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Abstract

Reinforcement learning often struggles to accomplish a sparse-reward long-horizon task
in a complex environment. Goal-conditioned reinforcement learning (GCRL) has been
employed to tackle this difficult problem via a curriculum of easy-to-reach sub-goals. In
GCRL, exploring novel sub-goals is essential for the agent to ultimately find the pathway
to the desired goal. How to explore novel sub-goals efficiently is one of the most chal-
lenging issues in GCRL. Several goal exploration methods have been proposed to address
this issue but still struggle to find the desired goals efficiently. In this paper, we propose a
novel learning objective by optimizing the entropy of both achieved and new goals to be
explored for more efficient goal exploration in sub-goal selection based GCRL. To opti-
mize this objective, we first explore and exploit the frequently occurring goal-transition
patterns mined in the environments similar to the current task to compose skills via skill
learning. Then, the pre-trained skills are applied in goal exploration with theoretical justifi-
cation. Evaluation on a variety of spare-reward long-horizon benchmark tasks suggests that
incorporating our method into several state-of-the-art GCRL baselines significantly boosts
their exploration efficiency while improving or maintaining their performance.
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1 Introduction

Reinforcement learning (RL) has successfully solved some complex problems, e.g., board
games (Silver et al., 2017), protein prediction Jumper et al. (2021) and robotic locomotion
tasks (Levine et al., 2016), where rewards as supervision signals play a crucial role in the
learning process. Generally, it is possible to solve most if not all tasks via RL as long as the
rewards are designed properly (Silver et al., 2021). In contrast to non-trivial reward design
principles, setting valuable rewards only for states that reach the desired goals is easier and
can generalize across different tasks. Those tasks therefore can be easily framed as goal-condi-
tioned reinforcement learning (GCRL) problems to target at reaching the desired goals. How-
ever, the simple reward design also makes it extremely hard for RL to learn how to reach the
goals as it is hard for the agent to explore them to obtain valuable rewards for learning. The
problems have become more severe in long-horizon tasks where the goals are only reachable
beyond a long-horizon. Thus, under the sparse-reward design, how to explore the goals effi-
ciently in long-horizon tasks remains a key problem for the wider applications of RL.

In sparse-reward long-horizon GCRL tasks, instead of directly targeting at the desired
goals, the agent often learns to reach an implicit curriculum of sub-goals that are easier to
reach and help the agent to discover the pathway to the desired goals. Following the curricu-
lum, the agent gradually expands its reachable sub-goals to cover the desired goals. In the
process, the efficiency of exploring new sub-goals for the agent to learn is essential for discov-
ering the desired goals efficiently. Several strategies have been proposed to explore new sub-
goals efficiently (Florensa et al., 2018; Pong et al., 2020; Pitis et al., 2020; Mendonca et al.,
2021; Liu et al., 2022). However, there still exists a large gap to the level of efficiency required
by wider RL applications.

The efficient exploration of human beings often establishes on various patterns in
the interactions with the environment. Even a baby would master how to explore the
room more efficiently via crawling, a kind of behavior patterns that enables the baby
to move to nearby positions. We hypothesize that a key component for efficient goal
exploration is to utilize the behavior patterns of the agent transitioned to goals nearby,
like the baby crawling. However, existing GCRL strategies do not take such kind of
patterns into consideration. In our work, we learn such kind of behavior patterns in
the form of skills (Florensa et al., 2017; Eysenbach et al., 2018) that are pre-trained
on the environments of the properties shared by downstream tasks. Each skill corre-
sponds to an individual policy for the agent to conduct specific behavior patterns. The
agent is trained in the pre-training environments to visit a set of different nearby goals
following each skill and those skills are transferred to downstream tasks for more
efficient exploration. From the viewpoint of exploration, we are interested in behavior
patterns that visit goals as widely as possible as it tends to discover more novel goals.
Thus, we propose a maximum entropy objective on the distribution of achieved goals
induced by following those skills.

Our main contributions are summarized as follows: (1) We propose a maximum
entropy goal exploration method, goal exploration augmentation via pre-trained
skills (GEAPS), to augment exploration in GCRL. (2) We introduce the entropy of
goals in skill learning, which stabilizes skill learning and helps the agent gain more
efficiency in goal exploration on challenging downstream tasks. Furthermore, we
conduct a theoretical analysis of this entropy-based skill learning method. (3) We pro-
vide theoretical analyses for the benefits of utilizing pre-trained skills and the effec-
tiveness achieved through our exploration strategy under specific conditions. (4) We
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demonstrate that incorporating our GEAPS algorithm into the state-of-the-art GCRL
methods boosts their exploration efficiency for several sparse-reward long-horizon
benchmark tasks.

2 Related work

Exploration for New Goals. Using uniformly sampled actions, like e-greedy algorithm,
and introducing noises to policy actions are common strategies for exploration in RL.
However, they are not sufficient to solve sparse-reward and long-horizon tasks. Different
goal exploration methods have been proposed to accomplish those challenging tasks. A
class of methods focus on a sub-goal selection strategy that helps with better goal explo-
ration. Skew-Fit (Pong et al., 2020) samples sub-goals from a skewed distribution that is
approximately uniform over historical achieved goals, and OMEGA (Pitis et al., 2020)
selects sub-goals by maximizing the entropy of achieved goals from low-density regions.
Goal GAN (Florensa et al., 2018) and the AMIGO (Campero et al., 2020) select sub-
goals of intermediate difficulties that prevent the agent from getting trapped in too easy
tasks and avoiding too difficult ones. By and large, however, such methods still rely on
uniformly sampled actions and action noise to find new goals while pursuing sub-goals,
which restricts the goal exploration to neighboring states along the trajectory to the sub-
goal. To overcome this limitation, Pitis et al. (2020), Hoang et al. (2021) and Hartikainen
et al. (2020) additionally explore goals via random actions after reaching the specific sub-
goal, which gives the agent larger freedom to explore beyond the sub-goal. Nevertheless,
random actions do not involve any learned knowledge about tasks other than the action
space, which restricts them from exploring a wide range of goals. In contrast, we involve
behavior patterns transitioned to nearby goals in the form of skills pre-trained in similar
tasks. The pre-trained skills enable transition to nearby goals quicker so that a wider range
of goals can be explored within the same time steps. As a model-based method, LEXA
(Mendonca et al., 2021) trains an exploration policy in a world model of the environment
to discover novel goals and perform exploration via the trained exploration policy in the
environment. However, a notable lack of experiences around the novel goals makes the
simulated dynamics inaccurate around them. The inaccurate simulated dynamics also pre-
vent the exploration policy from exploring a wider range of novel goals. As a model-free
method, our method does not rely on the exact dynamics around the novel goals. Instead,
we explore new goals with the behavior patterns transitioned to nearby goals to increase
the chance for the agent to reach the nearby goals faster than those methods without any
knowledge of goal transition.

Skill Learning. To learn the behavioral patterns transitioned to nearby goals, we per-
form skill learning in pre-training environments with each skill learning to reach a differ-
ent set of goals. To achieve this, a well-known idea is to maximize the mutual information
between skills and the goals that are going to be visited, which can be expressed as follows:

1(G:2) = H(Z) — H(Z|9) (1a)

=H(G) - H(G|2) (1b)

where G is the goal space and Z denotes the latent space of the skill policy where each
skill is represented by the skill policy conditioned on an individual latent vector. As the
state itself can be considered as a goal, we would review the related works below in terms
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Fig.1 A generic goal-conditioned reinforcement learning (GCRL) framework for long-horizon and sparse-
reward tasks

of goals for simplicity. With Eq. 1a, SNN4HRL (Florensa et al., 2017) and DIYAN (Eysen-
bach et al., 2018) learn skills by fixing the distribution of latent vectors and minimizing the
conditional entropy H(Z|G). DADS (Sharma et al., 2019) estimates H(G) and H(G| Z) with
the help of a skill-dynamics model and learns the skills via Eq. 1b. However, their learned
skills can cover only a small portion of reachable goals due to the fact that mutual informa-
tion may have many optima and covering more goals does not necessarily contribute to
higher mutual information. EDL (Campos et al., 2020) explores the goal space at first, then
encode those goals into discrete latent vectors Z via a trained VQ-VAE (Van Den Oord
et al., 2017), and finally learn each skill from the rewards based on the likelihoods of the
achieved goals that are predicted by the VQ-VAE decoder. Though the skills learned via
EDL can reach goals further away, they are not optimized to reach all reachable goals.
As the pre-training environments do not reveal the exact structures of downstream tasks,
some behavioral patterns transitioned to nearby goals may not work out as expected. Thus,
we expect the learned behavioral patterns to support as many transitions to nearby goals
as possible so that they can be more robust to different situations in downstream tasks.
To achieve this, we introduce an alternative objective for skill learning based on mutual
information maximization. The maximized entropy of goals ensures that skills can reach a
wider range of nearby goals and avoid bad local optima in goal covering. as demonstrated
in our experiments reported in Sect. 5.3.4.

