
Neural Comput & Applic (1997)6:19-41 
�9 1997 Springer-Verlag London Limited Neural 

Computing 
& Applications 

Combining Linear Discriminant Functions with Neural 
Networks for Supervised Learning 

Ke Chen 1'2, Xiang Yu 1 and Huisheng Chi 1 

~National Laboratory of Machine Perception and Center for Information Science, Peking University, Beijing, China; 2Department 
of Computer and Information Science and The Center for Cognitive Science, The Ohio State University, Columbus, OH, USA 

A novel supervised learning method is proposed by 
combining linear discriminant functions with neural 
networks. The proposed method results in a tree- 
structured hybrid architecture. Due to constructive 
learning, the binary tree hierarchical architecture 
is automatically generated by a controlled growing 
process for a specific supervised learning task. 
Unlike the classic decision tree, the linear discrimin- 
ant functions are merely employed in the intermedi- 
ate level of the tree for heuristically partitioning a 
large and complicated task into several smaller and 
simpler subtasks in the proposed method. These 
subtasks are dealt with by component neural net- 
works at the leaves of the tree accordingly. For 
constructive learning, growing and credit-assignment 
algorithms are developed to serve for the hybrid 
architecture. The proposed architecture provides an 
efficient way to apply existing neural networks (e.g. 
multi-layered perceptron) for solving a large scale 
problem. We have already applied the proposed 
method to a universal approximation problem and 
several benchmark classification problems in order 
to evaluate its performance. Simulation results have 
shown that the proposed method yields better results 
and faster training in comparison with the multi- 
layered perceptron. 

Keywords:  Constructive learning; Divide-and-con- 
quer; Linear discriminant function; Modular and 
hierarchical architecture; Multi-layered perceptron; 
Supervised learning 

Correspondence and offprint requests to: K. Chen, Department of 
Computer and Information Science and The Center for Cognitive 
Science, The Ohio State University, Columbus, OH 43210-1277, 
USA. Email: kchen@cis.ohio-state.edu. 

1. Introduction 

Neural networks, particularly Multi-Layered Per- 
ceptrons (MLPs), have already been found to be 
successful for various supervised learning tasks [1- 
11]. Both theoretical and empirical studies have 
shown that the neural network is of powerful capa- 
bilities for pattern classification and universal 
approximation which are typical supervised learning 
tasks. Homik et al. [12] and Irie and Miyate [13] 
proved that a three-layered MLP with an infinite 
number of nodes in the hidden layer can also solve 
arbitrary mapping problems. However, the problem 
of training an MLP is NP-complete [14], and there- 
fore all existing algorithms are heuristics; which 
results in that the training of an MLP often suffers 
from a slow convergence property, though some 
methods have been suggested to tackle the problem 
[15,16]. In addition, the exact number of hidden 
layers and neurons in a hidden layer, as well as 
connectivity between layers, must be specified 
before learning can begin. For this problem, how- 
ever, the aforementioned theoretical results on the 
MLP are of little practical value, since they cannot 
be utilised to determine an exact number of hidden 
layers and neurons in a hidden layer. Although some 
statistical techniques have been recently borrowed 
for model selection [1,17,18], most of them are 
involved in a time-consuming procedure for practical 
use. Thus, the network architecture must be determ- 
ined by trial and error. To overcome the difficulty 
in determining a neural network architecture prior 
to training, practical approaches for dynamic neural 
network architecture generation have been sought 
[19-21]. However, these models do not specify in 
what exact sequence a neuron should be added to 
give the maximum effect in classifying training 



20 K. Chen et al. 

examples and keep the slow convergence property, 
since they still suffer from serious catastrophic inter- 
ference in both spatial and temporal crosstalk during 
training. As a result, both determination of a neural 
network architecture and fast training still remain 
important research topics in the neural network com- 
munity. 

On the other hand, supervised learning has been 
studied for a long time in the pattern recognition 
community. The decision tree is one of the most 
efficient tools for supervised learning in the pattern 
recognition community [22-29]. In general, decision 
trees are hierarchical structures which use a sequen- 
tial decision making strategy to handle a supervised 
learning task. At each internal node of a decision 
tree, a test is evaluated to decide which child node 
the feature vector will be sent to, while the leaves 
of the decision tree are used to deal with unknown 
data. In decision tree approaches, linear discriminant 
functions or hyperplanes are commonly used for test 
and decision [22,26,27]. The traditional approach to 
the training of a decision tree has been to first 
generate a set of possible hyperplanes, and then 
exhaustively search this set to find the best hyper- 
planes with respect to some distortion metric 
[22,26,27]. In most decision tree approaches, the 
hyperplanes are constrained to be perpendicular to 
the feature space axes. This is very restrictive, and 
can result in a large number of hyperplane tests, 
even in a linearly separable problem [26], if the 
separating hyperplane is not perpendicular to the 
feature space axes. Indeed, there are some decision 
tree approaches which allow for non-perpendicular 
hyperplanes [22-24,28,29], but these algorithms used 
are computationally expensive due to the large 
search space of hyperplanes that needs to be evalu- 
ated. In comparison with neural networks, however, 
the merits of decision trees are that there is no 
problem of determining an architecture prior to the 
training in the  design of a decision tree, and the 
performance of a linear decision tree is basically 
similar to an MLP's for a specific task [30,31]. As 
a result, many researchers in the neural network 
community have recently considered hybrid struc- 
tures between decision trees and neural networks. 
Although these techniques were developed as neural 
networks whose structure could be automatically 
determined, their outcome can be interpreted as 
decision trees with nonlinear splits [32-39]. In most 
of these hybrid structures, a small neural network at 
each node of the tree classifier is used to implement 
nonlinear and multivariate splits instead of a hyper- 
plane in decision tree approaches. Accordingly, the 
neural tree is automatically generated by training 
the neural network at each node instead of searching 

for the best hyperplane with some distortion metric 
in decision tree approaches. Basically, such neural 
trees follow the principle underlying decision trees, 
i.e. non-overlapping (Chard') split in each nonter- 
minal node, and only one class label associated with 
each leaf node [34,37-39]. For generalisation, a 
pruning procedure is also needed in these neural 
trees, as in decision tree approaches such as the 
Classification And Regression Tree (CART) [22]. 
The other hybrid techniques between decision trees 
and neural networks use elaborate methods for con- 
verting a decision tree into a neural network, and 
then retraining it [32,36]. However, these techniques 
can be only used in simple pattern classification 
problems, and their performance for a real world 
problem remains unknown. Since neural networks 
at all nodes of the tree need a time-consuming 
training procedure like MLP, most of these hybrid 
systems still suffer from slow training though their 
performance could be improved to some extent. 
More recently, Jordan and Jacobs [40] presented a 
tree-structured modular neural network architecture 
called Hierarchical Mixture of Experts (HME). In 
the HME architecture, gating networks sit at the 
nonterminal nodes and expert networks sit at the 
leaves of the tree. The structures of gating and 
expert networks could be different. The use of the 
gating network distinguishes the HME from other 
tree-based algorithms which make a 'hard' decision 
in the input space, in contrast to the 'soft' method 
of the HME, which allows adjacent clusters to over- 
lap. The HME can be used in both regression and 
pattern classification tasks. However, the problem of 
determining an architecture prior to training is still 
encountered in practical use of the HME [41,42]. 

Unlike the aforementioned work, an alternative 
tree-structured architecture is proposed in this paper 
based upon our earlier work [43] for supervised 
learning. The principle of divide-and-conquer is 
directly employed in the proposed architecture, 
which results in a new binary tree-structured hybrid 
architecture. Unlike their use in decision trees, linear 
discriminant functions or hyperplanes sitting at non- 
terminal nodes merely play a 'divide' role to heuris- 
tically partition a large and complicated problem 
into several smaller and simpler problems, while 
neural networks (e.g. MLPs) sitting at the leaves of 
the tree play a 'conquer' role to solve those smaller 
and simpler problems. Motivated by the ide~/under- 
lying the HME, we adopt a 'soft' method to partition 
the input space such that there might be an overlap- 
ping between two adjacent partitioned input data 
subsets. As a result, a tree-structured hybrid architec- 
ture can be automatically generated during training 
for a specified task through use of the proposed 



Combining Linear Discriminant Functions with Neural Networks 21 

constructive learning algorithms. For an unknown 
pattern during test, the output of the generated archi- 
tecture is produced by combining outputs of neural 
networks at the leaves of the tree with 'credits' 
assigned by the constructive learning algorithms. On 
the basis of the framework, moreover, some tech- 
niques are also introduced to the constructive learn- 
ing algorithms in order to speed up training and 
to control the size of a generated architecture for 
generalisation. To evaluate the performance of the 
proposed architecture, we have already applied the 
proposed architecture to several hard supervised 
learning tasks, including pattern classification and 
function approximation. Simulations have shown that 
the proposed architecture yields both satisfactory 
performance and fast training for supervised learning 
tasks. In particular, experimental results have also 
suggested that the performance of the proposed 
architecture is insensitive to architectures of compo- 
nent neural networks, which implies that the pro- 
posed architecture, to a large extent, could avoid 
the problem of determining an architecture prior 
to training. 

