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ABSTRACT

Transcription factors (TFs) can bind DNA in a co-
operative manner, enabling a mutual increase in oc-
cupancy. Through this type of interaction, alterna-
tive binding sites can be preferentially bound in dif-
ferent tissues to regulate tissue-specific expression
programmes. Recently, deep learning models have
become state-of-the-art in various pattern analysis
tasks, including applications in the field of genomics.
We therefore investigate the application of convolu-
tional neural network (CNN) models to the discovery
of sequence features determining cooperative and
differential TF binding across tissues. We analyse
ChIP-seq data from MEIS, TFs which are broadly ex-
pressed across mouse branchial arches, and HOXA2,
which is expressed in the second and more posterior
branchial arches. By developing models predictive of
MEIS differential binding in all three tissues, we are
able to accurately predict HOXA2 co-binding sites.
We evaluate transfer-like and multitask approaches
to regularizing the high-dimensional classification
task with a larger regression dataset, allowing for the
creation of deeper and more accurate models. We
test the performance of perturbation and gradient-
based attribution methods in identifying the HOXA2
sites from differential MEIS data. Our results show
that deep regularized models significantly outper-
form shallow CNNs as well as k-mer methods in the
discovery of tissue-specific sites bound in vivo.

INTRODUCTION

Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) can reveal the genomic regions bound by tran-

scription factor (TF) proteins in different tissues or develop-
mental stages. To infer binding locations, short DNA reads
are aligned to a reference genome assembly and peak call-
ing techniques such as MACS (1) are used to localize the
regions enriched in the IP experiment compared to a con-
trol. Inferred TF peak locations are typically hundreds to
thousands of base-pairs in length and contain functional se-
quence motifs identifiable as highly over-represented short
k-mers or position-specific score matrices (sequence motifs,
usually 6-10 nt), corresponding to the binding locations of
regulatory TFs. Widely used motif discovery tools include
MEME (2), Homer (3), GEM (4) and KSM (5). These tools
can be used to annotate and visualize over-represented mo-
tifs using databases of known TF-binding sites.

TFs frequently cooperate to achieve their cell-type bind-
ing specificity. Binding in different tissues may be enhanced
by the presence of specific co-factors (6). Several modes
of cooperation are possible, including heterodimer forma-
tion (direct) or changes in the affinity of neighbouring sites
as a result of increasing chromatin accessibility (indirect).
Therefore, differential binding of a major regulator in dif-
ferent cells can be highly informative about cell-type spe-
cific TF interactions. For example, the MEIS homeodomain
TFs are major developmental regulators in vertebrates and
co-bind with a large set of other factors (7,8). MEIS bind
to a large proportion of accessible chromatin in mouse
branchial arch tissues and are essential for development
of this embryonic region (8). HOXA2 is expressed concur-
rently with MEIS in the second branchial arch (BA2) and
posterior branchial arches (PBA), but not the first branchial
arch (BA1) (see Figure 1), and was shown to cooperatively
bind with MEIS in BA2, resulting in a mutual increase of
occupancy (8). Based on these observations, we reasoned
that differential analysis of MEIS binding could reflect co-
binding with specific partners in the BAs, including devel-
opmentally important HOX TFs.
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Figure 1. (A) Location of BA tissues marked on a cartoon of mouse during
embryonic development. (B) Amount of RNA measured by RNA-seq in
BA tissues. For ChIP-seq experiments, a pan-MEIS antibody was used to
immunoprecipitate MEIS 1-3; CPM, counts per million sequenced reads.

Deep learning approaches such as convolutional neu-
ral networks (CNNs) became state-of-the-art in visual and
speech applications, followed by their application in ge-
nomics (9). DeepBind (10) was the first model to use CNNs
to identify DNA- and RNA-binding sites by training a net-
work to classify between binding regions and a randomly
shuffled negative set. DeepSEA (11) included epigenetic and
accessibility data to jointly learn and predict the effects of
sequence mutation (later expanded in ExPecto (12)), while
FactorNET (13) extended the convolutional architecture
with a bi-directional recurrent network to predict the ChIP-
seq profile along the sequence. Recent works also include a
GAN-based generative model for sequence (14), the Basenji
network for prediction of gene expression (15), modelling
binding from reporter assays (16), predicting differential ex-
pression from histone marks (17) and ensemble bootstrap
models for handling imbalanced data (18).