3 Preliminary

While traditional reinforcement learning is often modeled as a Markov decision process
(MDP), GCRL augments the MDP with a goal state to form goal-augmented MDP (GA-
MDP) (Schaul et al., 2015). A GA-MDP MY is denoted by atuple (S, A, 7,G,r,7, ¢,pdg, T)
where S, A, y, T are state space, action space, discount factor and the horizon, respectively.
T: SX AX S — [0,1]is the transition function, G is the goal space, p,, is the desired goal
distribution and ¢ : S — G is a tractable mapping function that maps a state to its cor-
responding achieved goal. The reward function r : Sx G X A — R provides the learning
signals for the agent, but valuable rewards can only be obtained when the agent reaches
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the desired goals in the sparse-reward setting. GCRL requires the agent to learn a policy
7 : SXGXx A - [0,1]to maximize the expected cumulative return:

T

JE) =B gty ~ x5y 8) Z,y (5. ;. 8)].

S ~ 1Clspa,)

In GCRL', the agent makes actions either in pursuit of a goal or trying to explore more
goals. As depicted in Fig. 1, we divide the entire interaction process in an iteration into
goal pursuit and goal exploration, depending on whether the decision policies are con-
ditioned on goals. During policy training in the kth iteration, let 7r , m; and z} denote the
policy deciding a behavioral goal for an agent to pursue, the goal- condltloned policy for
the agent to achieve a goal and the exploration policy for the agent to explore new goals,
respectively. Before goal pursuit, a goal g, will be sampled from n,f(g), 8~ ;r,f(g). During
goal pursuit, the agent takes an action a, ~ 7 (s, §;) at each time step 7 until 7;, < T'. For
clarity, T} refers to the number of steps required to reach the goal g, at iteration k in goal
pursuit. In the goal exploration process, the agent takes actions a, ~ z;(s,) until 7} < T. To
make the best use of interaction steps, we perform goal exploration subsequently after the
agent achieves the goal during goal-pursuit (Pitis et al., 2020; Hoang et al., 2021; Harti-
kainen et al., 2020) instead of conducting goal exploration separately. Thus, the total steps
in iteration k is T = T; + T}, meaning that the number of steps taken for goal exploration,
T}, depend on T} in iteration k. The data collected from both goal pursuit and exploration
are stored in the replay buffer B, at iteration k. In the (k+1)th iteration, ﬂ'k, 7rk, 7rk would
be updated to 77.'k 1> Treprs Trppo Tespectively, based on the training data in the current replay
buffer B,. Then, the updated policies will be used in the new round of data collection. Fur-
thermore, we denote the achieved goals as the set G : {¢(s)|s € B, }. their distribution in
the goal space G as p,, (G) and their entropy as H,, ,(9) at iteration k. To simplify the pres-
entation, we shall drop off the explicit iteration index, k, from the subscript of the above
notation in the rest of the paper.

4 Method

In this section, we propose a new learning objective for goal exploration, then present skill
learning via the goal-transition patterns to optimize our learning objective, which leads to
our GEAPS algorithm.

4.1 Learning objective for goal exploration

Unlike the previous works reviewed in Sect. 2, we focus on the goal exploration associated
with goal-independent behavior. As it is hard to directly explore desired goals in long-hori-
zon and sparse-reward tasks, a well-known learning objective is to maximize the entropy of
historical achieved goal H(G). OMEGA (Pitis et al., 2020) has shown how to optimize the
entropy of already achieved goals, H,,(G), in the goal pursuit process. We make a step for-
ward by analyzing how to further optimize H,,(G) via goal exploration immediately after

! Some GCRL methods may not have all the components in the generic framework shown in Fig. 1.
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goal pursuit in each trial. Let p,(G) and H,(G) denote the distribution of goals encountered
in goal exploration and its entropy, respectively. In the goal exploration process starting
with the initial state 302 and going through 7 transitions, we have
] Te-1 i
pelso) = = X [1PGuils, adz@ls) 1@, = ). @)

i=0 =0

After goal exploration (c.f. Fig. 1), the updated distribution of achieved goals p; g(g) is a
weighted mixture distribution of pag(g) and p,(G) as follows:

p;g(g) = cpag(g) + (1 - C)pe(g)’

|BJ+T¢
|Bl+Te+Te
To develop our learning objective for goal exploration augmentation, we formulate a
proposition as follows:

where ¢ =

and | B|is the size of the current replay buffer.

Proposition 1 Let H! g(g) represent the updated entropy of achieved goals following the
goal exploration. This entropy is bounded from below by the sum of the weighted entropies
of the original achieved goals and the goals encountered during goal exploration, namely,
¢ H,(G) and (1 — ¢) H,(G). That is,

H! (9) > cH,y(©) + (1 - OH,(O). 3)

The proof of Proposition 1 can be found in Appendix 1. According to Eq. 3, an increase
in H,,(G) and H,(G) elevates the lower bound of the resulting entropy H; g(g). As the
OMEGA (Pitis et al., 2020) asserts, Hag(g) can be maximized by selecting low-density
goals as sub-goals. However, optimizing H,(G) is challenging due to the agent’s limited
understanding of new sub-goal dynamics, which may necessitate arbitrary exploration.

Despite unknown dynamics, we observe that overlapping elements may exist between
the agent’s transition mechanisms and a pre-training environment. These shared features
form goal-transition patterns, beneficial for exploring unfamiliar goals. When all goal-tran-
sition patterns are available in a new sub-goal, the generic entropy of explored goals H,(G)
is denoted by H,(G). To optimize H,(G), an exploration policy must aim to visit as many
goals as feasible within a given time frame, while avoiding revisits and maintaining sto-
chasticity. Backed by theoretical justification presented in Sect. 4.5.1, we suggest develop-
ing an exploration policy based on an array of stochastic pre-trained skills. Each skill tar-
gets a maximum set of sub-goals, leading to a maximized I:IL,(Q). Although this assumption
may not apply during actual exploration, I:Ie(g) still acts as an upper bound of H,(G) even
though missing goal-transition patterns lead to failed transitions. Hence, enhancing H (D)
could significantly improve the agent’s exploration efficiency.

4.2 Skill acquisition

For a given environment, optimizing our learning objective in Eq. 3 leads to the maximum
entropy of goals to be explored in goal exploration (c.f. Fig. 1). However, the exact dynamics

2 To simplify the notation, we designate the state, sre, reached by the goal pursuit after 7° transitions as the
initial state, s, that triggers the goal exploration process (see Sect. 3 and Fig. 1 for clarity).
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around the current state is often unknown, hence it is infeasible to directly maximize the
entropy of goals to be explored via p,(G) in Eq. 2. Fortunately, this issue can be addressed
with the auxiliary information named goal-transition patterns. A goal transition always has
a starting goal g, and an end goal g, but goal transitions of the same g, and g, may involve
different intermediate states. Here, we define a goal-transition pattern as a goal transition
process that can transit across different states with actions but preserves the same properties
independent of g, and g, in the goal space G. It is analogous to image recognition where an
object’s identity is independent of its location in the image. Exploring with a goal-transition
pattern from a state tends to make the changes specified by the pattern via goal-independent
actions in G. Goal-transition patterns enable planning in G to avoid the canceling-out effect of
different actions used for goal exploration. Composing a set of frequently occurring inherent
goal-transition patterns, named skills, in a manner that maximizes the entropy of goals to be
explored enables an agent to expand its achieved goal space more efficiently for better goal
covering. Such skills can be learned via another policy as described below.