The remainder of this paper is organised as fol- 
lows. Section2 reviews two linear discriminant 
functions employed in the proposed method. 
Section3 describes the proposed architecture and 
constructive learning algorithms. Section4 reports 
simulation and comparative results in great detail. 
Discussions and conclusions are presented in the 
last section. 

2. Linear Discriminant Functions 

In this section, we review two linear discriminant 
functions used in the proposed method. One is 
Fisher's linear discriminant function [44], and the 
other is a specific linear discriminant function rel- 
evant to the normal density [45]. 

2 . 1 .  F i s h e r ' s  L i n e a r  D i s c r i m i n a n t  F u n c t i o n  

One of the recurring problems encountered in apply- 
ing statistical techniques to pattern recognition is 
the so-called curse of  dimensionality. That is, pro- 
cedures that are analytically or computationally man- 
ageable in low-dimensional spaces can become com- 
pletely impractical in a space of high-dimensions. 
To tackle the problem, Fisher's suggestion [44,45] 
was to look for the linear function which maximises 
the ratio of the between-class scatter to within-class 
scatter. The use of this method can find a linear 
combination of the variables such that the values 

are as close as possible within classes, and as far 
apart as possible between classes. Suppose that we 
have a set of N p-dimensional samples X~,...,XN, N1 
is the subset N1 labelled ~ol and N2 in the subset 
~2 labelled ~o 2. If we form a linear combination of 
the components of x, we obtain the scalar 

y = w T x (1) 

and a corresponding set of N samples Yl,'",YN div- 
ided into the subsets ~ and ~2. Based upon Eq. (1), 
the sample mean for the projected points is given by 

rh~ 1 2  w T 
= Ni ys% . y = m i (2 )  

where mi = 1 / N i E x ~  x. If we define the scatter for 
projected samples labelled ~o~ by 

g2 = 2 (y _ rh~)2 (3) 
y~O',ot i 

Fisher's linear discriminant function is thus defined 
as the linear function wTx for which the criterion 
function 

Irh~ - ra~] ~ 
J(w) - ~12 + ~ (4) 

is maximum, where [ffh-n52[ = [wT(m~-m2)[ 
according to Eq. (2). 

To obtain J as an explicit function of w, we 
define the scatter matrices S~, the within-class scatter 
matrix Sw and the between-class scatter matrix SB, 
respectively, by 

& = 2~2 ( x  - m ~ ) ( x  - m i )  T (5 )  

x c ~ f  i 

S W  = SI  -1- $2 (6) 

Se = ( m l  - m2)(ml - m2) w (7) 

Using Eqs (2) and (3) and these definitions, we 
can obtain 

and 

~ + S~ : w T Sww (8) 

In51 - rh2l 2 : w T SBw (9) 

Thus, the criterion function J in Eq. (4) can be 
rewritten as 

wTS~w 
J(w) - wTSw w (10) 

This expression is well known as the generalised 
Rayleigh quotient. If Sw is nonsingutar, the final 
solution [45] is 



2 2  K. Chen et al. 

w = S~(m, - m2) (11) 

Thus, we have obtained Fisher's linear discriminant 
function, the linear function with the maximum ratio 
of between-class scatter to within-class scatter. 

2.2. A Linear Discriminant Function for the 
Normal Density 

In the Bayesian decision, the minimum-error-rate 
classification can be achieved by use of the discrim- 
inant functions [45] 

gi(x) = log p(xl~oi) + log P(ooi) (12) 

where wi is the label of class i, p(xl~o~) is the 
conditional probability density for x and P(ooi) is a 
priori probability. If the densities p(x[o)~) are multi- 
variate normal, i.e. p(x{~oi)- N(m/,s then 

1 
gi(x) = - ~ (x - m J  r 2;-l(x - mi) 

P log 2~ - -  1 log]~i[ 

+ log P(oo:) (13) 

where x is a p-component column vector, mi is the 
p-component mean vector and s is the p-by-p 
covariance matrix. 

Let us examine this result for the special case: 
~ = o-21, where I is the identity matrix. After ignor- 
ing some unimportant additive constants from 
Eq. (13), we can obtain the simple discriminant 
functions 

IPx - m lf 2 
gi(x) - - 2o_2 + logP(w/) (14) 

where I1" I[ is the Euclidean norm, with 

IIx - m,l l  ~ = ( x  - m S ( x  - m 3  (15) 

Expansion of the quadratic form ( x -  m f ( x -  m~) 
in Eq. (14) yields 

1 
g~(x) - - 20-2 [xxa" - 2m~x + m~m~] 

+ log P(wi) (16) 

which appears to be a quadratic function of x. After 
ignoring an additive constant xTx from Eq. (16), we 
obtain the equivalent linear discriminant functions 

gi(x) = w/rx + Wio (17) 

where w~= 1/o -2, m~ and Wio = -  1 /2~  m~m~ + 
log P(w~). According to Eq. (17), we can obtain the 

decision boundary between class i and class ./" by 
the linear equations g/(x)= gj(x) 

wT(x - Xo) = 0 (18) 

where 

and 

W = m i - -  m j  (19) 

1 
x0 : ~ (me + mj) 

o2 ~ P( ooi) 
I[mi - m:[[- log ~ (m: - m:) 

(20) 

Equation(18) provides another linear discriminant 
function which defines a hyperplane through the 
point x0 and orthogonal to the vector w. Since 
w = m i -  m:, the hyperplane is orthogonal to the line 
between the means. If P(wi)= P(wj), then the point 
x 0 is halfway between the means and the hyperplane 
is the perpendicular bisector of the line between the 
means. If P ( w i ) r  P(w:), the point x0 shifts away 
from the more likely mean. Note, however, that if 
the variance o -2 is small relative to the squared 
distance Ilm/- mjll 2, then the position of the decision 
boundary is relatively insensitive to the exact values 
of the a priori probabilities [45]. 

3. Archi tec ture  and Construct ive  
Learn ing  Algor i thms  

In this section, we propose a self-generating hybrid 
architecture for a supervised learning task by com- 
bining linear discriminant functions and neural net- 
works (e.g. MLPs). A heuristic splitting rule is 
proposed to divide a large and complicated task into 
two smaller and simpler subtasks in the section. 
Accordingly, constructive learning algorithms, i.e. 
growing and credit-assignment, are also presented 
to support the proposed architecture. The growing 
algorithm is developed to automatically generate a 
structure by recursively using the splitting rule and 
training subnetworks for a specific task during learn- 
ing, while the credit-assignment algorithm is 
designed to produce the final output for unknown 
data by combining the outputs of neural networks 
during the test. 