Differential feature identification in genomic sequences
can be accomplished in several ways. In k-mer approaches,
all possible combinations of nucleotides (up to a certain
length) are counted in the differentially bound regions and
their frequencies compared with a background set. Af-
ter enriched k-mers are identified (and possibly combined
to a position–weight matrix, PWM), the sequences are
scanned for alignment with the motif. Counting is increas-
ingly time-consuming for longer k-mers, and annotation
of the genome with a PWM is insensitive to the sequence
features surrounding it. Deep learning models do not al-
low easy visualization of features in general due to high
non-linearity, but can attribute them in an input-dependent
manner. This means that compared to a k-mer approach the
same motif can be identified as a feature with different im-
portance, depending on the context in which it appears in
the region. The simplest 1-layer CNN is similar to a k-mer
method in that it learns to identify regions based on the sta-
tistical occurrence of a number of PWMs, represented as
convolutional filters. In a deep learning model, these are
optimized simultaneously with classification or regression
parameters that follow. Deeper convolutional networks are
able to learn spatial patterns with a wider receptive field, but
require more training data in order to fit more parameters.

Prediction attribution refers to identifying the elements
of the input which caused the neural network to predict a
given output. In silico mutagenesis is a perturbation-based

approach introduced with DeepBind, which uses the model
to predict effects of all possible single-nucleotide substitu-
tions in a region, creating a mutation map. This approach
can be computationally expensive when predicting satu-
rated mutation in larger regions or for more than one nu-
cleotide at a time. Alternative approaches seek to approxi-
mate the Shapley value and satisfy the axiom of complete-
ness (19), also known as summation-to-delta. This requires
distributing the difference in model prediction between a
reference and the input on the elements of the input. Inte-
grated gradients and DeepLift (20) are two approaches that
allow this. Because DeepLift distributes the activations in
a model-specific manner we chose to evaluate integrated
gradients, which are implementation independent. In this
approach, gradients are calculated over a number of steps,
while linearly interpolating between the example and a ref-
erence, finally multiplying by their difference. This captures
the non-linearity of a deep model in the attribution. A ref-
erence is a background example, which ideally contains no
features. All zeros can be used (in the case of one-hot en-
coded sequence data) which are conceptually similar to us-
ing a black image in a vision application. Multiplying gra-
dient times input is a fast method of obtaining attribution,
and a special case of integrated gradients with a reference
of zeros and a single integration step. Specifying reference
for a genomic sequence is problematic due to categorical
encoding, as linear interpolation between two one-hot sam-
ples does not result in another one-hot sample. Similarly,
prediction for an all-zero input is not well defined for a net-
work trained using one-hot examples.

In a high-dimensional problem, model identifiability be-
comes an issue. Deep models with millions of parameters
can be particularly difficult to train on smaller datasets be-
cause the loss landscape contains many local minima. As
a result the attribution becomes unstable and initialization-
dependent. Typical methods of regularizing the model in-
clude transfer learning (21), where a portion of neuron
weights is transferred from a model trained on data from a
related domain, and semi-supervised learning, where a large
unlabelled dataset is used in a parallel training task. In our
case, a large dataset with regression targets is available in
several replicates, from which we also have a much smaller
subset of confidently labelled differential examples.

In this contribution, we extend the use of deep learning
models to the identification of sequence features predicting
differential TF binding. We use CNN models to identify
DNA sequence features predictive of changes in ChIP-seq
data across conditions. To illustrate the problem of differen-
tial binding, we use MEIS ChIP-seq data from BA1, BA2
and PBA in mouse embryos. It was previously shown that
HOXA2 is the primary co-factor of MEIS in BA2 (8), which
makes its experimental binding profile useful for validat-
ing attribution. For validation, we train models to predict
differential binding (relative increase or decrease in occu-
pancy) from input sequence, and attribute the prediction to
nucleotides in each region. HOXA2-binding sites positively
contribute to MEIS occupancy in BA2 and PBA, and there-
fore appear as features of the BA1-downbinding class. Our
approach is illustrated in Figure 2, which shows an example
where learned features predictive of differential MEIS bind-
ing are consistent with co-binding of HOXA2 and MEIS.
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Figure 2. (A) MEIS RPKM (reads per kilobase of transcript per million
mapped reads) regression features attributed by a deep model using mu-
tagenesis. Values indicate the sum of predicted RPKM change if the base
was mutated to all of its alternatives. Each line indicates features of a sin-
gle replicate output for a tissue. Colours match cartoon labelling in Fig-
ure 1A. MEIS-binding site (CTGTCAG) is a feature in all tissues. (B) BA1-
downbinding features from a differential model. A dimeric site containing
HOXA2 and MEIS binding motifs is identified as a differential feature en-
hancing MEIS binding in BA2 and PBA, but not BA1.