Although we cannot find all the frequently occurring goal-transition patterns without tra-
versing the entire environment, we observe that there are many goal-transition patterns in
common that can be mined from similar environments via pre-training. A pre-training envi-
ronment should share both the same agent space S (Florensa et al., 2017; Konidaris &
Barto, 2007) and the same goal space G with the current task. The agent space S is simply
a shared subspace of the state space S and semantically the same across a collection of rel-
evant tasks. S generally does not convey goal information since the transition dynamics
in their goal spaces often differ on the pre-training tasks. In our work, S needs to be inde-
pendent of the goal space G of any tasks. Thus, the goal-transition patterns can be transferred
to a GCRL task within $*¢" via learned policies that execute the inherent goal-transition pat-
terns mined in the pre-training environments. As our ultimate goal is to learn the composition
of goal-transition patterns or skills, we can directly learn another policy that maximizes the
expected entropy of goals to be explored in the pre-training environments without modeling
the behavior for each goal-transition pattern explicitly. Thus, the behavior of frequently occur-
ring goal-transition patterns is automatically encoded by the policy via learning. We formulate
such policy learning as a skill learning process.

4.3 Skill learning

We denote a skill by a latent vector z, the set of all the pre-trained skills by Z, and the cor-
responding multi-modal skill policy by z;. For each skill, 7> would select an action
a, ~ m(a,|s’*", z). To learn a set of diverse skills, we formulate its learning objective as
the mutual information between the skills and the goals conditioned on initial goal states by
Eqgs. 1a and 1b. However, previous skill learning methods often fail to learn a wide coverage
of goals, which is attributed to the fact that there exist many optima in the mutual information
function and covering more goals does not always lead to higher mutual information. With-
out loss of generality, we assume both the goal space G and the latent space Z for skills are
discrete and it is common to have |G| > | Z|. Even when the mutual information 7(G;Z) has
been maximized to be log| Z| via Eq. 1a, the entropy of goals H(G) can still vary from log| Z|
to log|G|. When H(G) takes low values, the goal coverage appears poor, which motivates us to
develop an alternative skill learning strategy.

Unlike the prior skill learning works, e.g., SNN4HRL (Florensa et al., 2017) and DIAYN
(Eysenbach et al., 2018), we want a diverse set of skills by maximizing both I(Z, G) and H(G).
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In our work, we do not maximize H(G) directly but H(G& Z) instead given the fact that when
I(Z, G) is maximized, Eq. 1b leads to
H(G) =1(2,9)+ H(G|2)

=H(2)-H(Z|9)+ H(G|2) @

= E, ,[log p(z|g) — log p(z) — log p(glz)].
In the skill learning process, however, we still cannot obtain the exact p(z|g) and p(g|z) that
requires integration over all reachable goals and skills. We approximate p(z|g) and p(g|z)
with ¢(z|g) and g(g|z) by using the Monte Carlo method. Motivated by the previous works

(Florensa et al., 2017; Eysenbach et al., 2018), we set the reward for mutual information
maximization as

ri(s;a,) = log q(zl¢(s,) — log p(2). 5

To maximize the entropy of H(G|2), the distribution p(g|z) is expected to be as uniform as
possible. Thus, we design the reward as follows:

(s, a,) = log[max,q(212) — q(d(s,y,)12)]. (6)

Here, we encourage visiting those goals less explored. Thus, it will converge when the
distribution of goals to be explored are uniform. Combining the rewards specified in Egs. 5
and 6, we achieve the pseudo reward for our skill training as follows:

rz(st’ a,) = I’i(s,, a)+ ﬂrf(st’ a,). @)

where § is a coefficient to trade-off between r/ and r/.

In GCRL, transitioning between goals g and g/ is often represented as g = g + A(g, '),
where AG = A(g, g') signifies the desired goal transition. To optimize He(g), we actually
learn the skills by maximizing H(AG) in a pre-training environment.

Algorithm 1 Goal Exploration Augmentation via Pre-trained Skills (GEAPS)

Given: Skill space Z, pre-trained skill policy mz, initial state for goal
exploration s, skill horizon T, goal exploraton horizon T¢, replay buffer B.

1: procedure GEAPS

2 while t < T° do

3 if ¢ mod T° = 0 then

4 sample a skill z ~ p(z|s;)

5: end if

6 sample the action a; ~ mz (579", 2)

7 st+1 ~ T (st41]st,ar)

8 t—t+1

9: save (s¢, at, Sty1,9) in replay buffer B.
10: end while

11: end procedure
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4.4 Goal exploration augmentation strategy

The trained skill policy is used in z, for goal exploration (c.f. Fig. 1). During goal explo-
ration, goal-transition patterns are not available in all states, hence sometimes the desired
transition of skills are unreachable. Thus, we switch a skill in every 7° (T° < T°) steps. We
summarize our GEAPS algorithm in Algorithm 1 that enables the trained skills 7 to be
used for formulating an exploration policy x, during goal exploration.

As depicted in Fig. 1, our GEAPS algorithm can be easily incorporated into the generic
GCRL framework to improve exploration efficiency. In the goal pursuit process, an exist-
ing GCRL algorithm, e.g., Goal GAN (Florensa et al., 2018), Skew-Fit (Pong et al., 2020),
or OMEGA (Pitis et al., 2020), used in our experiments, is employed to learn a policy, n]f s
for an agent to decide a behavioral goal to pursue and a goal-conditioned policy, x;, for an
agent to achieve a goal. After the kth round of goal pursuit is completed, our GEAPS algo-
rithm is invoked in the goal exploration stage to construct an exploration policy, x}, for the
agent to explore new goals. Alternating the goal pursuit and exploration processes makes
the two algorithms reach a synergy to solve a sparse-reward long-horizon reinforcement
learning task.

4.5 Theoretical analysis

In this subsection, we provide theoretical analyses concerning our entropy-maximization-
based methods for skill learning and goal exploration. The proofs of those propositions can
be found in Appendix 1.

4.5.1 On the role of skill composition in learning optimal exploration policy

Under the exploration policy 7¢, we characterize Q as the set of all possible trajectories
encompassed within the exploration horizon 7¢. Each exploration trajectory, represented
by 7, conforms to the distribution portrayed by r ~ p(€2). Consequently, the entropy He(g)
can be articulated as the sum of the mutual information /(Q;G) and the conditional entropy
H(G|Q). This can be represented mathematically as follows:

H,0) = I(Q:0) + HGIQ).

To maximize the mutual information 7(€;G), we strive for each trajectory to cover a dis-
tinct subset of goals. With respect to optimizing H(G|2), we aim for each trajectory to visit
as many goals as feasible, maintaining uniform probability for visiting each goal within its
respective subset. In exploration scenarios deploying uniform primitive actions, each tra-
jectory bears an equivalent likelihood ﬁ of being generated. It is crucial to note that some
trajectories may be limited to a single goal, whereas a specific goal could be visited by
numerous trajectories.

For the optimal exploration policy, we denote the set of trajectories following the policy
as Q* C Q, with their corresponding distribution represented as po.. Consequently, this
optimal exploration policy culminates in the optimal entropy of prospective goals, denoted
by IT:I;k (9), as given as follows:
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HY(G) = I(Q":0) + H(G|Q).

However, directly optimizing the exploration policy within the trajectory space Q to obtain
Q* and pg. poses significant computational challenges. This complexity primarily arises
from the exponential growth in the size of |Q| = |.A|™" as a function of T¢. This difficulty is
further compounded by the potential continuity of the action space. To mitigate these chal-
lenges, we consider the prospect of simplifying the optimization problem.

Proposition 2 The optimal exploration policy leading to Q* with the distribution pq. can be
composed via a set of skills Z (| Z] << |Q*)).

Following this proposition, we firmly advocate the prospect of pre-trained skills as a viable
mechanism for acquiring optimal settings. This approach offers a captivating alternative to the
direct optimization method, providing promising opportunities for efficient exploration.

4.5.2 On the role of pre-trained skills in improving exploration efficiency

In a given environment, the occurrence of a goal-transition AG can be recurrent, and
this repetitiveness is evident through various distinctive goal-transition patterns. To
systematically understand these patterns, we formulate a goal-transition pattern as
w = {sior s AG, AA}. Within this formulation, sy, and 5?9, which belong to the
agent state space S*", are the initial and terminal states of the agent for the goal-transition
AG, respectively. AA denotes a sequence of actions that result in the accomplishment of AG.
The term |AA| signifies the length of the action sequence AA, and the cardinality of y is
denoted by |y/| = |AA|. The entirety of existing goal-transition patterns is symbolized by .