3.1. The Hybrid Architecture 

The basic idea underlying the proposed architecture 
is to use hyperplanes defined by linear discriminant 



Combining Linear Discriminant Functions with Neural Networks 23 

Fig. 1. A typical tree-structured architecture which can be auto- 
matically generated by the proposed method during training (H: 
hyperplane; NN: subnetwork (neural network). 

functions for recursively partitioning a large task 
into several smaller subtasks, and to use neural 
networks, hereinafter called subnetworks, for finally 
solving these subtasks. Based upon the idea, a tree- 
structured architecture is automatically generated by 
a controlled growing process for a specific super- 
vised learning task. As illustrated in Fig. 1, the 
architecture generated using the proposed method is 
a binary tree structure, in which hyperplanes sit at 
nonterminal nodes and subnetworks sit at the leaves 
of the tree. During training, each hyperplane at the 
nonterminal node can be determined according to a 
heuristic splitting rule. A subnetwork is trained on 
a data set ~. The training of the subnetwork will 
terminate once a pre-specific condition (failure 
condition) is satisfied. In this circumstance, the cur- 
rent subnetwork is aborted from the node, and a 
new hyperplane determined by the splitting rule is 
created, and sits at the current node instead of the 
aborted subnetwork. As a result, the data set ~ used 
for training the aborted subnetwork is partitioned by 
the hyperplane into two adjacent subsets ~z and ~r, 
where ~ = ~ U ~r and ~ 7 / ~  ~ 4~ (4 ~ denotes the 
null set). Accordingly, two subnetworks are created 
and trained on ~z and ~ ,  respectively. Such a one- 
step splitting process is illustrated in Fig. 2. The 
aforementioned recursive procedure proceeds until 
all subnetworks created at the leaves of the tree 
satisfy another condition (success condition). As a 
result, the proposed method transfers the problem of 
determining an appropriate architecture of a neural 
network for a given task to the problem of finding 

Hyperplane } 

Subnetwork Replaced ::~ Subnetwork ork 

f,a  ar  

Fig. 2. A one-step splitting process when the failure condition 
defined for splitting is satisfied. This one-step splitting process 
proceeds recursively during growing until all subnetworks created 
satisfy the success condition defined to terminate splitting. 

a tree of the right size. During the test, the unknown 
data is fed to the root node and a series of decisions 
are made traversing paths down to the leaves of the 
tree due to the overlapping (~l A ~ r ~b). The final 
result is produced by combining results produced 
by subnetworks at the leaves of the tree. 

3.2. Splitting Rule 

In the proposed method, a splitting rule consists of 
two parts: determining a hyperplane for partitioning 
a data set into two adjacent data subsets; and sel- 
ecting an appropriate size of the overlapping region 
between two adjacent data subsets. For determining 
a hyperplane, we propose three heuristic criteria 
for different learning tasks based upon the linear 
discriminant functions described in Sect. 2. Given a 
training data set ~ with N p-dimensional samples 
Xl,..-,XN, the mean m of all samples in ~ can be 
computed by 

1 
m = ~ ~ x (21) 

x E ~  

For pattern classification, moreover, N samples are 
assumed to be associated with K classes, Ark in the 
subset ~ labelled wk, k = 1,...,K and ~ 1  Nk= N. 
For all samples labelled by w~ in the case of pattern 
classification, its 'mean mk can be achieved by 

1 
m k = ~  ~ x ,  k = l , . . . , K  (22) 

x ~  k 

For all samples in ~,  we can find two means of 
samples labelled by o% and wk~, say mko and m~, 
subject to 

limbo - m~,[I = m a x  lime- m:ll (23)  
l<--ij<--K 

where II-II is the Euclidean norm in Eq. (15). In the 
sequel, we shall develop criteria merely based upon 
samples labelled by O)~o and o)k~, except that they 
are not available. 

Criterion 1 
For the samples labelled by O)~o and wk,, we look 
for Fisher's discriminant function based upon the 
method described in Sect. 2. As a result, we can 
compute the within-class scatter matrix Sw using 
Eqs (5) and (6). If the matrix Sw is nonsingular and 
Ilmko-mklll ~ 0, accordingly, we can obtain the 
Fisher's linear discriminant function by Eq . ( l l ) ,  
that is, 

w = S~(mko - mk,) (24) 



24 K. Chen et al. 

Therefore, a hyperplane can be determined using w 
in Eq. (24) as 

/(x) = wT[  (__Nko 
X - \Nko + Nk, m~~ 

+ Nko + N~I mk~ = 0 (25) 

Criterion 2 
In Criterion 1, Fisher's linear discriminant function 
will be not available if the within-class scatter matrix 
Sw is singular in Eq. (24). In this case, we use 
the decision boundary described in Eqs (18)-(20) to 
determine a hyperplane for use in the splitting rule 
instead. Since the hyperplane is merely used to 
heuristically partition a data set, the hyperplane is 
determined by the linear discriminant function in 
Eq. (20), regardless of any information on density 
in this circumstance. When Ilmko- mklll ~ 0, it is 

[ m k ~  (26) l(x) = w T x 2 

where w = mko - mk~. 

Criterion 3 
It is obvious that both Criteria 1 and 2 will be 
invalid when [[m~o- mk~]l = 0. In addition, Criteria 1 
and 2 cannot be used for splitting in a regression 
task, since no class label is available. For this case, 
we adopt a heuristic way to determine a hyperplane 
as follows: the training data set should be partitioned 
into two almost equal size subsets. Therefore, the 
hyperplane could be 

I(X) = mY(x -- m) = 0 if m r 0 or 

l ( x ) = x f x = 0  if m = 0  (27) 

where w = m  i f m  ~ 0~or w = x r i f m = 0 ;  x~is 
a sample in ~ and randomly chosen. 

For pattern classification, criteria are used for 
determining the hyperplane in the splitting rule in 
this order of priority: Criterion 1 if the within-class 
scatter matrix Sw is nonsingula r and H 
mko - m~,ll r 0; Criterion 2 if Ilmko - mkl[I 7 ~ 0 and 
Criterion 3. For regression or function approxi- 
mation, Criterion 3 is merely used for determining 
the hyperplane in the splitting rule. Since we adopt 
the 'soft' method to partition data sets, an overlap- 
ping factor ~ is also needed for determining the 
size of an overlapping region between two adjacent 
data subsets in the splitting rule. Once both the 
hyperplane /(x)= 0 and the overlapping factor ~ are 
determined, the splitting rule is defined as follows: 
for the sample xi in ~, 

xi ~ ~l ifl(x) --< D; 

xi E ~r i f l ( x ) - - > - D  (28) 

where D=*/Do and ~/> 0". The value of Do 
depends upon the criterion used for determining the 
hyperplane l(x)= 0 in the splitting rule. In Criteria 
1 and 2, Do is equal to min{ 
dko,dkl } where dko and dkl denote the distances from 
means mko and mka to the hyperplane / (x)=0,  
respectively. In Criterion 3, D o is equal to dma• 
where dmax denotes the maximal .one among dis- 
tances from all x in �9 to the hyperplane /(x)= 0. 

Intuitively, the splitting rule suggests a hyperplane 
which intends to segregate those data belonging to 
the two classes, such that the distance between their 
centroids is the furthest among all classes for pattern 
classification, or partition a large data set into two 
smaller data subsets with an almost equal number 
of samples for regression or function approximation. 
Moreover, the overlapping defined by the splitting 
rule is effective to maintain the balance of the 
number of significant samples used to train two 
subnetworks for pattern classification, or to keep the 
smooth property of a function at the boundary of 
two adjacent data subsets for function approxi- 
mation. As a result, Fig. 3 illustrates how the split- 
ting rule works through the use of different criteria, 
and only partial data labelled with wk o and ~ok~ in 
appears in (a) and (b) of Fig. 3. It is worth noting 
that the cases depicted in Fig. 3 are merely special 
examples. In fact, any two data subsets with distinct 
labels could be overlapping (instead of separation 
in Fig. 3) for the general case. Anyway, the splitting 
rule always works as shown in Fig. 3. 

3.3. Construct ive  Learning  Algor i thms 

As mentioned above, the constructive learning algor- 
ithms consist of a growing algorithm and a credit- 
assignment algorithm in the proposed method. 

In general, the growing algorithm provides a pro- 
cedure to automatically generate a binary tree for a 
given task. There are at least two issues worth 
considering in developing the growing algorithm; 
that i s ,  splitting and stopping rules. The splitting 
rule has been described in the preceding section. 
Here, we only consider the stopping rule, and 
develop a growing algorithm using both the splitting 
and stopping rules. For controlling the growing pro- 
cess, we define two kinds of conditions, called 

* If the number of samples in ~ is N~e, the value of "q must be 
chosen under the condition that max{N~,N~} < N  where 
N~ and N% are numbers of samples in ~t an~ ~ respectively. 