We compare the accuracy of k-mer approaches to CNNs
used with mutagenesis and integrated gradients, for which
we validate performance with a zero background, as well as
averaging 10 real genomic backgrounds. These are selected
randomly from enhancer regions from H3K27ac ChIP-seq
peaks with no detected MEIS binding. We then compare the
locations of features ranked by a sliding window to the in
vivo ChIP-seq profile of HOXA2 in BA2, in two experimen-
tal replicates. The HOXA2 data are not used in training the
networks and therefore provide independent validation of
the learned features. We create deep learning models using
regression of all available replicate data in order to regular-
ize the classification task, increase predictive performance,
as well as accuracy and stability of feature attribution.

MATERIALS AND METHODS

Data accession and processing

To identify co-binding features of MEIS in the BA tis-
sues of interest, we obtained genome-wide binding profiles
from MEIS ChIP-seq experiments. ChIP-seq results vary in
quality, which motivates the use of several biological repli-
cates. We used previously published data from ChIP-seq
for MEIS, HOXA2 and H3K27ac (8,22,23), which we re-
analysed for the mouse mm10 build. Pre-processing of the
ChIP-seq data was identical to the original papers (Trimmo-
matic for trimming (24), Bowtie2 for aligning to the mouse
genome (25), samtools (26) to remove the aligned reads with
a mapping quality Q30 and MACS2 for peak calling (1)),
followed by DiffBind (27) recentering to the position com-
mon across replicates. RPKM (reads per kilobase of tran-
script per million mapped reads) values are calculated for

Table 1. Differential labelling of MEIS-bound regions

Type Count Avg. length (nt)

Increased binding
BA1 3416 778.9
BA2 3850 790.2
PBA 18 088 770.1
Decreased binding
BA1 2345 860.7
BA2 3070 867.2
PBA 17 923 857.7
Non-differential 127 185 633.6
All MEIS 215 830 679.3

peaks, measuring the amount of binding. To identify dif-
ferential occupancy, we use edgeR (28) with TMM normal-
ization. Labels are assigned to regions that show either in-
creased or decreased level of binding in one tissue compared
to the other two, and a non-differential label is given to
regions without significant difference in RPKM across tis-
sues. Label counts obtained this way are shown in Table 1.
For input to neural networks the sequences are one-hot en-
coded to a fixed-length 2D array BxL, where B = 4, repre-
senting each of the possible bases, and L is the chosen length
of encoded sequences. At each base position the array is 1
for the present base, and 0 otherwise. In order to constrain
computational cost, the length is bound to between 200 and
2000 nucleotides. RNA-seq gene expression values used in
this paper are identical to originally published (8,23).

K-mer-based methods

For k-mer attribution, we used Homer (3) to identify en-
riched PWMs de novo by contrasting the regions in a dif-
ferential class with the non-differential background. We
then annotated the differential regions with most confident
PWM, sorting locations from strongest to weakest match.
While PWM is convenient for visualization, the identified
representation assumes independence between nucleotides.
KSM (k-mer set memory, (5)) is an alternative method,
which does not combine the individual k-mers into a single
frequency matrix, but lists and ranks all identified instances
independently. Likewise, we annotated the regions with the
k-mers identified by KSM in order of confidence. Details of
both approaches are given in the Supplementary Data.

Support Vector Machine (SVM) models split the input
space with a hyper-plane boundary. During training opti-
mal support vectors are found, which define the plane that
maximizes the separation of the training examples, while
considering an adjustable soft margin for outliers. In order
to allow classification of data that are not linearly separable,
a kernel function is used to calculate the distances between
examples in a higher-dimensional space. In case of DNA
sequences, the distance between two samples can be cal-
culated based on differences in k-mer frequencies. Gapped
k-mer SVM (GKM-SVM (29)) introduces the gkm-kernel,
which allows for a given number of mismatches between
the example sequence and the k-mers used as features (typ-
ically up to 4 mismatches for k = 11), and efficiently com-
putes the distance based only on k-mers present in either se-
quence of each pair. We evaluate the more memory efficient
implementation LS-GKM (30), which unlike the original

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/48/5/e27/5715064 by U

niversity of M
anchester user on 30 April 2020



e27 Nucleic Acids Research, 2020, Vol. 48, No. 5 PAGE 4 OF 11

does not pre-compute the entire distance matrix between all
pairs of samples. Additionally, it introduces expansions of
the gkm-kernel, which increase the contribution of k-mers
found in the centres of peaks (wgkm-kernel), and alongside
it apply a radial basis function to the identified k-mer fre-
quencies (wgkmrbf-kernel). We compare the predictive and
attribution performance of SVM to CNN models. Details
of training and attribution with mutagenesis and GkmEx-
plain, an integrated gradient method (31), can be found in
the Supplementary Data.