‘We now delve into an analysis of how goal-transition patterns can enhance exploration effi-
ciency. Under the assumption that all goal-transition patterns in the pre-training environment
are accessible, we aim to optimize I:Ie(g). Our initial focus lies on discerning the associations
between these goal-transition patterns and individual episodes.

Proposition 3 Given the horizon T, every trajectory v can be decomposed into a sequence
of goal-transition patterns.

With the established connection between each trajectory and its corresponding goal-tran-
sition patterns in Proposition 3, we proceed to analyze the potential of enhancing exploration
efficiency based on the goal-transition decomposition of each trajectory.

Proposition 4 Given an exploration horizon of T¢, the substitution of goal-transition pat-
terns within each trajectory © € Q with alternative patterns of smaller cardinality can
vield equivalent exploration outcomes using an average number of steps that is less than or
equal to the specified T¢.

Proposition 4 presents a potential avenue for enhancing exploration efficiency over the
exploration policy that relies on uniform primitive actions. In a practical scenario, goal-
transition patterns of different cardinality coexist for the same goal transition, so the employ-
ment of goal-transition patterns typically results in a requirement for fewer time steps than 7°.

@ Springer



Machine Learning (2024) 113:2527-2557 2537

PointMaze AntMaze

] ]

U

.
jFTL
I_F!j |

FetchPickAndPlace FetchStack2

L

Fig.2 Four sparse-reward and long-horizon benchmark tasks

Furthermore, the skill learning methodologies described in Sects. 4.2 and 4.3 are designed
to exploit the potential of goal-transition patterns, thereby further improving the exploration
efficiency.

5 Experiment
In this section, we evaluate the advantage of our GEAPS in terms of success rate and sam-
pling efficiency on a set of sparse-reward and long-horizon GCRL benchmark tasks and

demonstrate the effectiveness of our pre-trained skills in our GEAPS algorithm via a com-
parative study.
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5.1 Environments and baselines
5.1.1 Environments

As shown in Fig. 2, we select four common long-horizon and sparse reward environ-
ments in our experiments. (i) PointMaze (Pitis et al., 2020; Trott et al., 2019): a 2-D
maze task that a point navigates through a 10x10 maze from the bottom left corner to
the top right one. Its observation is a two-dimensional vector indicating its position in
the maze. The agent may be easily trapped in somewhere with dead ends hence hardly
exploring new goals. (ii) AntMaze (Pitis et al., 2020; Trott et al., 2019): a robotic loco-
motion task that controls a 3-D four-legged robot through a long U-shaped hallway to
reach the desired goal position. Its thirty-dimensional observation includes the robot’s
status and its location. The agent can only move in a slow and jittery manner, hence
it is hard to explore new goals and learn goal-reaching behavior. (iii) FetchPick-
AndPlace (Plappert et al., 2018): a robot arm task where a robot arm grasps a box
and moves it to a target position. The agent observes the positions of both gripper and
target box as a 30-D vector, and its goal is a 3-D vector about the target position for
the box. Another robot arm task, FetchStack?2 (Nair et al., 2018), aims to stack two
boxes at a target location, requiring the agent to move them to target positions in order.
Its observation and goal are 40-D and 6-D, respectively. The agent receives no reward
until placing both boxes in the correct positions, and involving two boxes makes it more
difficult to explore desired goals. Reaching the desired goals once on PointMaze and
AntMaze is considered as a success, while the agent is only considered to succeed
on FetchPickAndPlace and FetchStack?2 if it still satisfies the conditions of
desired goals at the end of episodes.

5.1.2 Baselines

(i) Goal GAN (Florensa et al., 2018): a typical heuristic-driven method where the inter-
mediate difficulty is used as a heuristic to select sub-goals via a generative model. (ii)
Skew-Fit (Pong et al., 2020): an effective exploration-based method where sub-goals are
generated via sampling from a learnt skewed distribution that is approximately uniform
on achieved goals. (iii) OMEGA (Pitis et al., 2020): yet another effective exploration-
based method where sub-goals are generated via sampling from the low-density region
of an achieved goal distribution. While our GEAPS algorithm is applied to the above
baselines to augment their goal exploration, we also compare three augmented GCRL
models to the state-of-the-art (SOTA) model-based exploration in LEXA (Mendonca
et al., 2021) of which explorer can augment suitable baselines, e.g., GCSL (Ghosh et al.,
2020) and DDPG (Lillicrap et al., 2015).

5.2 Experimental settings and implementation

5.2.1 Experimental settings

Our experiments study the following questions: (Q1) How much is the sampling effi-
ciency gained when our GEAPS is incorporated into a baseline on the condition that
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Fig.3 a Four typical pre-training environments for PointMaze. b The pre-training environment for
AntMaze

its performance is maintained or even improved? (Q2) What are the behavioral changes
resulting from incorporating our GEAPS into a baseline? (Q3) Can our augmented mod-
els reach the performance yielded by compared to the model-based SOTA exploration
in LEXA (Mendonca et al., 2021)? (Q4) What are the pre-trained skills resulting from
our skill learning objective in contrast to those generated by the established skill learn-
ing methods such as SNN4HRL (Florensa et al., 2017) and EDL (Campos et al., 2020)?

For each baseline, we apply our GEAPS in goal exploration by keeping its original
settings unchanged. Thus, we achieve three augmented models: Goal GAN+GEAPS,
Skew-Fit+GEAPS and OMEGA+GEAPS, corresponding to three baselines. Five trials
with different random seeds in each environment are conducted for reliability. Evalu-
ation is made with a fixed budget; i.e., the training will be terminated after a (pre-set)
number of steps if an agent still fails to reach the ultimate goals. The performances are
evaluated in terms of the success rate, the most important performance evaluation crite-
rion in reinforcement learning, and the entropy of achieved goals, a widely used evalua-
tion criterion on sampling efficiency in GCRL.

5.2.2 Pre-training settings

(i) PointMaze: We generate 20 small 5X5 small mazes as pre-training environments,
which include various topographies. In each episode, the agent is initialized in a random
position of the central grid. In Fig. 3a, we exemplify four typical pre-training environ-
ments. The observation for the skill policy is the relative position with regard to the grid
where the agent is located. We pre-train the skills of horizon two over those mazes via
maximizing the average cumulative return averaging over the learning objective. (ii) Ant—
Maze: We pre-train the skills on the Ant environment as shown in Fig. 3b, which keeps
the same 3-D four-legged robots in an open environment and sets the skill horizon as 100.
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Fig.4 Test success on the desired goal distribution throughout training on four environments for the base-
lines and the augmented models

(iii) FetchPickAndPlace and FetchStack?2: The goals of two robot arm tasks are
defined as the target positions of the relevant objects. Achieving a sub-goal during goal
pursuit, typically inferred when the arm continues to hold the object, provides the basis for
subsequent skill development. Consequently, each skill is deliberately handcrafted to direct
the object along a random trajectory within a predetermined range, ensuring that collec-
tively, the skills span all possible directions. This strategy guarantees an equal likelihood of
encountering all potential goals within the boundary established by the exploration horizon
T

5.2.3 Implementation

Our GEAPS is implemented with the mr1 :modular RL codebase (Pitis et al., 2020) and
all the baselines adopt DDPG (Lillicrap et al., 2015) to train goal-conditioned behavior.®
For three baselines (Florensa et al., 2018; Pong et al., 2020; Pitis et al., 2020), we use the
source code provided by the authors and strictly adhere to their instructions in our experi-
ments. LEXA is composed of a model-based exploration policy and a model-based goal-
conditioned policy. As our focus is goal exploration, we use its exploration policy only
and adopt model-free goal-conditioned policies optimized via GCSL (Ghosh et al., 2020)
and DDPG (Lillicrap et al., 2015) for a fair comparison. To obtain the pre-trained skills
for PointMaze and AntMaze, we use a multi-layer perceptron trained with the TRPO
(Schulman et al., 2015) for stability in skill learning, while the skills for two robot arm
tasks are handcrafted as moving along a direction sampled uniformly in various ranges. To
pre-train the skills, we fix # = 0.11in Eq. 7 for all our experiments. For goal exploration, we
set the skill horizon T° as 2, 25, 8 and 5 for PointMaze, AntMaze, FetchPickAnd-
Place and FetchStack2, respectively.

