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SUPPLEMENTARY MATERIAL

Model selection and training
Keras 2.2.4 and Tensorflow (GPU) 1.12.0 are used for
training, with Adam optimiser (1) (default settings). Hyper-
parameter ranges are given in table S1. The 1-layer CNN is
created by instantiating a 1-dimensional convolutional layer
(implicitly spanning channel depth =4) with given number of
filters and filter length, ReLU activation and stride =1. The
output of this layer is globally pooled by separate average
and max operations, and concatenated. Following layers
consist of batch normalisation, dropout, and an optional dense
layer with ReLU activation. Finally, model outputs are defined
with softmax (classification) or linear (regression) activations.

The deep models are constructed by instantiating a given
number of pooling blocks, followed by dilation blocks,
followed by a final convolutional layer with task-specific
outputs. The layers of a given block type share the same
hyper-parameters (are of the same size). Three pooling blocks
with a pooling rate of 2, and between 4 and 9 dilation blocks
were used for the tasks in this paper, however, number of
blocks in particular can be lowered or increased for other
datasets. The two types of blocks use different approaches
to receptive field expansion. Max-pooling is used initially
to reduce dimensionality and therefore lower memory
requirements. Residual blocks are added next, which connect
the outputs of each previous block to inputs of all the blocks
that follow. They use dilated (atrous) convolution in order to
preserve width and allow concatenation along the channel
dimension. Both types of blocks use bottleneck layers of
length-1 convolution (ReLU), with batch normalisation
before, and dropout after the bottleneck.

For training of transfer-like models, a 1-convolutional
layer CNN is trained first for the regression task, and the
convolutional filter parameters are subsequently reused in the
classification CNNs. Similarly, a serial model is constructed
by training a multilayer perceptron that follows the regression
model. In both cases, the transferred parameters are not
updated for classification to prevent overfitting. Parallel
models created here used the deep model settings, however
the concept of parallel training could be applied to any
architecture. The input to the model is shared across all
tasks, while the outputs are separate. Training is performed in
batches by alternating task-specific outputs. Different batch
sizes were used for regression and classification tasks, as
well as a scaling factor for the classification learning rate
(LRF). LRF divides the regression learning rate (0.001) and
its range should be adjusted to approximate the proportion
of regression to classification data. Sum of classification task
losses is used as a stopping criterion. Regression loss is not
used for early stopping.

Genomic regions are resized to desired model input width
(constrained between 200nt and 2000nt and rounded to
100nt, randomly sampled for 1-layer CNN; for deep
models, receptive field is calculated and multiplied by
expand RF hyper-parameter), one-hot encoded, and shuffled.
Classification tasks are optimised using categorical cross-
entropy loss after applying softmax activation in the final

layer. Regression is optimised using mean-squared error loss,
on log2 of RPKM counts. In order to report test performance
a fifth of the data is held-out. The remaining part is used
for 3-fold cross-validation. During the cross-validation
hyper-parameters are uniformly sampled at random from the
specified intervals. Models are trained on each of the 3 folds
until the validation loss ceases to improve for a specified
number of epochs (early stop). Up-sampling is used to handle
imbalanced data (sampling the same number of examples at
random from each class). Training loss is recorded at epoch
of lowest validation loss. Both training and validation losses
are averaged between the 3 folds. After a given number
of hyper-parameter sets is sampled, the set with the lowest
validation loss is selected. Model is then trained on the entire
cross-validation data until the corresponding mean training
loss is reached. Test performance of this model is reported on
the held-out set.

Number of CV iterations is given in table S1 and is
equal for all deep models, and larger for 1-layer CNNs due to
shorter training time. 50 CV iterations were used for 1-layer
CNN RPKM model. For validating the bottleneck layer (box
plots in Fig. 5) 100 iterations of CV were performed on
MEIS RPKM regression dataset, with 1x layer not present, or
present with x0.25, x0.5, or x0.75 dimensionality reduction
with equal probability. If the 1x layer was present, the
activation was linear or ReLU with equal probability. These
results were then sub-sampled to obtain 30 sets for MEIS
RPKM model with ReLU activation, which were used to
train the serial model. For stability validation, every transfer
and serial model also included a newly trained base RPKM
model.
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Table S1. Hyper-parameter ranges for MEIS model selection and final settings.