Combining Linear Discriminant Functions with Neural Networks 25 

XI > 

~r 

< X ~' 

L I 

i I 

(a) (b) (c) ~ 

Fig. 3. A diagrammatic procedure demonstrates how the splitting rule works with different criteria. (a) criterion 1; (b) criterion 2; 
(c) criterion 3. 

success and failure, respectively. To formally define 
these two conditions, first we introduce several thre- 
sholds,~ to two kinds of conditions. Let us denote 
IT, ET and Smi, as the upper bound of epochs, Mean 
Square Error (MSE) of a subnetwork during training, 
and the lower bound of the number of samples in a 
training set for training the subnetwork, respectively. 
Thus, the success condition is defined as follows: 
E1 <-- ET if and only if I <- IT or N~e --< Smin, where 
I, Ez and N~e denote the epochs of training a subnet- 
work, the value of MSE of the subnetwork after I 
epochs and the number of samples in the training 
sets ~,  respectively. Intuitively, the success con- 
dition means that the training set for a subnetwork 
is not partitioned into two smaller training subsets, 
and the node at which the subnetwork is located is 
one of leaf nodes in the tree generated. Furthermore, 
we introduced another threshold to the failure con- 
dition to speed up training by dividing a large task 
into several smaller subtasks prior to training any 
subnetwork. We denote Sma• as the threshold of the 
maximal number of samples used to train a subnet- 
work. Accordingly, the failure condition is defined 
as follows: I > I r and E I > E r and N~ > Smi n or 
N~--> Smax, where N~e is the number of samples in 
the training set ~.  Intuitively, the failure condition 
means that the current training set must be divided 
into two smaller subsets, and the node with the 
training set is only a nonterminal node in an inter- 
mediate level of the generated tree (or only a hyper 2 
plane can be located at the node): Therefore, the 
stopping rule is defined as follows: when a subnet- 
work satisfies the success condition, it will reside 
at the leaf node and the growing process at the leaf 

t One may also use other constraints beyond the thresholds 
mentioned here to define both success and failure conditions for 
more efficiently controlling the growing process for a specific 
problem. 

node will stop; otherwise, the satisfaction of the 
failure condition results in the use of a splitting rule 
to continue the growing process. When the success 
condition is satisfied, two cases will still need con- 
sidering further. If I <- I T and E I ~ Er, training of 
the subnetwork on ~ terminates. If N~ --< Smjn, how- 
ever, the training of the subnetwork on ~ is pro- 
longed by iterating Kprx IT (Kpr > 1) epochs then 
stop, where KpT is hereinafter called the prolong- 
training factor. Based upon both the splitting and 
stopping rules, the growing algorithm is summarised. 

Growing Algorithm 

1. Initialisation. Input the training set ff corre- 
sponding to the given task. Set ~ *---~-. Select a 
subnetwork architecture and an existing learning 
algorithm for training the subnetwork. Initialise 
the weight matrix of the subnetwork as Wo. Set 
the overlapping factor ~ and prolong-training 
factor KVT. Set thresholds IT, ET, Sm~n and Sm~x. 

2. Let N~ denote the number of samples in ~. Use 
the splitting rule in Eq. (28) to partition ~ into 
~l and ~r  if N~e > Smax. 

3. Set ~ , - - ~  and go to step 2 if Ng > Smax. Set 
'-- ~r  and go to step 2 if N~e > Smax. 

4. For a training set ~,  create a chosen subnetwork 
and train it on ~ using the chosen learning 
algorithm with the initial weight matrix Wo, until 
either the success condition or the failure con-" 
dition is satisfied. 

5. If the failure condition is satisfied, use the split- 
ting rule in Eq. (28) to partition the current 
into ~ and ~ r .  Randomly perturb the weight 
matrix of the subnetwork at the current node on 
~,  and put the perturbing version of Wo into W~ 
and Wr. Set  ~ *---~l and Wo ~ Wl, then go to 
step 4. Set ~ and WO~---Wr, then go to 
step 4. 



26 K. C h e n  e t  al. 

6. If the success condition is satisfied, the subnet- 
work will reside at the leaf node. Moreover, stop 
the training of the subnetwork on ~ if I--< 17- 
and EI -- ET; otherwise (N~ --< Smin), continue to 
train the subnetwork by iterating Kpr x Lr epochs, 
then stop the training. 

7. Repeat from step 4 to step 6 until all created 
subnetworks at the leaves of the tree satisfy the 
success condition. 

For unknown data during testing, the output pro- 
duced by the proposed tree-structured architecture 
could depend upon several subnetworks at the leaves 
of the tree, since the 'soft' method is adopted in 
the splitting rule. To draw the final result according 
to the outputs produced by subnetworks, we develop 
a credit-assignment algorithm. To serve for develop- 
ment of the algorithm, we first define two func- 
tions as 

G(x) : 

and 

1 x < - D  

O - x  
- D < _ x < _ D  

2D 

0 x > D (29) 

OD+ x x < - D  

C~(x) = D <-- x <-- D 

12D x > D 
(30) 

For Eqs(29) and (30), it is easy to show that 
C~(x) + Cr(x) = 1. Thus, the credit-assignment is sum- 
marised. 

Credit-Assignment Algorithm 

1. Initialisation. Let x. denote an unknown pattern 
for test. c~ = 1 and p o i n t e r  +-- r o o t .  /(x) = 0 
is the hyperplane which resides at the current 
nonterminal node pointed by the p o i n t e r .  

2. If /(x,) ----- D, do a ~-- c~ x C~[/(x,)] and 
pointer ~- pointer --* leftchild. 

3. If /(x.) --> -D,  do c~ ~-- c~ x C~[/(x,)] and 
pointer ~-pointer--* rightchild. 

4. Repeat steps 2 and 3 until credits are assigned 
to all the subnetworks which x, can reach. 

The credit-assignment algorithm provides a way 
to assign credits to all the subnetworks at the leaves 
of the tree for unknown data. Suppose that N, is 
the set of subnetworks at the leaves of the tree that 
an unknown pattern x,  can reach; the output of the 
tree-structured hybrid system, O(x,), is 

O(x.) = ~ c~i(x.) x Oi(x.) (31) 
i E N  u 

where o~(xu) is the credit assigned to the ith subnet- 
work and Oi(x,) is the result produce d by the ith 
subnetwork (i E N,). 

4. Simulations 

This section presents simulation results on a variety 
of problems that have appeared in the literature. 
Most of them have been viewed as benchmarks in 
machine learning [46], and a function approximation 
problem has also been used to evaluate the perform- 
ance of the proposed hybrid architecture. All of 
these problems were solved on a SUN Sparc II 
workstation, and programs were written in the C 
language. In simulations, three-layered MLPs were 
chosen as the architectures of subnetworks for use 
in the proposed hybrid architecture. To simplify the 
presentation, we denote a three-layered MLP with 
ni input neurons, nh hidden neurons and no output 
neurons as the MLP with ni-nh-n o or MLP (ni-nh- 
no). For training MLPs in the growing algorithm, 
the Levenberg-Marquat method, a second-order 
algorithm [16,47], was employed for parameter esti- 
mation of all the subnetworks, instead of the stan- 
dard Back-Propagation (BP) learning algorithm. For 
the proposed tree-structured hybrid architecture, we 
denote a generated tree with NH nonterminal nodes 
and NMLp terminal nodes as the tree with (Nm 
NMLp). The resulting tree-structured architecture for 
a specific task is hereinafter called the Modular 
Tree, denoted as MT (nl-nh-no) if the architecture of 
subnetworks are the MLP with ni-nh-no. In addition, 
we have conducted more than one simulation for 
each problem using different architectures of the 
subnetworks (or MLPs) to see if the performance 
of the proposed hybrid system is sensitive to the 
architectures of component neural networks or sub- 
networks. For the purpose of comparison, we have 
applied MLPs individually to all problems, and the 
two-fold cross-validation technique was used to sel- 
ect an appropriate architecture from multiple candi- 
dates for a specific problem, except that for the 
problem an appropriate architecture of the individual 
MLP has been suggested in the literature. For some 
problems, we have also applied classic methods, 
such as decision trees, to those problems for the 
purpose of comparison. In the sequel, we describe 
all the experimental results in detail. 



Combining Linear Discriminant Functions with Neural Networks 27 

Table 1. Classification of irises: generalisation ability of modular trees when the number of 
samples in the training set is 21. 'no. of errors' stands for number of classification errors and 
is averaged over five trials corresponding to five randomly chosen training sets with 21 
samples. During training, thresholds in the growing algorithm are chosen as follows: I t =  8, 
Er= 0-03, S ..... = 20, S m i  n = 9 and the prolong-training factor Ker= 2.0. The architecture of 
subnetworks is the MLP with 4-3-3. 

Overlapping factor ~ 0-3 0.4 0.5 0.6 0.7 0-8 0.9 

No. of errors 5.4 5.0 5-0 4.8 4.8 4.6 7.0 
architectures (N/4, NMLp) (1,2) (1,2) (1,2) (2,3) (2,3) (2,3) (3,4) 

Table 2. Classification of irises: generalisation ability of modular trees when the number of 
samples in the training set is 30. 'no. of errors' stands for number of classification errors and 
is averaged over five trials corresponding to five randomly chosen training sets with 30 
samples. During training, thresholds in the growing algorithm are chosen as follows: Iv= 10, 
Er= 0.03, S .... = 29, Sm~. = 9 and the prolong-training factor Ker= 2.0. The architecture of 
subnetworks is the MLP with 4-3-3. 