Deep learning models

1-layer CNN. For our baseline model with one convolu-
tional layer we use an extended version of DeepBind (32),
in which the convolution is followed by global max-pooling
and parallel average-pooling, outputs of which are concate-
nated before being passed to fully interconnected layers per-
forming classification or regression. This CNN is capable of
recognizing spatial dependencies between nucleotides up to
the length of its convolutional filters. Combinations of mo-
tifs in a region can still be recognized beyond that length
through the pooling statistics, but their mutual distance is
invariant to the network. Using max as the only pooling op-
eration works well for classification, but manifests an issue
in perturbation-based attribution if more than one motif of
the same kind is present in the region. A concatenation of
two types of pooling seems to alleviate this problem, and
works well for classification as well as regression.

Deep CNN. Our deeper models are based on the archi-
tecture of Basenji (15), additionally expanded with bottle-
neck layers (see Figure 3A). In the initial layers of the net-
work we instantiate repeating blocks of convolution, batch
normalization, 1× convolution (bottleneck), dropout and
max-pooling. These pooling blocks reduce the spatial di-
mensionality of the input. The bottleneck layer was shown
to improve performance of the DeepSEA network with lin-
ear projection (33). In computer vision applications, this
kind of layer (a 1 × 1 convolution for 2D images) often uses
a non-linear activation function. We validated the perfor-
mance of models with and without the bottleneck, and with
linear or ReLU (Rectified Linear Unit) activation. The sec-
ond type of block uses dilated convolution instead of pool-
ing to further expand the receptive field, while maintaining
a constant output width. The dilation blocks are concate-
nated to form a hyper-residual network (34,35). The output
is obtained from a linear 1× convolution and global average
pooling. Unlike Basenji that used a Poisson loss, we perform
our regression with a mean squared-error (MSE) loss on log
of RPKM values.

Model selection and training

For model selection, we used the Adam optimization
method (36) and random search (see Supplementary Figure
S1). Hyper-parameter ranges and model-specific settings
are detailed in Supplementary Table S1. In each case a fifth
of the data is held out for test and 3-fold cross-validation
with early stopping is performed on the remaining part. The
mean of training losses is calculated at the stoppage points

and subsequently used as a stopping criterion when the final
model is trained on the entire cross-validation data. For all
models, the input length is a hyper-parameter between 200
and 2000 nucleotides, which for a 1-layer CNN it is sampled
at random. For the deeper models, the receptive field (the
maximum span in the input that affects activation prior to
the global pooling layer) is calculated (Supplementary Al-
gorithm S1), and randomly expanded up to twice to obtain
the input length. Input length of the base RPKM models
determines this length for subsequent classification for both
transfer-like and serial approaches. In the training and val-
idation sets, we augment the least frequent down-binding
classes with reverse complement sequences. Augmentation
is performed on all BA1-down examples, and on the remain-
ing classes only if their label count is below the augmented
BA1-down.

Input-level attribution with neural networks

In silico mutagenesis is performed using methods defined in
DeepBind (32), which we adapted for variable-sized regions
and model inputs (see Supplementary Data for details). For
each region of interest, a mutation map of all single-base
substitutions is created. From this map, individual impor-
tance of each nucleotide is calculated by summing change
in model prediction caused by mutation to the alternative
bases. For integrated gradients we evaluate using a zeros ref-
erence, as well as averaging the attribution with 10 enhancer
regions as references, obtained from non-differentially clas-
sified H3K27ac peaks without detected MEIS binding. We
determine the number of integration steps by calculating
summation-to-delta over a number of regions (Supplemen-
tary Figure S5). For all methods, we use raw logit activa-
tions preceding the final softmax layer. After obtaining at-
tribution, a sliding window approach is used to identify the
locations of strongest features in the dataset, and rank them
from strongest to weakest. In this application, the attribu-
tion is performed on the same dataset used for training.
Although generalization and overfitting are usually con-
sidered in terms of predictive loss, not feature attribution,
to ensure generalized features we additionally train models
holding out every fold of the data, and use them to attribute
over the held-out folds. We validate attribution using each
fold model individually, an ensemble of models, and a single
model trained on all the data.

