKL(U(supp(pag))||pag).

J
OMEGA

(p
ag
) = D

KL
(p�||pag).

(13)� = 1∕max(b + DKL(pdg||pag), 1),
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LEXA explorer

LEXA (Mendonca et al., 2021) is a model-based reinforcement learning algorithm with 
two components: explorer and achiever. The explorer acts for active exploration and 
trained to explore curious states via a world model. The explorer is trained with unsu-
pervised rewards based on the disagreements of an ensemble of 1-step transition models 
that predict the next world model states from a current model state. The ensemble of the 
one-step models can be expressed as

where ẑm
t+1

 indicates the next model state predicted by model m in the ensemble of M mod-
els. Assume that there are D dimensions totally in the model state, the reward of state s is 
the averaged variance of the states predicted by the ensemble model across all dimensions:

(14)ĝ = arg minĝ∈Bpag(ĝ).

Ensemble: f (st, 𝜃
m) = ẑm

t+1
,m = 1…M,

Table 1   Hyperparamters in DDPG

Hyperparamter Value

Batch size 2000
Actor learning rate 1e−3

Critic learning rate 1e−3

Optimizer Kingma & Ba (2014)
Activation Hendrycks & Gimpel (2016)
Hidden layer sizes (actor and critic) (512, 512, 512)
Target network update proportion 0.05
Target network update frequency 40 steps
Initial random data collection 5000 steps
Epsilon for random exploration 0.1
Replay buffer size 5,000,000
Discount factor 0.98 (0.99 for AntMaze)

Table 2   Hyperparamters for 
different tasks

 Environment Hyperparameter Value

PointMaze Relabelling strategy rfaab_1_4_3_1_1
train every 1

AntMaze Relabelling strategy rfaab_1_4_3_1_1
train every 1

FetchPickAndPlace Relabelling strategy rfaab_1_5_2_1_1
train every 4

FetchStack2 Relabelling strategy rfaab_1_5_2_1_1
train every 10
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For the achiever, we used the rewards from the environment to replace the unsupervised 
rewards used in Mendonca et al. (2021) for fair comparison in exploration. The achiever in 
our experiments is trained via the standard GCSL (Ghosh et al., 2020) in the open-source 
code provided by the authors where DDPG is used in the baselines.

Implementation details

DDPG

All baselines are implemented on the basis of DDPG (Lillicrap et al., 2015). The details of 
relevant hyperparameters used in DDPG are listed in Table 1. The training frequency var-
ies over different tasks as reported in Table 2.

Relabelling techniques

During training, we adopt the same relabelling strategies ����� used in Pitis et  al. 
(2020): mixing different relabelling techniques real, future, actual, achieved 
and behavioral at a fixed ratio. Real stands for no relabelling. Future, actual, 
achieved, behavioral indicate relabelling with goals from future achieved goals in 
the belonging trajectories, all historically desired goals, all historically achieved goals and 
all historically behavioral goals, respectively. Their relative ratios are used to specify the 
specific technique. For example, rfaab_1_4_3_1_1 denote no relabelling on 10% data 
and relabelling 40% with future, 30% with achieved, 10% with actual goals and 
10% with behavioral. The relabelling strategies vary in different environments (see 
Table 2 for details).

Goal GAN

The neural network used as the discriminator has the same architecture as that of the critic 
in DDPG except that the sigmoid activation is used in the output layer. The discriminator 
is trained with a batch of 100 trajectories sampled from the 200 most recent ones for every 
250 steps. The Rmin and Rmax are set to 0.25 and 0.75, respectively.

SkewFit

Following the same settings in Skew-Fit (Pong et al., 2020), we empoly the �-VAE as the 
generative model. Both the encoder and decoder of �-VAE have two hidden layers with 
[400, 300] ReLU units. Its latent dimension size is set to be the same as the size of the goal 
in the environment. In �-VAE, we set � = 10 as 10 and the �1 = 2.5 in Eqs. 11 and 12. We 
set the batch size as 64 for training �-VAE and adopt the same training setting in Skew-Fit 
(Pong et al., 2020): training every 4000 steps for 1000 batches in the first 40,000 steps and 
every 4000 steps for 200 batches afterwards.

(15)re(st) =
1

D

D∑

d=1

Varm[f (st, �
m)]d.
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OMEGA

We adopt the same settings used in OMEGA (Pitis et  al., 2020) as follows. We set b in 
Eq. 13 to be −3.0. To approximate the probability pag(ĝ) for a given ĝ in Eq. 14, we use 
the kernel density estimator (KDE) (Rosenblatt, 1956) with 0.1 bandwidth and Gaussian 
kernel as our density model. We fit the KDE model to 10,000 normalized achieved goals 
sampled from the replay buffer for every optimization step.

LEXA

We adopt RSSM (Hafner et al., 2019) as the world model. There are three hidden layers 
with [128, 128, 64] with [400, 300] ReLU units in both the encoder and the decoder. The 
hidden layer size for the recurrent model is set to 128. The sizes of the deterministic state 
and stochastic state are 128 and 32, respectively. We use 10 one-step world models (i.e., M 
= 10) to construct an ensemble world model that calculates the exploration rewards speci-
fied in Eq.  15. Each component world model consists of four hidden layers where each 
hidden layer has 400 ELU units (Clevert et al., 2015). In the GCSL implementation, we use 
the same actor architecture and the same learning rate used in DDPG as shown in Table 1 
where only the future relabelling techniques are used during training.

Appendix 3: Skill learning

In this section, we provide the information on the main hyper-parameters used in our 
comparative study in skill learning.

SNN4HRL and ours

The skill policy network used in SNN4HRL (Florensa et al., 2017) has two hidden lay-
ers of 64 Tanh units. The policy network is trained with TRPO (Schulman et al., 2015) 
with learning rate 0.01 and batch size 50,000 for 300 iterations. For the reward compu-
tation, we discretize the goal space into grids of size 0.2 × 0.2 to calculate the rewards. 
Our skill learning method shares the same hyper-parameters with SNN4HRL methods 
except for the entropy term H⇐G♣Z⇒ weighted by 0.1.

EDL

EDL (Campos et  al., 2020) consists of state marginal matching (SMM) (Lee et  al. 
2019), VQ-VAE (Van Den  Oord et  al., 2017) and skill learning. We adopt the same 
hyper-parameters and learning methods used in the original square maze environments 
(Campos et al., 2020). Nevertheless, to adapt it to the Ant environments, we increase 
the environment steps per cycle to 30 and batch size to 1024 in SMM and set the num-
ber of epochs as 100 for VQ-VAE training and the number of rollouts per cycle as 6. 
Finally, the training epochs for skill training is set to 10.
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