Overlapping factor ~ 0-3 0.4 0.5 0.6 0.7 0.8 0.9 

No. of errors 4.0 4.2 4.2 4.2 4.6 5-2 7-0 
architectures (N,, NML,~ ) (1,2) (2,3) (2,3) (3,4) (3,4) (3,4) (4,5) 

Table 3. Classification of irises: generalisation ability of modular trees when the number of 
samples in the training set is 60. 'no. of errors' stands for number of classification errors and 
is averaged over five trials corresponding to five randomly chosen training sets with 60 
samples. During training, thresholds in the growing algorithm are chosen as follows: IT= 10, 
Er= 0.02, S .... = 59, S m i  n = 12 and the prolong-training factor Ker= 2.5. The architecture of 
subnetworks is the MLP with 4-3-3. 

Overlapping factor ~/ 0-3 0.4 0.5 0.6 0.7 0.8 0.9 

No. of errors 4-2 4.8 4.4 4.6 3-6 4.6 5.2 
architectures (Nm NMLp) (1,2) (2,3) (3,4) (3,4) (4,5) (4,5) (5,6) 

4.1. Classification of  Irises 

The classification of irises is a famous benchmark 
problem in pattern recognition. Fisher used the data 
set in his classic paper on discriminant analysis 
[44], and the data set has since become a favourite 
example in pattern recognition [45]. Irises are classi- 
fied into three categories: setosa, versicolor and 
virginica. Each category consists of  50 samples. 
Each sample possesses four attributes: sepal length, 
sepal width, petal length and petal width. In experi- 
ments, a subset of data was randomly chosen for 
training, and the remaining data were used for test- 
ing. The generalisation ability of a modular tree was 
evaluated by mean prediction error. For reliability, 
we randomly selected five subsets of data as training 
sets for a specific number of samples. An MLP 
with 4-3-3 was first chosen as the architecture of  

subnetworks in the proposed tree-structured hybrid 
architecture, and different overlapping factors in the 
splitting rule were also investigated in the experi- 
ments. Tables 1, 2 and 3 show the generalisation 
capabilities of the resulting modular trees in terms 
of different overlapping factors when the number of 
samples is 21, 30 and 60 in the training sets, 
respectively. It is obvious that the performance of 
a resulting modular tree is highly influenced by the 
overlapping factor in the splitting rule. We also 
report results produced by the individual MLP with 
4-4-3, the method of structural learning with forget- 
ting viewed as a method which can yield better 
generalisation than the standard BP algorithm [48], 
as well as the proposed method for comparison, in 
Table 4. In the same table, we also report the results 
produced by modular trees in which the architecture 
of  subnetworks was the MLP with 4-4-3 (other 



28 K. Chen et al. 

Table 4. Classification of irises: generalisation ability. 'no. of errors' stands for the 
number of classification errors for test data and is the average over five trials starting 
from different initial connection weights. SLF (4-4-3) and MLP (4-4-3) respectively 
denote the method of structural learning with forgetting of the MLP with 4-4-3 and 
the individual MLP with 4-4-3. The overlapping factors used for generating modular 
trees are 0-8, 0.3 and 0-7 when numbers of the training sets are 21, 30 and 
60, respectively. 

No. of samples No. of errors 

Training Test SLF (4-4-3) MLP (4-4-3) MT (4-3-3) MT (4-4-3) 

21 129 6.8 16.2 4-6 4.6 
30 120 5-0 6.4 4.0 4.2 
60 90 5-2 4.8 3.6 3.6 

Table 5. Classification of iris: averaging CPU time of training different architec- 
tures for all experiments. 'no. of samples' denotes the number of samples in a 
training set. (unit: second.) 

No. of samples MLP (4-4-3) SLF (4-4-3) MT (4-3-3) MT (4-4-3) 

21 54-8 86.4 21.6 22.8 
30 61.5 103.8 23.6 24-7 
60 106.8 163-4 29.8 31.3 

parameters in the growing algorithm remained 
unchanged for generating modular trees), in order 
to investigate whether the performance of resulting 
modular trees is influenced by different architectures 
of  the subnetworks. All averaging training times for 
the different methods are listed in Table 5. Accord- 
ing to Table 4 and 5, modular trees generalise better 
than the individual MLP, as well as the method of 
structural learning with forgetting, and yields faster 
training. From Table 4, in particular, the use of 
different architectures of the subnetworks in modular 
trees yields a quite similar generalisation perform- 
ance. This implies that the performance of the modu- 
lar tree is insensitive to the architecture of its subnet- 
works (MLPs) for the classification of iris problem. 

4.2. Two Spirals Problem 

A well-known benchmark in the neural network 
community is the so-called two spirals problem, as 
illustrated in Fig. 4. It consists of  194 two-dimen- 
sional vectors lying on two interlocked spirals, 
which are the classes in this case. The task is to 
construct a classifier which can distinguish between 
the two classes. The benchmark is interesting 
because, due to the low data dimensionality, it is 
possible to visualise the decision regions of the 
network during and after training. Moreover, it 

seems to be a rather difficult task for typical feedfor- 
ward neural networks (e.g. MLPs with sigmoidal 
activation functions). Lang and Witbrock [49] could 
not solve the problem with a standard MLP, and 
had to use additional connections to achieve conver- 
gence. Fahlman and Lebiere [19] used a constructive 
learning algorithm to solve the problem successfully. 
The problem has since been popular in the neural 
network community, and has been extensively used 
for evaluating both nonlinear separability and gener- 
alisation ability of a neural architecture. Here, we 
use the benchmark to evaluate the performance of 
the proposed tree-structured architecture. 

In simulations, all parameters used in the growing 
algorithm are as follows: ~/= 0.08, K e r =  3, I t =  10, 
Er - -  0.01, Smax = 90 and Smin = 20. We adopt MLPs 
with 2-2-1 and 2-3-1 as the architectures of the 
subnetworks, respectively, for two independent 
simulations. The resulting decision regions of modu- 
lar trees in which subnetworks are MLPs with 2-2- 
1 and 2-3-1 are, respectively, shown in Figs 5 and 
6. The resulting decision regions produced by two 
modular trees with different architectures of subnet- 
works are slightly different. For the two spirals 
problem, it implies that the performance of modular 
trees seems insensitive to the architectures of  the 
subnetworks. Furthermore, it is worth noting that the 
resulting modular trees with different architectures of  



Combining Linear Discriminant Functions with Neural Networks 29 

-I- 

4- 

'0 + 

+ 
<> 

<> 

4- 

+ 

4- 

+ 

0 
4- 

0 + 

+ 
<> 

4- 

0 

+ <> 

+ 

0 + 

4- 4- 
4- 

+ 

<) 

<> 4- 4- 4- 
+ 

4- 

+ <> 

4- § + <> + 4- 4- 
<~ 4- 

+ 
O + ~ < > O O < ' O O O  

o + -~_ <> 
. + +  § g 

~, 4 -+++4-_ t_+  + <> 

O + <~ <> <~ <> ~> 0 

4- 4- 
+ + 

4- 4- 4- 4- 

<> <> 

~' <> O r 

+ 
+ -t- 

<> <> 

+ 

-4- 

O 
O + 

+ <> 
+ + 

+ O 

O + 

<> 
+ + 

+ O 
+ + 

+ 

+ O + <> 

+ 
C' 

+ + <> 
+ <> 

+ 
+ <~ <~ 

~> + 

+ 

+ <> 

4- 
<> 

C, 

+ 

+ 

+ 

Fig. 4. The two spirals problem (training data). 

Fig. 5. Decision regions produced by the Modular Tree (2-3-1) 
for the two spirals problem. 

Fig. 6. Decision regions produced by the Modular Tree (2-2-1) 
for the two spirals problem. 

subnetworks share the same architecture, which is 
depicted in Fig. 7. To visualise the process of grow- 
ing a modular tree during training, we diagrammati- 
cally show how the input space is split up in Fig. 8. 
In addition, we have also applied the MLP with 2- 
5-5-5-1 and additional connections suggested by 
Lang and Witbrock [49] and the cascade correlation 
achitecture [19] to the two spirals problems on the 
same workstation. As a result, the CPU time of 
training modular trees and those architectures are 
listed in Table 6 for comparison. Although both the 
special MLP and the cascade correlation can also 

produce approximately correct resulting decision 
regions, the modular trees yield faster training. 