Hyper-parameter min max step up-binding down-binding RPKM
1-layer CNN

N. of filters 32 1504 32 416 192 800
Filter length 8 29 1 19 27 15

Dense (hidden) 0 160 32 128 32 64
Dropout 0 0.9 0.1 0.7 0.8 0.7

Input length 200 2000 200 400 600 600
Batch size 16 512 *2 256 16 256

CV iterations 200 - Training time:
Early stop (epochs) 10 - 95s 352s 1297s

1-layer - transfer
Dense (hidden) 0 160 32 32 32

Dropout 0 0.7 0.1 0.6 0.6
Batch size 8 128 *2 128 64

CV iterations 30 - Training time:
Early stop (epochs) 10 - 61s 38s

Deep, serial
Dense (hidden) 0 160 32 128 64

Dropout 0 0.7 0.1 0.3 0.3
Batch size 8 128 *2 64 16

CV iterations 30 - Training time:
Early stop (epochs) 10 - 37s 56s

Deep, parallel 3-task 2-task Deep
N. of filters (pooling) 32 512 32 320 288 192
Filter length (pooling) 3 24 1 16 18 17

Max-pooling rate 2 - 2 2 2
N. of blocks (pooling) 3 - 3 3 3
N. of filters (dilation) 32 384 32 224 256 352
Filter length (dilation) 3 7 1 3 7 4

Dilation rate 4 - 4 4 4
N. of blocks (dilation) 6 8 1 8 7 71

Channel reduction 0.25 0.75 0.25 0.25 0.5 0.25
Dropout 0 0.4 0.1 0.2 0.2 0.2

RF expansion2 1.0 2.0 0.1 1.2 2.0 1.2
Batch size 8 128 *2 128 16 64

Batch size (classification) 4 44 4 28 40 -
LRF3 (classification) 10 100 1 40 33 -

CV iterations 30 - Training time:
Early stop (epochs) 20 - 7135s 21672s 2717s
1 Search range in model selection of RPKM model was set between 5 to 10 blocks.

2 Multiplies receptive field to get input size.
3 Learning rate factor, divides learning rate for classification tasks.
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Classification test performance

Table S2. Test set prediction performance for classification tasks
(downbinding).

1-layer CNN
Real

Predicted BA1 down BA2 down PBA down Non-DB
BA1 down 327 52 375 4627
BA2 down 17 412 170 3919
PBA down 80 71 2749 8430
Non-DB 41 75 301 8459
Recall 0.7 0.68 0.76 0.33

PR-AUC 0.13 0.16 0.38 0.93
F1 avg. 0.284

1-layer CNN - transfer
Real

Predicted BA1 down BA2 down PBA down Non-DB
BA1 down 325 32 269 3964
BA2 down 38 469 238 5741
PBA down 52 40 2643 5523
Non-DB 50 69 445 10207
Recall 0.7 0.77 0.74 0.4

PR-AUC 0.18 0.17 0.47 0.93
F1 avg. 0.318

Deep model - direct classification
Real

Predicted BA1 down BA2 down PBA down Non-DB
BA1 down 238 14 161 1837
BA2 down 71 441 506 5604
PBA down 19 11 957 1920
Non-DB 137 144 1971 16074
Recall 0.51 0.72 0.27 0.63

PR-AUC 0.12 0.16 0.27 0.9
F1 avg. 0.332

Deep model - parallel, 2-task
Real

Predicted BA1 down BA2 down PBA down Non-DB
BA1 down 298 35 79 2273
BA2 down 14 372 61 2372
PBA down 56 36 2845 6226
Non-DB 97 167 610 14564
Recall 0.64 0.61 0.79 0.57

PR-AUC 0.22 0.23 0.52 0.95
F1 avg. 0.391

Deep model - parallel, 3-task
Real

Predicted BA1 down BA2 down PBA down Non-DB
BA1 down 353 44 216 3650
BA2 down 9 379 108 2345
PBA down 13 5 2028 2196
Non-DB 90 182 1243 17244
Recall 0.76 0.62 0.56 0.68

PR-AUC 0.19 0.22 0.52 0.94
F1 avg. 0.417

Deep model - serial
Real

Predicted BA1 down BA2 down PBA down Non-DB
BA1 down 410 75 327 6478
BA2 down 4 371 44 1743
PBA down 14 9 2394 3309
Non-DB 37 155 830 13905
Recall 0.88 0.61 0.67 0.55

PR-AUC 0.24 0.25 0.54 0.94
F1 avg. 0.394

Table S3. Test set prediction performance for classification tasks
(upbinding).