Appendixes 2 and 3 describe more technical and implementation details regarding the
baselines and the skill learning used in our comparative study.

5.3 Experimental results

We report the main experimental results to provide the answers to four questions posed in
Sect. 5.2.1.

3 The code is available at: https:/github.com/GEAPS/GEAPS.
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Fig.5 Empirical entropy of the achieved goal distribution throughout training on four environments for the
baselines and the augmented models

5.3.1 Results on goal exploration augmentation

To answer the first question, we report the results yielded by the baselines and their cor-
responding augmented models to gauge the gain made by our GEAPS. In our experiments,
we terminate the training at one million steps for PointMaze, two million steps for
FetchPickAndPlace, three million steps for AntMaze and FetchStack?2. An epi-
sode consists of 50 steps for PointMaze, FetchPickAndPlace and FetchStack?
and 500 steps for AntMaze, respectively. We report statistics (mean and standard devia-
tion) over five seeds in each environment.

As shown in Fig. 4, our GEAPS has improved three baselines in different scales across
the four environments. On PointMaze, Goal GAN is unable to solve the environment
and Skew-Fit only manages to get 20% success at maximum. OMEGA achieves 100%
success in about 0.2 million steps. In contrast, our GEAPS enables both Goal GAN and
Skew-Fit to solve PointMaze to achieve 100% success in about 0.3 and 0.7 million steps.
OMEGA+GEAPS is approximately twice faster as OMEGA to achieve 100% success.
On AntMaze, we observe similar results; both Goal GAN and Skew-Fit fail in three mil-
lion steps, while our GEAPS enables Skew-Fit to solve the environment with 60% suc-
cess rates and even boost Goal GAN to have comparable results with OMEGA+GEAPS.
OMEGA+GEAPS is about three times faster than OMEGA to reach over 90% success. On
FetchPickAndPlace, our GEAPS boosts the success rates of Goal GAN and Skew-Fit
by around 10% percent and 20% percent, respectively, for the same time steps. Although
OMEGA+GEAPS reaches 100% success almost at the same time as the baseline, it is 40%
faster than the baseline to reach 80% success. On FetchStack2, Goal GAN, Skew-Fit
along with their augmented versions hardly solve the problems with at most 7% success
observed for Skew-Fit+GEAPS and OMEGA+GEAPS yields the results comparable to
OMEGA, which could be explained with the entropy of the achieved goal distribution.

As the entropy of the achieved goal distribution reflects the coverage of achieved goals
in an environment, we show the empirical entropy of the achieved goals for the base-
lines and the augmented models in Fig. 5. On PointMaze and AntMaze, the entropy
increases faster with the help of our GEAPS, and the improvements are especially dramatic
on Goal GAN and Skew-Fit. On FetchPickAndPlace, GEAPS boosts the entropy of
all three baselines on small scales at the beginning. On FetchStack2, GEAPS improves
the entropy of OMEGA while deteriorating the entropy of Goal GAN and Skew-Fit mar-
ginally. The reason on the unimproved entropy on FetchStack2 can be attributed to
GEAPS that controls the goal-transition patterns for one object while making the other
with little change, which leads to a slightly lower entropy of achieved goals.

We notice that in OMEGA (Pitis et al., 2020), several classical or SOTA baselines were
tested on the same environments used in our work. As OMEGA beats those baselines with
a huge margin, e.g., OMEGA is around 100 and 10 times faster than the best performer,
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Fig.7 Visualization of the final achieved goals in AntMaze: the baselines (top) versus the augmented
models (bottom), where the training evolution process is indicated with the heatmap

PPO+SR (Trott et al., 2019), in solving PointMaze and AntMaze, respectively. Thus,
the performance of OMEGA+GEAPS allows us to claim a bigger gain over those baselines
used for comparison in OMEGA (Pitis et al., 2020).

5.3.2 Visualization of exploration behavior

To answer the second question, we visualize the final achieved goals and trajectories of
goal selection at the end of the episodes. The visualization vividly exhibits the behavioral
changes resulting from our goal exploration augmentation.
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Fig.9 Visualization of the goal pursuit and goal exploration trajectories made by OMEGA (top) and
OMEGA+GEAPS (bottom) at different training steps for AntMaze

As shown in the top row of Fig. 6, all three baselines cannot reach the entire area of
PointMaze at the end of 1600 episodes. Most goals reached by Goal GAN are located
in the left half of the maze near the starting location. Most goals reached by Skew-Fit are
located in a smaller area in the left half of the maze and goals mainly get stuck in two small
areas close to or having a moderate distance to the starting location. OMEGA performs
much better than other baselines as it covers the entire maze except those goals from the
desired goal distribution in the top right corner. In contrast, it is evident from the bottom
row of Fig. 6 that our GEAPS makes all baselines cover a larger area and alleviates the so-
called “rich get richer" problem by sampling goals uniformly towards covering the entire
maze. In particular, our GEAPS helps the baselines reach goals that spread outward from
easy to hard goals as training advances and enables OMEGA to quickly transition to goals
in the desired goal area.
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It is observed from Fig. 7 that by incorporating our GEAPS into three baselines, their
behavioral changes on AntMaze are similar to those on PointMaze. At the end of
1000 episodes, no baselines can reach goals beyond the bottom of the hallway, and goals
reached by Goal GAN and Skew-Fit are even trapped in the small areas close to the start-
ing location. In contrast, the augmented models take advantage of our GEAPS, hence are
able to reach goals in much larger areas. It is evident from the bottom row of Fig. 7 that
OMEGA+GEAPS has already explored the goals within the desired goal area and Goal
GAN+GEAPS has reached quite close to this area.

As OMEGA is the best performer among the three baselines and also uses a Go-
Explore (Ecoffet et al., 2019) style strategy for exploration, we further visualize the
goal pursuit and exploration trajectories made by OMEGA and OMEGA+GEAPS at
different training steps. As described in Sect. 3, reaching a behavioral goal in goal pur-
suit triggers goal exploration. A trajectory can intuitively exhibit goal transitioned at
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Fig. 13 Trajectories of pre-trained skills acquired by our skill learning method. a PointMaze in an empty
maze. b Ant in an empty maze

different training steps to allow us to better understand the behavioral change resulting
from our GEAPS. As shown in Figs. 8 and 9, OMEGA generally explores goals close to
the reached behavioral goals “conservatively" with a heuristic (Pitis et al., 2020) in goal
exploration, while OMEGA+GEAPS explores goals in a larger area around the reached
behavioral goals “aggressively" by means of the frequently occurring goal-transition
patterns encoded in the pre-trained skills, which vividly demonstrates the advantage of
our proposed method in improving the exploration effectiveness during learning.

5.3.3 Comparison to LEXA explorer

To answer the third question, we compare the state-of-the-art LEXA explorer-based
goal exploration argumentation to our augmented models. As shown in Fig. 10, within
the same training budget, we only observe up to 7% success rates on PointMaze with
LEXA+DDPG and no success achieved by the LEXA explorer-based models on other
experiments. As shown in Fig. 11, the entropy of the LEXA explorer-based models are far
below that of our augmented models. The reasons may be two-fold: (a) The LEXA explorer
performs exploration via the disagreement of an ensemble of one-step world models and
the disagreement is based on the novelty of states. Except for the PointMaze, the state
space is not equivalent to the goal space and exploring more states does not necessarily
contribute to exploring more goals. (b) LEXA performs with the goal-pursuit behavior on
those goals uniformly sampled from the replay buffer only, which prevents it from enhanc-
ing the experience around the explored goals. Form Fig. 12, we observe that the LEXA
explorer is able to explore those areas near the desired goal distribution on PointMaze
while it fails to keep exploring those areas later. In contrast, our augmented models use dif-
ferent strategies to select those novel sub-goals to pursue, which enhances the experience
around those novel goals. Our augmented models prioritize pursuing those novel goals to
broaden the relevant experience in the replay buffer.