Regularizing high-dimensional problems with multitask
learning

For a baseline we train a DeepBind-like 1-layer CNN di-
rectly on the classification dataset. To regularize this archi-
tecture, we adopt a transfer-like methodology, in which a
regression model is trained to predict RPKM values for all
tissues and replicates, and the convolutional layer is copied
to a new model and frozen (disabling gradient descent up-
dates during training, see Figure 3B). Model selection is
subsequently performed for the classifier parameters that
follow the convolution. Similarly, we perform model selec-
tion for a reference deep CNN using only the classifica-
tion dataset. We expect this model to overfit and be unsta-
ble due to being heavily over-parameterized, and therefore
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Figure 3. (A) Schematic of a deep architecture. Pooling and dilation blocks are repeated for desired number of times, dilation blocks having their outputs
concatenated. Number of blocks and other hyper-parameters are automatically optimized in the process of model selection. Input is a one-hot encoded
nucleotide sequence. One or more outputs can be specified for classification and/or regression with task-dependent activations and loss functions. (B–
D) Modes of regularization where latent variables of a larger dataset (regression, N targets) are used to regularize the training with a smaller dataset
(classification, C classes). (B) Typical use of transfer learning in 1-layer CNN. A convolutional layer is copied and frozen for training of the second model,
allowing for inference in terms of previously learned intermediate latent variables. (C) Serial architecture uses the output of the trained model as its input,
performing non-linear weighting of regression targets for classification. (D) Parallel architecture alternates between training model outputs in each batch.
In this architecture, latent variables are shared throughout model depth. Non-differential target is shared between up-binding and down-binding task
outputs if both are used.

adopt two regularization approaches. In the serial approach
(Figure 3C) a deep RPKM regression model is trained first
and frozen, mimicking the re-use of a convolutional layer
in a shallow CNN. The output log-RPKM values are used
as the input to a shallow classification network. This al-
lows for data-driven learning of the appropriate replicate
weighting based on labelling of classification regions. Im-
portantly, this approach exploits the sequential nature of
the classification labels originating from the regression val-
ues. Second, we create parallel models (Figure 3D) that con-
tain task-specific training paths jointly spanning most of
network depth, finally diverging to separate regression and
classification outputs. Two classification tasks (up-binding
and down-binding) can be specified with a shared non-
differential class. In this case, all of the shared parame-
ters are updated when the paths are alternatively trained in
batches, with the auxiliary regression loss not being part of
the early stopping criterion.

Evaluation

Model performance and attribution stability. The perfor-
mance of regression models is evaluated by Pearson (R)
and Spearman (Rho) correlation coefficient between each
replicate target prediction and ground truth on the held-

out test set. Between-replicate correlation within the same
tissue is reported as an expected upper bound of model per-
formance (see Table 2). Classification performance is eval-
uated by precision-recall curves for each class and area un-
der the curve (PR-AUC). Additionally, confusion matrices,
per-class recall and average class F1 score are calculated for
each model. For feature identification we prioritize recall
over precision, due to conservative labelling of differential
regions that increases the chance of real weakly differential
examples to be assigned non-differential ground-truth la-
bels. This is expected to lower precision, despite the models
identifying correct features. To measure stability of attribu-
tion to model initialization we train 10 models (using the
same data and hyper-parameters) and use them to attribute
over randomly selected 1000 BA1-down regions. For each
region a single feature is selected (see Supplementary Figure
S7), and 25 nt binary mask is created over this feature. The
binarised attribution is compared between model instances
by feature stability estimator (37) resulting in a score be-
tween 0 (random features) and 1 (identical features), which
is averaged for all tested regions.

Motif-centre Poisson test with ChIP-seq. Feature attribu-
tions are obtained for the BA1-down class from deep mod-
els, or k-mer counting annotations, and compared to two
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HOXA2 ChIP-seq replicates in BA2. HOXA2 is the domi-
nant co-factor of MEIS in this tissue (8), which allows for
direct validation of this class feature. To evaluate the identi-
fied locations, we select the strongest feature in each region
and test against a background assuming Poisson distribu-
tion of reads, similarly to MACS2 (1), using a 500 nt win-
dow around the feature, as in GEM (4) (see supplementary
for details). In order for a feature to pass the test a P value
< 0.05 is required for peak alignment with both of the ref-
erence replicates. For each method, we sort the features by
method-specific score from strongest to weakest and report
the proportion of features passing the test as the number of
included locations is increased.