Deep model - serial
Real

Predicted BA1 up BA2 up PBA up Non-DB
BA1 up 270 21 81 2970
BA2 up 193 648 264 7650
PBA up 79 60 2907 6061
Non-DB 108 44 377 8754
Recall 0.42 0.84 0.8 0.34

PR-AUC 0.09 0.25 0.51 0.93
F1 avg. 0.308

Deep model - parallel, 3-task
Real

Predicted BA1 up BA2 up PBA up Non-DB
BA1 up 284 67 109 3106
BA2 up 68 427 47 2148
PBA up 58 92 2710 5461
Non-DB 240 187 763 14720
Recall 0.44 0.55 0.75 0.58

PR-AUC 0.08 0.2 0.48 0.93
F1 avg. 0.387
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Figure S1. Lowest validation loss and standard deviation (dashed line)
calculated over 100 permutations of hyper-parameter random search results.

Receptive field calculation
Receptive field is calculated as the maximum span in the
input sequence, change in which can affect the activation of
neurons prior to the global pooling layer, see algorithm 1.

Reverse complement augmentation
Reverse complement (a sequence of the complementary DNA
strand, obtained by swapping C and G, T and A, and reversing
order) is added to augment the the least frequent BA1-down
class, doubling the example count. We only augment other

Result: Receptive field sequence length (nt).
RF = 1;
stride = 1;
for Each layer do

if Convolutional then
RF += (kernel length - 1) * dilation rate *

stride;
end
else if Pooling then

RF += (pooling rate - 1) * stride;
stride *= pooling rate;

end
end

Algorithm 1: Receptive field calculation for multilayer
CNN.

down-binding classes if their example count is below the
augmented BA1-down, resulting in partial augmentation of
BA2-down. Other classes are not augmented. Augmentation
is performed after splitting data into training and validation
folds, to avoid leaking examples between them.

K-mer counting methods
For Homer results we used findMotifsGenome.pl module
to count in the differential regions, setting non-differential
regions as background. 200nt input length was used with
motif length k from 5 to 12. HOXA2 motif is the most
confident PWM in BA1-downbinding when counting de
novo and appears as (Pdx1(Homeobox)/Islet-Pdx1-ChIP-
Seq(SRA008281)/Homer) in known results. To annotate the
regions scanMotifGenomfeWide.pl module was used with
LOD=1 to find the motif genome-wide. Results were
intersected with MEIS BA1-down regions and a single
location with the highest LOD was selected in each region.

To obtain KSM/KMAC results we ran KMAC with MEIS
BA1-down fasta file, using non-differential regions fasta as
background. Motif length 5 to 12 was used. Similarly to
Homer, Hox is the first cluster in the resulting prediction. We
only considered k-mers in the first cluster and for each BA1-
down region identified the location of k-mer with the lowest
p-value.

Table S4. Reverse complement augmentation (downbinding PR-AUC)

1-layer CNN
BA1 down BA2 down PBA down Non-DB Avg. F1

no RC 0.11 0.12 0.31 0.91 0.25
RC 0.13 0.16 0.38 0.93 0.28

Deep model - serial
BA1 down BA2 down PBA down Non-DB Avg. F1

no RC 0.24 0.25 0.54 0.94 0.36
RC 0.24 0.25 0.54 0.94 0.39

Deep model - parallel, 3-task
BA1 down BA2 down PBA down Non-DB Avg. F1

no RC 0.19 0.21 0.51 0.93 0.38
RC 0.19 0.22 0.52 0.94 0.42
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Figure S2. Precision-recall curves for model selection with and without RC
augmentation. To increase class balance of BA1-down, only this class was
fully augmented. BA2-down was partially augmented to match the count of
augmented BA1-down. PBA and non-differential classes were not augmented.