4.3. Waveform Recognit ion Problem 

The synthetic waveform recognition problem was 
first introduced [22] to study the behaviour of Classi- 
fication And Regression Tree (CART). It is a three- 
class problem based on the waveforms h~(t), h2(t) 
and h3(t), depicted in Fig. 9. Each class is a random 
convex combination of two of these waveforms. The 



30 K. Chert et at. 

)4 ( H ) S LH) 6 (. H) ;" 

@ Hyperp lane r ~  MLP wltt l  ,-R-, or 2-3-1 ~ F M ~  

Fig. 7. The modular tree (subnetworks are MLPs with either 2-3-i or 2-2-1) for the two spirals problem. Each label corresponds to 
a specific hyperplane used for partitioning input space (see Fig. 8). 

i 
2 1 

t 
i 
i 

, o 

o I + e 
O + "~ + 

+ .4.'~, + O 

* + --g '"  +"%,'- ,o + 
o + 10 . , ,4r  ,~,, " , ,"- , ,e 8 o 

t ,4"'+~, + +',,~ "'-4 L +_ 

I, ,O + 5 / ~  31 / ' o / '  ~+f+++++ ",I~ "?r o " '- . ,  
1 . . ' "  - " "  + "g"  I :  ++ ",<' " ' ,  " . . . .  

. . . . . . . . . . . . . .  ~ ;__+_ ___~;;__4_z~. _.~__~ ~l .__~_~.___~i____N~____~_f l_~____4___,x.~_7..~.-__-O.--pf~ . . . . .  2 ~ z - -  

" " - -  + ",~ 2 ",  % l .+-,~..fO 46.- / .- '" "-- o - ", ~ + ' , 1 4 < > c ' ~  + ,  ~ .  I .  o 13+/ 
15 " ' * ' -  +- o , , \  +2", 1 +~.z; <, /'-~ . - "  

""- ._ " - - ~ _ ~ Z + , . . ~ +  ,' 9-'" + "*" 

" " "  ' ~  o "" ^ ~" +#" 
+ ^ ;--..-,,. ,.+..- / o  

,, +--.,+.. + -+-'" ,~ + 

+ ~ ^ "Cy" ~ i 
+ ~ o $, ~' 211 + 

1 ,q- 
+ + + + I 

i 
/ 

3 

Fig. 8. The process of partitioning input space for the two spirals problem and each labelled line segment corresponds to a hyperplane 
in the modular tree (the resulting modular tree structure is illustrated in Fig. 7). Note: the overlapping region between any two adjacent 
clusters is not depicted in the figure. 



Combining Linear Discriminant Functions with Neural Networks 

Table 6. The two spirals problem: CPU time of training different architectures. (unit: 
second.) 

MLP (2-5-5-5-1) Cascade-Con'elation MT (2-2-1) MT (2-3-1) 

CPU time 3429 236 112 116 

31 

hl  h2 h3 

/ 
10 

\ 
2O 15 A 

Fig. 9. Three basic waveforms in the waveform recognition 
problem. 

pattern vector is obtained by sampling 21 points 
and adding noises. Hence, the components of the 
pattern vector are given as follows: 

For class 1, 

xi = Uhl(i) + (1 - u)h2(i) + el ,  

i = 1,...,21 

For class 2, 

xi = uhl( i )  + (1 - u)h3(i) + Ei , 

i = 1,...,21 

For class 3, 

xi = uh2(i) + (1 - u)h3(i ) + ei ,  

i = 1,...,21 

Here u is a uniform random variable on the interval 
[0, 1], and ei,...,E21 are independent Gaussian ran- 
dom variables with zero mean and unit variance. 
The three classes have equal a pr ior i  probabilities. 
Breiman et al. [22] reported that the Bayesian mis- 
classification rate for this problem is approxi- 
mately 14%. 

In simulations, we randomly produced seven inde- 
pendent training sets ranging in size from 500 to 
2000 samples. For each training set, a modular tree 

with the specific architecture of subnetworks was 
generated. During testing, an additional set of 5000 
independent samples was employed to obtain the 
error rate, so that the performance of modular trees 
generated on distinct training sets can be respect- 
ively evaluated. In experiments, the architecture of 
the subnetworks was chosen as the MLP with either 
21-12-3 or 21-15-3, and other parameters used in 
the growing algorithm are as shown in Table 7. As 
a result, 14 architectures of the resulting modular 
trees are shown in Table 8, and the error rates 
produced by the resulting modular trees are illus- 
trated in Fig. 10. It is evident from Fig. 10 that 
modular trees with different architectures of the 
subnetworks yield a performance similar to the 
waveform recognition problem. For comparison, we 
also illustrate testing results produced by the 
resulting modular trees with MT (21-12-3), CART 
with two different splitting rules [22] and an individ- 
ual four-layered MLP consisting of 21 neurons in 
the input layer, 20 neurons in the first hidden layer, 
five neurons in the second hidden layer and three 
neurons in the output layer [34] in Fig. 11. Accord- 
ing to Fig. 11, it is shown that modular trees outper- 
form CART in all cases, and the four-layered MLP 
when the number of samples in the training set is 
1000, 1250, 1500 and 1750. In addition, the CPU 
times of training the individual MLP and modular 
trees are shown in Table 9 for comparison. It is 
evident from this table that the proposed method 
yields significantly faster training than the individual 
MLP for the problem, though the Levenberg-Mar- 
quat learning algorithm was used for training both 
the individual MLP and subnetworks of modular 
trees. 

4.4. Speaker Independent Vowel Recognition 

To explicitly investigate the generalisation capability 
of the proposed method, we performed experiments 
with a speaker independent vowel recognition prob- 
lem. The data used was collected by Deterding [50], 
who recorded examples of the 11 steady-state vow- 
els of English spoken by 15 speakers for a speaker 
normalisation study. Eleven words including 11 
vowel sounds were recorded, and each word was 
uttered once by each of the 15 speakers, seven of 



32 K. Chen et al. 

Table 7. The waveform recognition problem: parameters used in the growing algorithm and'architectures 
of resulting modular trees. 'no. of samples' stands for the number of samples in a training set. 

No. of samples 500 750 1000 1250 1500 1750 2000 

Overlapping factor ~1 0.9 0.6 0.6 0.6 0-4 0.4 0.3 
Prolong-training factor Ker  3-0 2.5 2.5 2.5 2-0 2.0 2-0 
Threshold Iv 20 20 20 20 20 20 20 
Threshold Er 0-4 0-4 0.4 0-4 0.4 0.4 0.4 
Threshold Sma~ 450 700 800 900 800 950 1100 
Threshold S~i~ 50 75 100 125 150 175 200 
Architectures (Nm NMLp) (1,2) (l,2) (2,3) (6,7) (5,6) (6,7) (5,6) 

Table 8. The waveform recognition problem: resulting structures of modular trees on 
use of different architecture of subnetworks. 

No. of samples 500 750 1000 1250 1500 1750 2000 

MT (21-12-3) (1,2) (1,2) (2,3) (6,7) (5,6) (6,7) (5,6) 
MT (21-15-3) (1,2) (1,2) (2,3) (5,6) (5,6) (6,7) (6,7) 

20 

19 , ~  - Modular Tree with MLP (21-12-3) 
'k 

18 ~ -- Modular Tree with-MLP (21-15-3) 

16 

15 x ~ ~  

14' ~ / i 
500 1000 1500 2000 

samples size 

Fig. 10. Error rates of modular trees with different architecture 
of subnetworks on the waveform recognition problem. Each 'o' 
or 'x' corresponds to the result produced by a generated modular 
tree trained on an independent training set. 

w h o m  were female and eight male. The speech 
signals were low pass filtered at 4.7 kHz and then 
digitised to 12 bits with a 1 0 k H z  sampling rate. 
12-order linear predictive analysis was carried out 
on six 512-sample Hamming windowed segments 
f rom the steady part o f '  the vowel. The reflection 
coefficients were used to calculate 10 log area para- 
meters, giving a 10-dimensional input space. Each 
speaker thus yielded six frames of  speech from 11 
vowels. This gave 990 frames from the 15 speakers. 

Robinson [51 ] used this data to investigate several 
types o f  neural network algorithms and classic clas- 

(~ 

3 0  

2 8  

2 6  

2 4  

22 

20 

18. 