RESULTS

Regularization with a large dataset allows training of deeper
and more stable models

By using regression data for model regularization we were
able to train deeper, highly parameterised models with a
wider receptive field, and obtain higher regression (Table
2) and classification performance (Figure 4; Supplementary
Tables S2 and S3) compared to shallow CNNs. Deep mod-
els also show increased attribution stability despite larger
model size (Table 3). Training a deep model without this
regularization results in poor predictive test performance
and less stable attribution. The addition of the up-binding
task in the 3-task parallel model increased overall predic-
tive performance and reduced the number of parameters
compared to the 2-task, but decreased the accuracy of BA1-
down attribution. During model selection, we varied the
number of dilation blocks and input size for each type of
model. We observed peak performance in predicting MEIS
RPKM using 3 pooling blocks and 7 dilation blocks, to-
talling 21 convolutional layers and over 4 million parame-
ters. Our best models include bottleneck layers with a strong
(x0.25-x0.5) dimensionality reduction and ReLU activation
(Figure 5).

During model selection, input length was automatically
optimized and the resulting models differ markedly in the
number of parameters. In particular, we observe that a 1-
layer CNN becomes significantly over-parameterised when
trained on a sub-optimal input length. The optimal 1-layer
model with 600 nt input has 9.6 times fewer parameters
to best performing model for a smaller 200 nt input, and
8.1 times fewer than model with 2000 nt input, resulting in
more stable attribution (see Table 3). The likely reason for
this behaviour is the 200 nt regions containing fewer real
features, and model overfitting to noise as a result. We also
tested performance of models with and without the reverse
complement (RC) augmentation of the least frequent BA1-
down class, observing significant increase in performance of
the 1-layer CNN (see Supplementary Figure S2 and Supple-
mentary Table S4). The increase in predictive accuracy does
not necessarily appear in the augmented class, but rather in
averaged F1 performance for all classes. The benefit of RC
augmentation is smaller for deeper models, which due to
increased non-linearity appear to generalize well to RC se-
quences.

Deep models significantly outperform shallow CNNs and k-
mer counting in identifying HOXA2 bound sites

Our architectures allow for identification of HOXA2 sites
bound in vivo with significantly higher precision than previ-
ously possible with k-mer methods, as shown in Figure 6A.
True HOXA2 sites are identified with higher accuracy than
Homer, even if the latter is allowed to see the ground-truth
data for counting (Homer known). Visualization in Figure 7
reveals example HOXA2 co-binding features discovered by
differential region classification based solely on the MEIS
ChIP-seq data. The models allow to identify sequence fea-
tures of any of the predicted classes; therefore, a 3-task
model can be used to identify binding features of relative
increased or decreased MEIS binding. Up-binding attribu-
tion of MEIS in PBA can uncover several types of features,
as many TFs cooperate in this region. Among those, GATA
is a known differential co-factor of MEIS in PBA, and can
be discovered as feature of PBA-upbinding, as shown in
Figure 8. Additional features of this class are shown in Sup-
plementary Figures S13 and S14. The 2-task parallel model
(trained only for the down-binding and regularized with re-
gression) performs best in attribution of the confidently la-
belled BA1-down regions. Transfer of regression parame-
ters in 1-layer CNN improves attribution performance com-
pared to training using only classification labels, but does
not match the performance of deeper models. Feature ac-
curacy of KSM and Homer used de novo is comparable
to 1-layer CNN in BA1-down regions. KSM outperforms
Homer for the most confident features, but shows lower ac-
curacy in a broader set of regions. Weaker performance of
KSM in our application is likely due to our method of input
annotation using ranked k-mer matches. The results suggest
that in this case a PWM can capture more context useful for
ranking than an ordered list of discrete k-mers. The compar-
ison of CNN models with gapped k-mer SVM on the BA1-
downbinding task indicates that CNNs outperform SVM in
predictive performance of binary classification (see Supple-
mentary Figure S9), as well as attribution performance in
predicting HOXA2 (see Supplementary Figure S10). Exam-
ple features obtained from SVM are shown in Supplemen-
tary Figure S11. CNNs benefit from GPU acceleration in
training and attribution (see Supplementary Tables S5 and
S6) and are therefore faster to create and evaluate given ap-
propriate hardware.

Differential analysis of MEF2D

In order to demonstrate the applicability of our approaches
on another dataset, differential analysis of MEF2D (38) was
performed across three mouse tissues (see Supplementary
Table S8), and the results are shown in the Supplementary
Data. Transfer-like 1-layer CNN, as well as deeper serial
models were created to regularize up- and down-binding
classification tasks with regression data. The models show
significant improvements over non-regularized CNNs, and
deeper models provide increase in predictive performance
over shallower ones (see Supplementary Tables S7, S9 and
S10, and Supplementary Figure S15). Example regions of
MEF2D co-binding with known TFs such as CRX (38)
and MYOD (39) were identified (see Supplementary Figure
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Figure 4. Test set precision-recall curves for the down-binding task. 1-layer CNN and deep, direct models were trained with classification dataset only.
Transfer, parallel and serial models used MEIS regression data for regularization.