Mutagenesis
Mutagenesis scores are obtained by changing each of the
bases in a region to its three alternatives and using the
scoring function defined in DeepBind supplementary material
(2). For classification models attribution is obtained from
class-specific activations preceding the softmax layer. Regions
larger than 2000nt are trimmed to this size around the centre,
for smaller regions mutations are evaluated only within the
original span. If the region is smaller than the input size of the
model, it is expanded and centred within the model input. For
regions larger than model input we use a sliding approach, in
which the attributed nucleotide is always centred in the input,
except when the nucleotide is positioned closer to region start
or end than half of model input width, in which case the input
is not moved past the region span.

Integrated gradients
Similarly to mutagenesis pre-softmax activations are used,
regions are trimmed to a maximum of 2000nt and centred
if smaller than model input. For regions larger than model
input attribution is performed in strides, with overlap bigger
or equal to 0.25 of model input width. Nucleotides with
overlapping attribution have their scores averaged. When
attributing using several references scores are combined by
arithmetic mean. Summation-to-delta in Fig. S5 is calculated
as |Sattr−Pd|/|Pd|, where Sattr is the sum of attribution
in a region, and Pd is the difference in model prediction
between the region and a reference. Values are calculated for
100 regions, 10 references each, and averaged.

Figure S3. Attribution method comparison for BA1-downbinding for all
deep learning models.

Attribution peak calling
For all used attribution methods the results are equal in size to
the one-hot input (region length * 4). Following attribution,
one dimensional per-nucleotide scores are obtained by
summing the 4 channels. For a given set of regions, strongest
features are identified using a sliding window approach. A
range of window lengths can be evaluated (11 to 25 in our
tests, increasing by 2). To identify locations of strongest
features of length k in r regions, based on 1-dimensional
attribution scores, we create a r*k scores array and convolve it
with a length-k vector of values all equal to 1/k, for all desired
values of k, and keep the maximum value for each nucleotide.
These scores are then sorted from strongest to weakest. To
avoid the sliding window prioritising offsets which avoid
strong negative scores, sorting is performed on absolute values
of attribution first, after which only a fixed number of strongest
features is kept (20000 for BA1-down regions only and 50000
for all MEIS regions). The remaining features are sorted again
based on their original (non-absolute) scores and non-positive
features are discarded (see Fig. S7 for ablation results). For
Poisson and stability tests we find a strongest single feature
per peak from the resulting list, if at least one feature is present
in a peak, and select the 25nt region around its centre.
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Figure S4. Attribution performance comparison when class posterior values
(obtained after final softmax) are used, compared to using raw unnormalised
logit values (default).

Figure S5. Relative difference between the absolute sum of attribution in a
region and the difference in prediction between the region and a reference
(summation-to-delta), as a function of increasing integration density of the
gradient. Values above zero indicate over-complete explanation (manifesting
as noisy attribution).

Figure S6. Model comparison for attribution performed in all MEIS-bound
regions.

Figure S7. Ablation of attribution peak calling method performed in BA1-
down regions. Window 25, or 11 to 25 (used in the paper), indicates the
window size in which the attribution is summed around each nucleotide,
keeping the maximum value. No abs. first indicates summing and ranking
performed on the attribution values directly, without using absolute values
first. Abs. only indicates using only absolute values of attribution.
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Figure S8. Overfitting effects in BA1-down mutagenesis attribution for all models. 5 models were trained holding out different folds of randomly shuffled data.
Held out indicates each peak was attributed with model which held out the region during training. Ensemble indicates using mean attribution from all models. All
data indicates using a single model, trained on all the data.

Poisson test
Poisson test is performed on the identified feature locations
using the approach in MACS2 (3), with 500nt window around
each feature as suggested in GEM (4). Test is performed
separately on two HOXA2 BA2 ChIP-seq replicates and
p<0.05 is required in both in order to pass. As in MACS2,
we calculate:

Λmax=max(ΛBG,Λ500,Λ1000,Λ5000,Λ10000) (1)

where ΛBG is the expected lambda value for a random 500nt
region, and the remaining lambdas are calculated for the
tested region in the corresponding sequence span. We perform
total count normalisation across IP and Input ChIP-seq to
make the values comparable, and use ppois command from
the R package (3.5.1) to obtain the p-value:
ppois(Current window count, Λmax, lower.tail = False).
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Comparison with LS-GKM SVM
The performance of BA1-downbinding classification was
compared to a gapped k-mer SVM method LS-GKM (5),
which was evaluated with two types of kernels: wgkm and
its radial basis expansion wgkmrbf. Since SVM models are
binary classifiers, the predictive performance was compared
with CNN models trained for binary task of classifying BA1-
downbinding regions against the non-differential background.
Precision-recall plot is shown in Fig. S9. Model selection for
1-layer CNN was performed for 50 iterations. CNN models
outperform SVM in this task even without regularisation with
regression data.