In addition, training a world model in LEXA is time-consuming and requires abun-
dant data, while our GEAPS only needs the skills pre-trained with our alternative learning
objective. Those skills acquired by pre-training are applicable to any relevant downstream
tasks. In summary, the above results demonstrates that our model-free GEAPS is highly
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Fig. 14 Trajectories of pre-trained skills learned by SNN4HRL and EDL for AntMaze

AntMaze AntMaze AntMaze
10 . 10 T, 8001 e
i A 575 | et e,
0.8 | 0.8 / v 550
a / 2 /’ —+— SNN4HRL
5 06 g 0.6 I g 525 |} DL
0.4 [ R o4 / & 5-00 / ours
! 4.75 |f
0.2 0.2 /
Ji / 450
/
0.0 0.0 .

0.0

0.75 15 2.25
Environment Steps

(a)

3.0M

0.75 1.5 225
Environment Steps

3.0M

0.0

075 15 225
Environment Steps

(b)

3.0M

Fig.15 a The dynamic weight @ in OMEGA to trade-off the distributions of achieved goals and desired
goals in the distributions of sub-goals throughout training on AntMaze. b Test success on the desired goal
distribution and empirical entropy of the achieved goal distribution on AntMaze for OMEGA+GEAPS
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competitive with the SOTA model-based explorer in LEXA especially for the tasks of
which state space is not equivalent to their goal space.

5.3.4 Results on skill learning

To answer the fourth question, we first visualize the pre-trained skills resulting from our
learning objective presented in Sect. 4.3. Figure 13 illustrates the trajectories of pre-trained
skills for PointMaze and AntMaze. In Fig. 13a, we plot 50 trajectories for each skill
pre-trained for PointMaze in an empty 5X5 maze. It is evident that the learned skills
guide the agent to navigate along different diagonal directions so that the agent can tran-
sit to another grid quickly. The skills are intuitive and their effectiveness in boosting the
sample efficiency have been demonstrated by the results reported in 5.3.1 and 5.3.2. Fig-
ure 13b shows the trajectories of the robot with the skills on the pre-training environment
for AntMaze with equal probability for 100 episodes. As seen in Fig. 13b, such skills have
good coverage of goals in almost all directions. Besides, each skill evenly covers almost the
same portion and no skill predominates the coverage of goals.
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For comparison, we further illustrate the trajectories of pre-trained skills by SNN4HRL
(Florensa et al., 2017) and EDL (Campos et al., 2020) on the same pre-training environ-
ment for AntMaze in Fig. 14. In contrast to the skills acquired by our method in Fig. 13b,
it is evident from Fig. 14 that both SNN4HRL and EDL cover much smaller areas and leave
numerous directions uncovered. In our experiment, we observe that the skills acquired by
SNN4HRL appear unstable, highly depending on the random seeds.

To investigate the impact of pre-trained skills in our GEAPS, we employ the skills
acquired by the different skill learning methods in OMEGA+GEAPS for performance
evaluation on AntMaze. In OMEGA (Pitis et al., 2020), the factor a calculated via
Eq. 13 in Appendix 2 is inversely proportional to the KL divergence between the distribu-
tion of achieved goals p,, and desired goals p,, and its value is capped at one. It serves
as a dynamic weight to balance both distributions in a mixture distribution for sub-goal
sampling and recalculated at the end of each episode. When the « reaches one, the agent
only samples sub-goals from the desired goal distribution, which marks the end of explo-
ration about sub-goals other than desired goals. It is evident from Fig. 15a that the pre-
trained skills by our method allow for reaching @ = 1 around 0.7 million steps, while the
SNN4HRL skills have to take around one million steps and the EDL skills never lead to
a = 1. It is further observed from Fig. 15b that our skill learning objective results in earlier
success on AntMaze; i.e., the agent with our skills starts to explore the desired goal dis-
tribution within 0.2 million steps, while the agents with the SNN4HRL and the EDL skills
have to take around 0.5 million episodes and 0.3 million steps, respectively. In the later
training stage, the agent with our skills maintains high success rates regardless of different
random seeds. In contrast, the performance of the agents with the SNN4HRL and EDL
skills is degraded substantially. Moreover, we observe that the agent with the EDL skills
always fails to solve the AntMaze task. In summary, the above results suggest that our
skill learning objective yields the quality skills required by our GEAPS.

6 Discussion

In this section, we discuss the limitations/issues arising from our work and make a connec-
tion between our method and other related works.

While the advantages of our approach have been demonstrated, several limitations and
open problems still remain. First, our approach relies on the pre-trained skills obtained by
skill learning in the environments similar to a target task. Our approach will not work if
such environments are unavailable. It is also worth stating that the skill learning incurs
an additional computational overhead but is rewarded with great exploration efficiency
in GCRL to accomplish a sparse-reward long-horizon task. Next, our theoretical analysis
establishes the theoretical justification for the benefits of utilizing pre-trained skills and
the effectiveness achieved through our exploration strategy under specific conditions. How-
ever, further theoretical analyses concerning broader conditions are still pending. Then,
the environments used for evaluation have pre-defined yet well-behaved goal spaces and
goals have to be in a vectorial form. It is unclear on whether our approach works in the
same manner for various scenarios, e.g., an agent has to specify and model/learn its own
goal space (Pong et al., 2020), and goals are in other forms (Liu et al., 2022), e.g., image
and language goals. After that, all the baselines used in our experiments are sub-goal
selection based GCRL algorithms (Liu et al., 2022). Without a considerable extra effort,
our GEAPS method cannot be applied to other types of GCRL algorithms such as the
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optimization-based and the relabelling GCRL algorithms (Liu et al., 2022) for goal explo-
ration augmentation. Finally, our approach is memoryless and thus treats both achieved and
new goals to be explored equally during data rollout. Equipped with a memory mechanism,
our approach would prevent any visited states from being revisited to further improve the
exploration efficiency. With memory and proper pre-trained skills, an agent may accom-
plish new tasks via searching without any further learning.

It is well known that skills and options have been used in hierarchical reinforcement
learning (HRL) for for exploration and task simplification (Sutton, 1998). However, in
the context of GCRL, the direct applicability of pre-trained skills for goal attainment and
maintenance is quite limited. This is due to the potential for overshooting goals or stochas-
tic reaching, as well as the narrow focus of skills on specific goals (Gehring et al., 2021).
In contrast, our GEAPS method combines the benefits of pre-trained skills with the preci-
sion of primitive actions, aiming to enhance goal exploration and achieve goals effectively.
Below, we summarize several key distinctions between our GEAPS method and existing
works that utilize skills/options for exploration in HRL. First, our GEAPS expands the
utilization of entropy maximization as a new learning objective in GCRL. By optimizing
both achieved and prospective goals, our GEAPS enhances the efficiency of goal explora-
tion. We specifically emphasize goal exploration and incorporate goal-transition patterns
into the learning process, enabling more effective exploration even in the absence of pre-
cise dynamic knowledge. To the best of our knowledge, these distinctive features cannot
be found in existing works on HRL in the context of GCRL. Next, in HRL, a higher-level
agent selects from these options, treating them as indivisible actions or atomic actions.
Despite exploring goals while executing a skill, HRL often necessitates revisiting goals
using more granular options. In contrast, the skills trained in our GEAPS maximize their
exploration capabilities based on goal-transition patterns specific to GCRL, allowing for
interactions with a broader array of goals during execution. Our method enhances the effi-
ciency of goal exploration and distinguishes our work from conventional HRL practices
that prioritize re-engaging with the same set of goals. Even if the skills are pre-trained
as sub-policies for specific sub-tasks in HRL (Gehring et al., 2021), each skill tends to
primarily focus on a single goal associated with one of the sub-tasks. During execution,
this narrow focus can severely limit the skill’s ability to interact with a much wider range
of goals that arise in GCRL. Then, distinct from the HRL approach, which typically pre-
sumes task decomposition through options, our method does not mandate the completion
of tasks strictly through pre-trained skills. Rather, within the context of our GEAPS, these
skills are intentionally trained to enhance their efficacy in goal exploration, drawing upon
goal-transition patterns particular to GCRL. Pre-trained skills, developed with a focus on
these specific goal-transition patterns, empower our GEAPS to foster efficient exploration.
Our method aligns closely with the innate exploratory behaviors observed in humans and
animals, thus encouraging more intuitive interactions with the environment. Finally, we
acknowledge theoretical analyses on the exploration benefits of skills and options in HRL,
such as the UCRL-SMDP framework (Fruit & Lazaric, 2017) that provides rigorous regret
bounds for MDPs with options. However, the direct transfer of UCRL-SMDP to GCRL
poses challenges due to disparities in reward mechanisms and the lack of historical data for
novel goals. In contrast, our GEAPS addresses these challenges by efficiently navigating
exploration in the absence of precise dynamic knowledge. While UCRL-SMDP may not
directly aid in exploring unknown areas, a big challenge encountered in our work, it holds
promise for enhancing policy optimization to efficiently reach already explored goals in the
goal pursuit stage within the generic GCRL framework.
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7 Conclusion

In this paper, we have proposed a novel learning objective that optimizes the entropy of
both achieved and new goals in sub-goal selection based goal-conditioned reinforcement
learning (GCRL). By optimizing this objective, we enhance the efficiency of goal explora-
tion in complex environments, ultimately improving the performance of GCRL algorithms.