Figure 5. (A) Validation loss of MEIS RPKM model selection when the 1× bottleneck layer is omitted, or used with linear or ReLU activation. (B) Vali-
dation loss for varying amount of dimensionality reduction (proportion of channels of preceding layer) caused by the bottleneck using ReLU activation.
(C) Validation loss as a function of total number of convolutional layers (including 1× with ReLU activation) for MEIS RPKM regression model.
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Table 2. MEIS cross-replicate and regression test correlation

Cross-replicate 1-l CNN Deep CNN

Tissue Replicate R Rho R Rho R Rho

BA1 1 0.605 0.634 0.43 0.39 0.51 0.46
BA1 2 0.605 0.634 0.34 0.32 0.4 0.38
BA2 1 0.685 0.690 0.42 0.42 0.47 0.47
BA2 2 0.685 0.690 0.44 0.42 0.52 0.5
PBA 1 0.644 0.652 0.44 0.42 0.52 0.51
PBA 2 0.710 0.728 0.53 0.52 0.59 0.59
PBA 3 0.683 0.704 0.52 0.51 0.57 0.58
PBA 4 0.708 0.725 0.54 0.54 0.6 0.61

Table 3. Attribution stability (BA1-down, 1000 regions, 10 models)

Type Input nt N. params Gradient*Input Integ. (16, z.) Mutagenesis

1-l CNN 200 335 652 0.29 0.17 0.29
1-l CNN 600 34 916 0.6 0.63 0.56
1-l CNN 2000 283 716 0.5 0.24 0.47
1-l Transfer 600 106 564 0.59 0.50 0.54
Deep, direct 1100 9 374 980 0.63 0.61 0.58
Deep, parallel, 2-task 2000 8 128 996 0.65 0.72 0.69
Deep, parallel, 3-task 800 2 119 180 0.5 0.72 0.68
Deep, serial 1000 4 346 908 0.72 0.8 0.74

Figure 6. Proportion of most confident features identified by differential analysis passing a Poisson test for alignment with both HOXA2 ChIP-seq repli-
cates. Regions labelled as BA1-down are tested. One strongest feature in each region is selected. Random indicates chance of randomly selected location in
the regions passing the Poisson test. (A) Comparison of CNNs with k-mer counting. Mutagenesis is used with CNN models. Homer known indicates using
Homer with published HOXA2 ChIP-seq data (shown for reference). (B) Attribution method comparison using 1-layer CNN. (C) Attribution method
comparison using deep parallel 2-task model.

S16), as well as other factors, some similar to previously re-
ported as MEF2 interacting partners in other systems (see
Supplementary Figure S17).

Mutagenesis performs similarly to integrated gradients in
nucleotide-level attribution

We observe on our dataset that mutagenesis (using a scor-
ing function from DeepBind, (32)) performs better or simi-
larly well to integrated gradients in attribution accuracy (see
Figure 6 and Supplementary Figure S3), particularly with
deeper models. Integrated gradients result in marginally
higher attribution stability (excluding sub-optimal 200 and
2000 nt 1-layer models, see Table 3). When specifying a
background reference, 10 real regions consistently outper-
form a single all-zero reference. While our tests indicate
that for the sum of attribution to reliably equal the differ-
ence in prediction (to within 5%) requires using as many as
512 integration steps (see Supplementary Figure S5), we ob-
serve that 16 steps perform nearly equally well for predicting

HOXA2 binding, despite providing over-complete attribu-
tion. In this case, exact completeness does not seem to be
necessary for prioritization of features. Gradient times in-
put is generally outperformed by more computationally in-
tensive methods, except for the 1-layer transfer-like CNN.
We infer that as the depth and non-linearity of models in-
creases, the gradient obtained at a single step is a poor pre-
dictor of model response to input perturbation. A signif-
icant increase in performance is observed when obtaining
scores before the final softmax (similarly to (40)) for both
integrated gradients and mutagenesis (see Supplementary
Figure S4).

Performance of attribution can be further increased by
training several models on different folds of the data, and
averaging their attribution, as shown in Figure 9. The ben-
efit is evident in case of 1-layer CNN trained without re-
gression data, and becomes smaller for transfer-like 1-layer
CNN and deeper models, which are more stable across folds
(see Supplementary Figure S8). Attribution with models
which held-out the regions during training enforces gener-
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Figure 7. (A) MEIS ChIP-seq profiles in a region differentially down-
bound in BA1 compared to BA2 and PBA. (B) Nucleotide-level muta-
tion map (and its 1D channel sum), shown in the central region marked
with black rectangles. Attribution of MEIS BA1-down differential class
using 2-task parallel model identifies HOXA2-binding site (ATCAATC).
(C) Reference HOXA2 ChIP-seq profile (not used for model training).

alized features, which appears to lower performance. The
results suggest that holding out data may be detrimental to
full attribution, especially for shallower models which are
less able to generalize.