For attribution with SVM in-silico mutagenesis was used, as
well as GkmExplain (6). Results are shown in Fig. S10. For
this comparison, non-binary CNN models were trained on the
same classification data fold as the SVM. Therefore, unlike
the main paper results, this attribution was performed using a
single CNN model (fold 0) for the entire BA1-downbinding
set. LS-GKM performs well in identifying the most confident
features, and performs similarly to a shallow CNN, but is
outperformed by the serial model as the number of included
regions is increased. GkmExplain outperforms other methods
in the top range, but the performance declines in the less
confident regions to the advantage of mutagenesis. SVM with
wgkm kernel outperforms wgkmrbf, and models trained on
600nt regions have better performance to those trained on
200nt. Fig. S11 illustrates the strongest features obtained from
the SVM model by mutagenesis and GkmExplain. While the
latter results in smoother features, it is perhaps detrimental to
precise ranking.

Figure S9. Comparison of CNN and LS-GKM SVM trained on a binary
classification task. Transfer and serial models used regression data for
regularisation. LS-GKM was trained with wgkm or wgkmrbf kernel and 200nt
or 600nt region length. AUC shown in brackets.

Figure S10. Comparison of attribution performance between CNN, Homer,
and SVM in BA1-downbinding regions. CNNs used were the multitask
models used throughout this chapter. LS-GKM models and Homer were
trained on the binary classification tasks. For attribution with LS-GKM
mutagenesis was used (mut.), as well as GkmExplain (EXP) with default
settings.

Figure S11. Strongest feature in BA1-downbinding regions identified by LS-
GKM with wgkm kernel using in-silico mutagenesis (top) and GkmExplain
(bottom).
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Time of model selection and attribution
Fig. S12 shows the total time it would take to perform model
selection, including that of RPKM models, if a single GPU
was used. In practise, model selection was performed in
parallel on several nodes. Training times of models with
known hyper-parameters are given in table S1. The majority
of time spent on creating serial and transfer-like models is
consumed by model selection of the base models, which
can be reused for subsequent tasks. In training the shallower
models, larger batch size can noticeably speed up the process
due to better utilisation of GPU memory.

The comparison of model creation time between CNN,
SVM and Homer was performed on a binary dataset, and
the results are shown in table S5. Although deep learning
models can take a long time to train, 1-layer CNNs for direct
classification can be created from scratch in around an hour,
which is much faster than LS-GKM on this dataset. However,
comparing creation time between models is approximate, as
the optimisation is performed with different hardware. In this
work, neural networks were trained on a cluster consisting
of Nvidia V100-SXM2 GPUs and Intel Skylake CPUs, with
8 CPU cores per GPU, benefitting from GPU acceleration
in training and attribution. SVM and Homer were trained on
Intel Broadwell CPUs with a total of 28 cores. Since these
models do not require extensive hyper-parameter tuning, a
single training time is reported.

Time of attribution per 1000 regions is given in table S6. CNN
models were tested at their native input size, with batch size
close to the limit imposed by GPU memory (16GB).

Figure S12. Validation loss on the down-binding task as a function of cross-
validation time on a V100 GPU. Transfer and serial models are offset by a
delay required to train their corresponding MEIS RPKM models (for 50 and
30 CV iterations respectively). Thin dashed lines represent standard deviation
over 100 random permutations of the sampled hyper-parameter sets. Thick
dashed lines represent final losses.

Table S5. Model creation time comparison, binary task
(BA1-downbinding/non-differential, 600nt).

Model 1-layer CNN LS-GKM Homer
model selection training

Time 1h 35m 31s 76s 11h 27m 51s 1h 54m 23s

Table S6. Attribution time comparison, 1000 regions.