Our method incorporates skill learning, where frequently occurring goal-transition pat-
terns are mined and composed into skills. These pre-trained skills are then utilized in goal
exploration, allowing the agent to efficiently discover novel sub-goals. Through extensive
evaluation on various sparse-reward long-horizon benchmark tasks and a theoretical analy-
sis, we have demonstrated that integrating our method into state-of-the-art GCRL baselines
significantly enhances their exploration efficiency while maintaining or improving their
performance. The results of our research highlight the importance of effective goal explo-
ration in addressing the challenges of sparse-reward long-horizon tasks. By augmenting
the sub-goal section of GCRL models with our model-free goal exploration method, we
achieve better coverage of the state space and improve sampling efficiency.

In our future work, there are several avenues for further investigation. First, we plan to
conduct further theoretical analyses concerning broader conditions to gain deeper insights
into the properties and guarantees of our proposed method. This will provide a solid foun-
dation for understanding its advantages, limitations and potential extensions. Additionally,
we aim to explore the application of our method in domains with image data, where the
state space is more complex and requires specialized techniques.

In conclusion, our work contributes to the advancement of goal-conditioned reinforce-
ment learning by offering an efficient goal exploration augmentation method. We believe
that our research opens up new possibilities for addressing challenging sparse-reward long-
horizon tasks in complex environments.

Appendix 1: Proof of Propositions

In this appendix, we provide proofs for the propositions formulated in Sect. 4 of the main
text.

Proposition 1 Let H! g(g) represent the updated entropy of achieved goals following the
goal exploration. This entropy is bounded from below by the sum of the weighted entropies
of the original achieved goals and the goals encountered during goal exploration, namely,
¢ H,(G) and (1 — ¢) H,(G). That is,

H, (9) 2 cH,,(§) + (1 = OH,(9).
Proof We commence from the entropy definition of H’ g(g):
H, (G) = —(c pgy(9) + (1 = ©) p(9)) log (¢ p1o(G) + (1 = ©) p.(9)).
Applying Jensen’s inequality due to the concave property of entropy, we find:

H, () 2 —¢ puo(§ 102 p o (G) — (1 = ) p.(G) log p,(9).

ag

@ Springer



2550 Machine Learning (2024) 113:2527-2557

Recognizing —c p,,,(9) log p,,(9) as cH,,(G) and —(1 - ¢) p,(9) log p,(G) as (1 — O)H,(G),
we thus establish:

H;g(g) > cH,,(9) + (1 — 0H,(9).

This completes the proof, demonstrating that the updated entropy H; g(g) is bounded by the
weighted sum of the original entropies.

Proposition 2 The optimal exploration policy leading to Q* with the distribution pq. can be
composed via a set of skills Z (| Z] << |Q*]).

Proof We can cluster |Q*| into | Z| clusters and each cluster is represented by a latent vector
z ~ Z. Then, we have the corresponding distributions related to z.

P@ = Y, po (DI €2), ®

TEQ*

Po(D)p(z|7) _ Por (Dl(r €2)
j269) j64) '
In the above expressions, 1(z € z) denotes the indicator function, which equals 1 if 7

belongs to the cluster represented by z and 0 otherwise. In this setting, we can transform
H?(G) with Egs. 8 and 9 into

p(zlz) = ©)

H(G) = I(2:0) + H(GR2).

Although the mutual information term, /(Z;G), may decrease, the conditional entropy term,
H(G& Z2), increases, maintaining the sum unchanged. For generating the optimal trajecto-
ries within each cluster, we can train a skill to produce those trajectories. The total number
of such skills is | Z| and the condition | Z| << |Q*| can be fulfilled with appropriate clus-
tering. During exploration, each skill corresponding to z ~ Z is sampled with probability
p(2). In the execution of each skill, the trajectory 7 is generated with probability p(z|z).

Proposition 3 Given the horizon T, every trajectory t can be decomposed into a sequence
of goal-transition patterns.

Proof Our proof initiates by deconstructing the trajectory  into two distinct sequences:
the state sequence S, = (si)l.T=0 and the action sequence A, = (ai)l.Tz‘Ol. Upon acquiring S,

we derive the corresponding goal sequence G, = (qb(s,»))l.T:(). This goal sequence is subse-
quently partitioned into its maximal homogeneous segments, each embodying repetitions
of a singular unique goal. The number of such segments is denoted as N,(z). For each

of these segments, we annotate the specific goal and the time step of its first occurrence,
N (2)-1
denoted as ((g;, 1)),
. N, . .
resulting in ((g;, ti))i_g(()r). Consequently, the tr.}:l\}?c)tolry can be decomposed into a sequence
I . . T)— .
of goal-transition patterns symbolized as {y;} , where each pattern y; is defined as

. Following this, we append the tuple (¢(s;), T) to the sequence,

2
i=0

agent _agent ti—1
v = {s"g ’stjl ’ A(gli’gfm)’ (aj)jz;i }

i
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Proposition 4 Given an exploration horizon of T¢, the substitution of goal-transition pat-
terns within each trajectory © € Q with alternative patterns of smaller cardinality can
vield equivalent exploration outcomes using an average number of steps that is less than or
equal to the specified T°.

Proof For any trajectorx = Q, it can be decomposed into a sequence of goal-
transition patterns {w;} %, A as outlined in Proposition 3. There exists an alter-

native goal-transition pattern to y; for the transition A(g,.g, ) as follows:
g<> 1

Yy, € (w5 L 3y = (80, :f;;"’,AG AA} €Y, where s = {5, SO = 18
AG = A(gt,gt ) and |AA| <t —t. By substituting y; with the equivalent pattern

necess1tat}ng the fewest stePs we can derlve a new sequence of goal-transition patterns
{~}‘ suchthatzg |@;| < T..

Appendix 2: Goal exploration

To facilitate the readability, we provide the further details omitted in Sect. 5 of the main text
in this appendix, including the technical details of baselines and the state-of-the-art method
LEXA explorer and the implementation details of baselines and LEXA explorer used in our
experiments.

Technical details
Goal GAN

Goal GAN (Florensa et al., 2018) aims to select sub-goals of intermediate difficulties.
Given the policy r, at iteration k and a goal g, we denote its expected return as R8(x;).
Thus, the set of Goals of Intermediate Difficulty (GOID) is defined as follows:

GOID, £ {g : R,,;,, < R(m;) < R0} (10)

min —

where R,;, and R, are the minimum and maximum expected return of goals for the agent
to pursue, respectively. Also, R,,;, and R,,,. can be interpreted as the minimum and maxi-
mum success rates of reaching a goal within T steps. To identify the goals of intermediate
difficulties, we adopt the same method used in Pitis et al. (2020); i.e., a discriminator is
trained to distinguish whether a behavioral goal can be achieved from a specific goal. Dur-
ing training, the start state and the behavioral goal of each trajectory are taken as input,
and the binary target would be one only if the behavioral goal was achieved within the
trajectory. During goal sampling, the initial state and goal candidates are fed to a trained
discriminator as input, which predicts the success probability R$(x,) of reaching each can-
didate. Based on the prediction, the agent can decide the GOID set to be sampled from.
Then, the GOID is further ranked according to how far R$(x,) is close to 0.5.
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Skew-fit

The key idea of Skew-Fit (Pong et al., 2020) is to increase the diversities of goals by
maximising the entropy of achieved goals. Thus, Skew-Fit aims to train a generative
model qg that achieves maximum entropy on all the goals. To ensure its entropy is
monotonically improved, it proposes to skew the distribution via sampling importance
resampling as follows:

1 «
Pskewed,(8) £ Z_Qg/(g) 16(g € Gp), (11
il
iid
Zy = D, 4y (©)"(8).8~ P 12)
8€05

Here, pg is the unknown underlying distribution of goals to be achieved via the policy at

the rth iteration of training the generative model and is estimated via the approximation
pg ~ qg. a; (a; < 0) is used to balance the reliability of qg (S) and the speed to increase
1 1 t

the entropy of goal distribution. Then g, —is trained to fit pg,,.. resulting in
g,,, X Pskewed, At the (z + Dth iteration, the goals can be sampled from p,,..4 Or g .