DISCUSSION

In this work, we introduced CNN methods for identifica-
tion of DNA sequence features predicting differential and
cooperative TF binding. Using MEIS ChIP-seq data in
mouse BA tissues, we identified the binding locations of
tissue-specific co-binding partners through differential clas-
sification of MEIS-bound regions. Validation with HOXA2
ChIP-seq showed that CNN models trained on MEIS data
could reliably identify HOXA2 features in BA2, consistent
with a synergistic effect of HOXA2 and MEIS binding (8).
Our results indicate that deep learning offers significant ad-
vantages over k-mer methods in identifying functional fea-
tures in vivo, due to improved recognition of the context in
which the motif appears in the region. This manifests par-
ticularly when attributing a wider set of regions, less confi-
dent a priori (see Supplementary Figure S6). Deep models
lower the chances of false-positive attribution, and outper-
form Homer even if the latter is allowed to see the HOXA2
ChIP-seq used as the ground-truth. While our neural net-
works are able to recognize true binding sites with higher
accuracy, k-mer methods remain useful in our workflow

Figure 8. (A) MEIS ChIP-seq profiles in a region differentially up-bound
in PBA compared to BA1 and BA2. (B) GATA-binding site (AGATAAG)
is identified as a feature of differential MEIS up-binding in PBA. Attri-
bution was performed using mutagenesis and 3-task parallel model, and
shown in the central region marked with black rectangles. (C) Reference
GATA ChIP-seq profile in PBA (not used for model training).

for clustering and annotating the resulting short features
with known TF families. In a parallel work (41), cooperative
binding properties of TFs are explored based on regression
of ChIP-nexus profiles. Methods described here are distinct
in that a differential objective function between cell-types is
explicitly defined.

Training deep models on a relatively small and imbal-
anced classification dataset required using a larger set of re-
gions for regularization. While training parallel models for
a specific task provides accuracy benefit, it is also time con-
suming (see Supplementary Figure S12). The addition of
the up-binding task to the parallel model lowered the accu-
racy of the validated BA1-down attribution, despite increas-
ing overall predictive performance. This is likely due to a
decreased contribution of BA1-down class to the optimized
loss. We observe that the serial model provides good attri-
bution accuracy and stability, with the additional advantage
of low training cost for new classes, as long as they can be
predicted from regression targets. Inclusion of bottleneck
layers with ReLU activation works well in our application.
Since the hyper-parameter ranges used in model selection
constrain the receptive field below the maximum allowed
input size (2000 nt), ReLU appears to provide a benefit in
increasing the non-linearity of the model without increas-
ing the receptive field. We achieve the best results with the
highest tested dilation rate (4), suggesting a further increase
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Figure 9. Overfitting effects in BA1-down mutagenesis attribution vali-
dated with HOXA2 ChIP-seq (Poisson test, P < 0.05 in two ChIP repli-
cates). Five models were trained holding out different folds of randomly
shuffled data. Held out indicates each peak was attributed with model
which held out the region during training. Ensemble indicates using mean
attribution from all models. All data indicates using a single model, trained
on all the data.

of this parameter may be beneficial, especially for wider in-
puts.

Through evaluation of neural network attribution meth-
ods, we observe that single-nucleotide saturated mutagen-
esis performs well, and similarly to integrated gradients on
our dataset. This appears consistent with good performance
of mono-nucleotide models (such as (42)) indicating that
single-nucleotide perturbations have a strong effect on bind-

ing. In our opinion, approaches satisfying completeness, in-
cluding integrated gradients and DeepLift, are particularly
promising in domains where perturbation is less feasible
(when operating on real-valued input), and where back-
ground samples can be easily specified. While higher order
saturated mutagenesis becomes computationally infeasible,
not all combinations of substitutions are likely to be impor-
tant in a given region. We note, however, that perturbation-
based attribution is prone to adversarial effects and requires
models trained on a large enough datasets in order to gen-
eralize well to unseen mutation. Our work shows that using
deep learning, which increases non-linearity and provides a
wider input context to a model, is beneficial in uncovering
sequence features contributing to tissue-specific transcrip-
tional regulation.

DATA AVAILABILITY

For implementation and trained models please visit https:
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