Model Input nt. Method Time
wgkmrbf 600 GkmExplain 2h 32m 14s
1-l CNN 600 Mutagenesis 1m 47s

Grad.*Input 117ms
Integ. 16 (zeros) 2s

Integ. 512 (zeros) 54s
Integ. 16 (10 refs) 17s

Integ. 512 (10 refs) 9m 18s
Deep CNN 1000 Mutagenesis 12m 24s

Grad.*Input 484ms
Integ. 16 (zeros) 8s

Integ. 512 (zeros) 4m 7s
Integ. 16 (10 refs) 1m 18s

Integ. 512 (10 refs) 41m 33s
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MEIS up-binding features in PBA
HOX factors are known for their posterior prevalence, a
phenomenon in which posterior HOX TFs (expressed in
more posterior tissues) override the function of more anterior
HOX. The parallel 3-task model was used to identify MEIS
co-binding partners in PBA. Unlike in BA2, MEIS exhibits
several co-binding partners in PBAs, examples of which are
illustrated in Fig. S13.

In order to cluster the features based on the underlying
sequences, locations of highest ranked sites were identified in
the PBA-upbinding regions using 25nt sliding window, and
sorted by attribution sum. K-mer counting was performed in
100 thousand strongest features. Each feature was assigned
the Homer annotation of a PWM with the highest sequence
correlation. Fig. S14 shows maximum alignment of PBA-
upbinding features with the PWMs.

Figure S13. Example features of MEIS up-binding in PBA. MEIS exhibits several co-binding partners in this tissue. HOXA3 and GATA were validated by
ChIP-seq. Forkhead (FOX) and HAND were validated by alignment with the known PWM annotated by Homer.
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Figure S14. Correlation of strongest PBA-upbinding features with PWMs identified by Homer. Features were obtained from a 3-task parallel model using
mutagenesis. Maximum cross-correlation with the underlying sequence and its reverse complement was calculated, and averaged across 500 ordered regions.
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MEF2D differential binding
MEF2D is a TF broadly expressed in a wide range of cells,
regulating the development of tissues including neuronal,
muscle, and retina (7). It was shown to cooperate with CRX
in mouse retina, allowing binding to non-specific motifs (8).
ChIP-seq data from mouse was analysed (retina: 3 replicates,
cortical neurons: 4 experiments, myotubes: 2 replicates),
and regions of up-binding and down-binding were identified.
Sample counts are shown in table S8. For the baseline, 1-layer
CNN classifiers were trained directly. For RPKM regression,
a 1-layer CNN was trained for use with transfer-like models,
and a deep CNN was trained for serial models, using between
1 and 5 dilation blocks in model selection (final setting =4).
Predictive performance of regression is shown in table S7,
indicating that deep CNN increases performance over 1-layer
model. Classification performance is shown in Fig. S15
and table S9 and S10. Models regularised with regression
result in significantly higher AUC than CNN trained directly.
Deep, serial models exhibit higher PR-AUC than transfer-like
models for most classes. Transfer-like CNN shows increased
recall of the non-differential class, and results in highest
F1 score in the down-binding task. The cortical neuron
up-binding and retina down-binding classes show smaller
variation in performance likely due to low example count
and weak motif enrichment (top motif p-values identified
by Homer are 1e-18 and 1e-19 respectively in those classes,
counting against shuffled background).

Both transfer-like and serial models were subsequently used
to obtain features of each class. In particular, Fig. S16
illustrates two example regions where differential features of
MEF2D up-binding in retina consist of neighbouring MADS-
domain and CRX binding sites. Example features for all
classes are shown in Fig. S17. MADS binding sites appear as
features for all up-binding classes, suggesting that co-factors
and the surrounding sequence are important for specific
differentiation. The models uncover known co-factors, such as
CRX in retina (8) and MYOD in mytoubes (7). Other possible
co-factors were also identified, such as BATF in myotubes and
cortical neurons (or other AP-1 factor, previously reported to
interact with MEF2C by (9)), OTX in myotubes down-binding
(a CRX-like factor), and IRF4 in cortical neurons up-binding
(reported to interact with MEF2 in B-cells, (10)).

Table S8. Differential labelling of MEF2D-bound regions.

Type Count Avg. length (nt)
Increased binding
Cortical neurons 414 268.7

Retina 2344 510.7
Myotubes 3133 487.2

Decreased binding
Cortical neurons 452 629.0

Retina 604 395.5
Myotubes 2358 423.2

Non-differential 80131 306.3
All MEF2D 96529 323.6

Table S7. MEF2D cross-replicate and regression test correlation.