1 6  

14- 

CART coordinate split 

~ linear split 

"',, Large multilayer net 

560 7i0 10'00 12'50 is'00 1i50 20'00 
samples size 

Fig. 11. Error rates versus samples size for CART method, a 
large individual MLP with 21-20-5-3 and the Modular Tree (21- 
17-3) on the waveform recognition problem. 

sifters. He used 528 frames from four male and 
four female speakers to train the networks, and the 
remaining 462 frames from four male and three 
female speakers to test the performance. The classi- 
fiers he examined were single-layer perceptrons, 
multilayer neural networks with sigmoidal, Gaussian, 
and quadratic activation functions, a modified 
Kanerva model, radial basis networks, and also a 
conventional method, the nearest-neighbour clas- 
sifier. 

In our experiments, the architecture of  the subnet- 
works was chosen as the M L P  with either 10-18- 
11 or 10-20-11, and all the parameters used in the 



Combining Linear Discriminant Functions with Neural Networks 

Table 9. The waveform recognition problem: CPU time of training the individual 
MLP and modular trees. (unit: second.) 

No. of samples 500 750 1000 1250 1500 1750 2000 

MLP (21-20-5-3) 793 1123 1494 1981 2087 2385 2698 
MT (21-12-3) 380 459 588 673 715 818 869 
MT (21-15-3) 414 466 601 659 732 826 893 

33 

Table 10. The speaker independent vowel recognition problem: parameters used in the growing algor- 
ithm. 

Overlapping factor ~ 0-2 0.3 0.4 0.5 0-55 0.6 0.7 

Prolong-training factor KpT 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Threshold IT 12 12 12 12 12 12 12 
Threshold ET 0.11 0.11 0.11 0.11 0.11 0-11 0.11 
Threshold Smax 320 320 3200 320 320 320 320 
Threshold Sm~n 30 30 30 30 30 30 30 

Table 11. The speaker independent vowel recognition problem: architectures of resulting 
modular trees, (N H, NMLe), with different architectures of subnetworks. 

Overlapping factor ~ 0-2 0.3 0-4 0-5 0.55 0-6 0.7 

MT (10-18-11) (4,5) (4,5) (4,5) (5,6) (6,7) (6,7) (10,11) 
MT (10-20-11) (4,5) (4,5) (4,5) (5,6) (5,6) (6,7) (9,10) 

growing algorithm are listed in" Table 10. We gener- 
ated several modular trees corresponding to different 
overlapping factors with the same data used by 
Robinson [51], and thereafter used his test data to 
evaluate the generalisation ability of modular trees. 
As a result, all the architectures of the resulting 
modular trees are shown in Table 11, and the error 
rates produced by the modular trees corresponding 
to different overlapping factors are illustrated in 
Fig. 12. The architecture of the modular tree, MT 
(10-18-11), producing the best result (corresponding 
to the overlapping factor ~ = 0.55) is illustrated in 
Fig. 13. In addition, the CPU times of generating 
modular trees with different overlapping factors are 
listed in Table 12, and both the results in Robinson 
[51] and ours are shown in Table 13 for comparison. 
It is evident from the simulation that the proposed 
method outperforms the classical classifiers. We 
could conjecture that the proposed method also 
yields significantly faster training than MLPs, since 
Robinson reported that the training of an MLP for 

54 

L - Modular Tree with MLP (10-18-11) 

5~ ee with MLP (10-20-11) 

52 

5 0  

~48 

46 

44 1 ~< 

' '. i ' i ' i i 40.2 0.25 0 3 0.35 0 4 0.45 0 5 0.55 0 6 0.65 0 7 
overlapping factor 

Fig. 12. Error rates of modular trees with different architecture 
of subnetworks on the vowel recognition problem in terms of 
different overlapping factors in the splitting rule. Each 'o' or 'x' 
corresponds to the result produced by a generated modular tree 
trained using a specific overlapping factor. 



34 K. Chert et al. 

Hyperplane IMLP I MLP with 10-18-11 

Fig. 13. The generated modular tree corresponding to the recognition rate 59% (the overlapping factor is ~ = 0.55 in the splitting 
rule) for vowel recognition problem. 

Table 12. The speaker independent vowel recognition problem: CPU time of generating 
modular trees corresponding to different architectures of subnetworks in terms of different 
overlapping factors in the splitting rule. (unit: second.) 

Overlapping factor ~ 0-2 0.3 0.4 0.5 0-55 0.6 0.7 

MT (10-18-11) 688 723 755 805 911 1022 1491 
MT (10-20-11) 704 789 822 879 901 1043 1372 

Table 13. The speaker independent vowel recognition problem: test results of different methods for comparison. 
The table shows the network size, the number of correctly classified test patterns (out of 462), and the 
corresponding percentages. The modular tree is MT (10-18-11) with overlapping factor r /= 0.55 in the splitting 
rule (the architecture is illustrated in Fig. 13). 

Classifier No. of hidden neurons Correctly classified Percent correct 

Single-layer perceptron - 154 33 
Multilayer perceptron 88 234 51 
Multilayer perceptron 22 206 45 
Multilayer perceptron 11 203 44 
Modified Kanerva model 528 231 50 

Modified Kanerva model 88 197 43 
Radial basis function 528 247 53 
Radial basis function 88 220 48 
Gaussian node network 528 252 55 
Gaussian node network 88 247 53 
Gaussian node network 22 250 54 
Gaussian node network 11 211 47 
Square node network 88 253 55 
Square node network 22 236 51 
Square node network 11 217 50 
Nearest neighbour - 260 56 
Modular tree (7 = 0-55) 18 271 59 



Combining Linear Discriminant Functions with Neural Networks 

the problem took such a long time that the training 
had to be terminated once a threshold of iterations 
had been reached. 

4.5. Image Segmentation 

The image segmentation data was collected by Brod- 
ley at the University of Massachusetts, and has 
become a benchmark for machine learning in the 
UCI Repository of machine learning database [46]. 
The instances were drawn randomly from a database 
of seven outdoor images. The images were manually 
segmented to create a classification for every pixel. 
Each instance is a 3 x 3 region. The feature vector 
consists of  19 continuous attributes associated with 
region, density, contrast and intensity, etc. All the 
data were classified into seven categories: brickface, 
sky, foliage, cement, window, path and grass. In the 
database [46], all data have been explicitly divided 
into two sets, i.e. a training set and a test set. There 
are 210 samples (30 instances/class) in the training 
set, and are 2100 samples (300 instances/class) in 
the test set. According to the statement on the data 
[46], no result on the data has been published yet. 

We applied the proposed method to the image 
segmentation problem to evaluate the generalisation 
ability of  the resulting modular trees. In our experi- 
ments, the architecture of the subnetworks was 
chosen as the MLP with either 19-17-7 or 19-21-7. 
As a result, all parameters used in the growing 
algorithm are listed in Table 14, and the architec- 
tures of  the resulting modular trees based upon 
different overlapping factors in the splitting rule are 
also shown in Table 15. The testing results of these 

35 

modular trees corresponding to different overlapping 
factors are shown in Fig. 14. According to these 
testing results, it has been demonstrated that modular 
trees with different architectures of the subnetworks 
yield a similar performance. We also performed 
some experiments on the use of individual MLPs 
with the Levenberg-Marquat  learning algorithm to 
solve the same problem. For comparison, the results 
of  some modular trees and individual MLPs are 
shown in Table 16, and the training time is accord- 
ingly listed in Table 17. It is evident from the 
simulation results that modular trees yield a better 
generalisation and faster training than the MLPs. 

22 

18 

~16 

- Modular Tree with MLP (19-17-7) 
' \ ~ k  --  Modular Tree with MLP (1 9-21-7) 

\ \ \  / /  J -x- 

10.2 013 014 OI5 01.6 017 018 0~.9 i 
overlapping factor 

Fig. 14. Error rates of modular trees with different architecture 
of subnetworks on the image segmentation problem in terms of 
different overlapping factors in the splitting rule. Each 'o' or 'x' 
corresponds to the result produced by a generated modular tree 
trained using a specific overlapping factor. 

Table 14, The image segmentation problem: parameters used in the growing algorithm. 