OMEGA

Given a distribution of desired goals p,,, OMEGA (Pitis et al., 2020) aims at selecting
a sub-goal that can minimize the KL divergence between p,, and the distribution of
achieved goals p,,.

Joriginal(pag) = DKL(pdg| |pag)'

The above original learning objective is ill-conditioned and not finite for a long-horizon
task since p,, and p,, do not overlap at the beginning. Therefore, this objective is amended
via expanding the support of achieved goals to make J,,,4,(Pe) as soon as possible. It can
be realized by the Maximum Entropy Goal Achievement (MEGA) objective that maximizes
the entropy of achieved goals as follows:

I Pag) = D USUPP(Pa)IPyg)-

where U(supp(p,,)) denotes the uniform distribution on the support of p,,. Compared to
MEGA, OMEGA uses a mixture distribution p, = ap,, + (1 — a)l(supp(p,,)) as the target
in the optimization of KL divergence; i.e.,

JOMEGA(pag) = D (p,| |Pag)«
The way to achieve a suggested in Pitis et al. (2020) is as follows:
a = 1/max(b + Dg; (pyglIPag)- s (13)

where b < 1. To optimize the OMEGA objective, the agent would sample sub-goals from
desired goals at a-probability and achieved goals at (1-a)-probability in the following way:
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Table 1 Hyperparamters in DDPG
Hyperparamter Value
Batch size 2000
Actor learning rate le??
Critic learning rate le??
Optimizer Kingma & Ba (2014)
Activation Hendrycks & Gimpel (2016)
Hidden layer sizes (actor and critic) (512,512, 512)
Target network update proportion 0.05
Target network update frequency 40 steps
Initial random data collection 5000 steps
Epsilon for random exploration 0.1
Replay buffer size 5,000,000
Discount factor 0.98 (0.99 for AntMaze)
Z?f?(leieznt I;l};l;izrparamters for Environment Hyperparameter Value
PointMaze Relabelling strategy rfaab_1 4 3 11
train every 1
AntMaze Relabelling strategy rfaab_1_4 3_1_1
train every 1
FetchPickAndPlace Relabelling strategy rfaab_1_5_2 1_1
train every 4
FetchStack2 Relabelling strategy rfaab_1 5 2 1 1
train every 10
& = arg mingepp,,.(8). (14)

LEXA explorer

LEXA (Mendonca et al., 2021) is a model-based reinforcement learning algorithm with
two components: explorer and achiever. The explorer acts for active exploration and
trained to explore curious states via a world model. The explorer is trained with unsu-
pervised rewards based on the disagreements of an ensemble of 1-step transition models
that predict the next world model states from a current model state. The ensemble of the
one-step models can be expressed as

Ensemble: f(s,, 0™) = Eﬁl,m =1...M,

where 27" | indicates the next model state predicted by model m in the ensemble of M mod-
els. Assume that there are D dimensions totally in the model state, the reward of state s is

the averaged variance of the states predicted by the ensemble model across all dimensions:
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D
r(s,) = % D Var, [f(s,. 0™)],. (15)
d=1

For the achiever, we used the rewards from the environment to replace the unsupervised
rewards used in Mendonca et al. (2021) for fair comparison in exploration. The achiever in
our experiments is trained via the standard GCSL (Ghosh et al., 2020) in the open-source
code provided by the authors where DDPG is used in the baselines.

Implementation details
DDPG

All baselines are implemented on the basis of DDPG (Lillicrap et al., 2015). The details of
relevant hyperparameters used in DDPG are listed in Table 1. The training frequency var-
ies over different tasks as reported in Table 2.

Relabelling techniques

During training, we adopt the same relabelling strategies rfaab used in Pitis et al.
(2020): mixing different relabelling techniques real, future, actual, achieved
and behavioral at a fixed ratio. Real stands for no relabelling. Future, actual,
achieved, behavioral indicate relabelling with goals from future achieved goals in
the belonging trajectories, all historically desired goals, all historically achieved goals and
all historically behavioral goals, respectively. Their relative ratios are used to specify the
specific technique. For example, rfaab 1 4 3 1 1 denote no relabelling on 10% data
and relabelling 40% with future, 30% with achieved, 10% with actual goals and
10% with behavioral. The relabelling strategies vary in different environments (see
Table 2 for details).

Goal GAN

The neural network used as the discriminator has the same architecture as that of the critic
in DDPG except that the sigmoid activation is used in the output layer. The discriminator
is trained with a batch of 100 trajectories sampled from the 200 most recent ones for every
250 steps. The R,,,;,, and R, . are set to 0.25 and 0.75, respectively.

max

SkewFit

Following the same settings in Skew-Fit (Pong et al., 2020), we empoly the f-VAE as the
generative model. Both the encoder and decoder of f-VAE have two hidden layers with
[400, 300] ReLU units. Its latent dimension size is set to be the same as the size of the goal
in the environment. In f-VAE, we set f = 10 as 10 and the «; = 2.5in Eqgs. 11 and 12. We
set the batch size as 64 for training f-VAE and adopt the same training setting in Skew-Fit
(Pong et al., 2020): training every 4000 steps for 1000 batches in the first 40,000 steps and
every 4000 steps for 200 batches afterwards.
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OMEGA

We adopt the same settings used in OMEGA (Pitis et al., 2020) as follows. We set b in
Eq. 13 to be —=3.0. To approximate the probability p,,(2) for a given £ in Eq. 14, we use
the kernel density estimator (KDE) (Rosenblatt, 1956) with 0.1 bandwidth and Gaussian
kernel as our density model. We fit the KDE model to 10,000 normalized achieved goals
sampled from the replay buffer for every optimization step.

LEXA

We adopt RSSM (Hafner et al., 2019) as the world model. There are three hidden layers
with [128, 128, 64] with [400, 300] ReLLU units in both the encoder and the decoder. The
hidden layer size for the recurrent model is set to 128. The sizes of the deterministic state
and stochastic state are 128 and 32, respectively. We use 10 one-step world models (i.e., M
= 10) to construct an ensemble world model that calculates the exploration rewards speci-
fied in Eq. 15. Each component world model consists of four hidden layers where each
hidden layer has 400 ELU units (Clevert et al., 2015). In the GCSL implementation, we use
the same actor architecture and the same learning rate used in DDPG as shown in Table 1
where only the future relabelling techniques are used during training.

Appendix 3: Skill learning

In this section, we provide the information on the main hyper-parameters used in our
comparative study in skill learning.

SNN4HRL and ours

The skill policy network used in SNN4HRL (Florensa et al., 2017) has two hidden lay-
ers of 64 Tanh units. The policy network is trained with TRPO (Schulman et al., 2015)
with learning rate 0.01 and batch size 50,000 for 300 iterations. For the reward compu-
tation, we discretize the goal space into grids of size 0.2 X 0.2 to calculate the rewards.
Our skill learning method shares the same hyper-parameters with SNN4HRL methods
except for the entropy term H<=G& Z=- weighted by 0.1.

EDL

EDL (Campos et al., 2020) consists of state marginal matching (SMM) (Lee et al.
2019), VQ-VAE (Van Den Oord et al., 2017) and skill learning. We adopt the same
hyper-parameters and learning methods used in the original square maze environments
(Campos et al., 2020). Nevertheless, to adapt it to the Ant environments, we increase
the environment steps per cycle to 30 and batch size to 1024 in SMM and set the num-
ber of epochs as 100 for VQ-VAE training and the number of rollouts per cycle as 6.
Finally, the training epochs for skill training is set to 10.
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