Cross-replicate 1-l CNN Deep CNN
Tissue Replicate R Rho R Rho R Rho

Cortical neurons 1 - - 0.603 0.625 0.627 0.651
Cortical neurons 1 - - 0.516 0.513 0.564 0.562
Cortical neurons 1 - - 0.542 0.547 0.583 0.585
Cortical neurons 1 - - 0.385 0.364 0.386 0.366

Retina 1 0.493 0.508 0.408 0.388 0.418 0.398
Retina 2 0.461 0.458 0.314 0.295 0.328 0.313
Retina 3 0.499 0.508 0.381 0.365 0.392 0.382

Myotubes 1 0.708 0.671 0.667 0.597 0.712 0.649
Myotubes 2 0.708 0.671 0.59 0.564 0.657 0.645
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Table S9. Test set prediction performance for MEF2D classification (upbinding).

1-layer CNN
Real

Predicted Cortical neurons up Retina up Myotubes up Non-DB
Cortical neurons up 56 50 106 3743

Retina up 8 344 144 4621
Myotubes up 9 54 351 5375

Non-DB 3 7 39 2285
Recall 0.737 0.756 0.548 0.143

PR-AUC 0.056 0.158 0.071 0.962
F1 avg. 0.127

1-layer CNN - transfer
Real

Predicted Cortical neurons up Retina up Myotubes up Non-DB
Cortical neurons up 48 34 44 1964

Retina up 5 332 68 1780
Myotubes up 10 51 420 4827

Non-DB 13 38 108 7453
Recall 0.632 0.73 0.656 0.465

PR-AUC 0.064 0.313 0.104 0.977
F1 avg. 0.267

Deep CNN - serial
Real

Predicted Cortical neurons up Retina up Myotubes up Non-DB
Cortical neurons up 60 33 50 3219

Retina up 1 363 40 1229
Myotubes up 10 42 439 5140

Non-DB 5 17 111 6436
Recall 0.789 0.798 0.686 0.402

PR-AUC 0.062 0.432 0.152 0.974
F1 avg. 0.273
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Table S10. Test set prediction performance for MEF2D classification (downbinding).

1-layer CNN
Real

Predicted Cortical neurons down Retina down Myotubes down Non-DB
Cortical neurons down 51 19 78 2552

Retina down 13 66 60 5891
Myotubes down 5 2 240 891

Non-DB 17 33 99 6690
Recall 0.593 0.55 0.503 0.417

PR-AUC 0.068 0.011 0.322 0.983
F1 avg. 0.235

1-layer CNN - transfer
Real

Predicted Cortical neurons down Retina down Myotubes down Non-DB
Cortical neurons down 59 13 35 1419

Retina down 10 74 22 5148
Myotubes down 7 4 353 1546

Non-DB 10 29 67 7911
Recall 0.686 0.617 0.74 0.494

PR-AUC 0.14 0.018 0.417 0.987
F1 avg. 0.264

Deep CNN - serial
Real

Predicted Cortical neurons down Retina down Myotubes down Non-DB
Cortical neurons down 77 18 38 2044

Retina down 3 72 17 6803
Myotubes down 3 1 388 1667

Non-DB 3 29 34 5510
Recall 0.895 0.6 0.813 0.344

PR-AUC 0.175 0.03 0.475 0.989
F1 avg. 0.223

Figure S15. Test set precision/recall curves for the MEF2D differential tasks. 1-layer CNN was trained directly on the classification data. Transfer and serial
models used regression data for regularisation.
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Figure S16. Example regions of MEF2D differential up-binding in mouse retina compared to myotube and cortical neuron tissues. Differential features were
identified by a serial model using mutagenesis. PWMs for MEF2D and CRX were aligned to the underlying sequence and shown in the position of highest
cross-correlation. CRX RPKM features are shown below, as well as CRX ChIP-seq profile in expanded regions. RPKM features were obtained from a model
trained on CRX ChIP-seq data (not used to train the differential model).
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Figure S17. Example features of MEF2D differential binding in mouse retina, myotube, and cortical neuron tissues, identified by transfer-like or serial models
using mutagenesis. Homer annotation of the enriched k-mers is shown below the differential tracks.
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