0.2 0.3 0.4 0-5 0-6 0-7 0-8 0.9 1.0 

Kpr 3-0 3.0 3.0 3.0 3.0 3.0 3.0 3-0 3.0 
Ir 6 6 6 6 6 6 6 6 6 
Er 0.18 0.18 0.18 0.18 0,18 0.18 0.18 0-18 0.18 
Smax 100 100 100 100 100 100 100 100 100 
Smi n 20 20 20 20 20 20 20 20 20 

Table 15. The image segmentation problem: architectures of resulting modular trees, (NH, NMLe), with different architec- 
tures of subnetworks. 

~/ 0-2 0.3 0.4 0.5 0-6 0.7 0-8 0-9 1.0 

MT (19-7-7) (11,12) (6,7) (13,14) (21,22) (22,23) (63,64) (76,77) (157,158) (430,431) 
MT (19-21-7) (10,12) (5,6) (12,13) (20,21) (21,22) (59,61) (72,73) (148,149) (423,425) 



36 K. Chen et  al. 

Table 16. The image segmentation problem: test results of MLPs and the resulting modular trees. 
The table shows the network architecture, the number of correctly classified test patterns (out of 
2100), and the corresponding percentages. The architecture of subnetworks in resulting modular 
trees is the MLP with either 19-17-7 or 19-21-7. 

Classifier Architecture Correctly classified Percent correct 

Three-layered MLP (1) 
Three-layered MLP (2) 
Three-layered MLP (3) 
Four-layered MLP (4) 
MT (19-7-7) (r/= 0.9) 
MT (19-21-7) (~=0.7) 

19-17-7 1735 82.6 
19-28-7 1770 84-3 
19-50-7 1712 81.5 
19-22-10-7 1787 85.2 
(157,158) 1862 88.6 
(59,61) 1859 88.5 

Table 17. The image segmentation problem: CPU time of training four individual MLPs and 
some modular trees listed in Table 16. (unit: minute.) 

MLP (1) MLP (2) MLP (3) MLP (4) MT (19-17-7) MT (19-21-7) 

CPU time 78.5 89.3 99.4 218.2 33-8 26.4 

4.6. Funct ion Approx imat ion  

It is well known that an MLP with a sigmoidal 
activation function can perform the universal 
approximation of any continuous multivariate func- 
tion to any desired degree of accuracy, provided 
that sufficiently many hidden neurons are available 
[12,52,53]. To evaluate the universal approximation 
ability of the proposed method, we performed an 
experiment by learning a multivariate function 
approximation task. To visualise the results, we 
selected a function as 

X 
f ix ,y)  = (x 2 - y2) sin ~ ,  

- i0  -< x,y <- 10 (32) 

In the experiment, we used a training set with 625 
samples to learn the mapping. All parameters used 
in the growing algorithm, architectures of both sub- 
networks and resulting modular trees are listed in 
Table 18. Obviously, the two resulting modular trees 

with different architectures of subnetworks share the 
same architecture. To exactly evaluate the generaliz- 
ation ability of  the modular tree, we used three data 
sets with 1600, 2500 and 4489 samples for testing, 
respectively. Two modular trees produce very simi- 
lar testing results on all three testing data sets. Due 
to the limited space, we merely show the results 
produced by the modular tree, MT (2-2-1). As a 
result, the data in the training set is shown in 
Fig. 15(a) for reference, and the testing results pro- 
duced by the resulting modular tree on different 
testing data sets are respectively shown in 
Figs 15(b)-(d). It is evident from the simulation 
that the modular tree can perform the universal 
approximation task very well in multiple scales. For 
comparison, we also employed an individual five- 
layered MLP (two input neurons, three neurons in 
the first hidden layer, five neurons in the second 
hidden layer, three neurons in the third hidden layers 
and one output neuron) along with the Levenberg-  
Marquat learning algorithm to deal with the same 

Table 18. Function approximation: parameters used in the growing algorithm and 
architectures of modular trees. The architecture of subnetworks in resulting modular 
trees is the MLP with either 2-2-1 or 2-3-1. 

rl Kpr Ir ET Sma~ Stain MT (2-2-1) MT (2-3-1) 

0-2 3 10 0"005 200 20 (55,56) (55,56) 



Combining Linear D&criminant Functions with Neural Networks 37 

a 13 

-5 0 0 5 

,I1 ,I1 
10 

b d 
Fig. 15. The results of universal approximation on the function in Eq. (32) (-10 ~< x,y <- 10). (a) the surface produced by the function 
in Eq. (32) on the training data (625 samples); (b) the resulting surface produced by the modular tree on test data (1600 samples); 
(c) the resulting surface produced by the modular tree on test data (2500 samples); (d)the resulting surface produced by the modular 
tree on test data (4489 samples). 

problem. The CPU time of the training modular 
trees and the MLP are listed in Table 19. It is 
obvious from the table that the proposed method 
yields significantly faster training than the MLP, 
though both can yield satisfactory performance for 
universal approximation. 

5. Discussions and Conclusions 

We have described a novel method for supervised 
learning by combining linear discriminant functions 

Table 19. Function approximation: CPU time of training 
an individual MLP and modular trees. (unit: second.) 

MLP (2-3-4-3-1) MT (2-2-1) MT (2-3-1) 

CPU time 3892 227 236 

and neural networks. The extensive simulation 
results have shown that the self-generated tree-struc- 
tured hybrid system outperforms MLPs for several 
benchmark problems of classification, and a problem 
of universal approximation. In particular, the pro- 
posed method yields significantly faster training. The 
application of the proposed method in a real world 
problem called speaker recognition has been already 
investigated [54,55]. It has also shown that the 
proposed method is a more effective way than other 
classic methods to solve a large scale problem [54]. 

The basic idea underlying the proposed method 
is the use of  the principle of  divide-and-conquer. 
The issue is worth discussing here further. As stated 
previously, linear discriminant functions play a cru- 
cial role for dividing a large or complicated problem 
into simpler or smaller problems, while neural net- 
works serve to solve those simpler and smaller 
problems. In the splitting rule, three types of linear 
discriminant functions could be used for the purpose. 
The Fisher or normal density related linear discrimi- 



38 K. Chen et al. 

nant functions could result in an optimal or sub- 
optimal partition to distinguish between the data that 
belong to two different classes, and the Euclidean 
distance between their centroids is furthest among 
all data in a given classification task, while the 
linear discriminant function in Eq. (27) intends to 
partition all data into two sets with an almost equal 
size. Obviously, what these linear discriminant func- 
tions do is either reduce the complexity of the 
original problem, or transfer the original problem 
into two smaller problems. As theoretically and 
empirically shown previously, the training time of 
an MLP often increases exponentially with the size 
of the problem [14,56,57]. Thus, a real world prob- 
lem (e.g. image processing) will often be intractable 
when the MLP is used directly. In our growing 
algorithm, linear discriminant functions first partition 
a large problem into several smaller problems prior 
to the training of MLPs or subnetworks, in order to 
limit the scale of the problems to a solvable extent 
for those MLPs or subnetworks. As shown pre- 
viously, each linear discriminant function is analyti- 
cally determined according to the given training 
data. Thus, the partition of a large scale problem 
can be rapidly available, and all MLPs or subnet- 
works merely need to independently solve multiple 
small scale problems simultaneously. Moreover, the 
growing algorithm has taken the size of the self- 
generated hybrid architecture into consideration by 
using a threshold such that training samples could 
be sufficient for all subnetworks for generalisation. 
On the other hand, it has been well known that an 
MLP suffers from serious catastrophic interference 
that later training disrupts the results of previous 
training. Fortunately, the problem, to a great extent, 
can be alleviated in the hybrid system during both 
training and updating by distributing data to multiple 
subnetworks. It is also worth mentioning that any 
improved technique for training an MLP could be 
expected to improve the performance of the hybrid 
system if such an MLP, along with the improved 
technique, is used as a subnetwork of the hybrid 
system. As a result, the proposed method provides 
a novel way to use MLPs to solve a large scale 
problem. 

It might be interesting to consider the difference 
between the proposed architecture and other archi- 
tectures associated with the use of the principle of 
divide-and-conquer. As described previously, two 
architectures might be relevant to the proposed 
architecture. The decision tree and its variants are 
a kind of typical architectures to use the principle 
of divide-and-conquer for dealing with a problem 
[22]. The basic characteristics of the decision tree 
might be summarised as follows: (1) uniform appar- 

atus are used for both dividing and conquering a 
problem; (2)'hard' partition way is adopted; and 
(3) each leaf node is only associated often with a 
class label. As for the proposed method, different 
apparatus (i.e. a linear discriminant function and 
neural network) could be used in nonterminal and 
leaf nodes to serve for different purposes in the 
principle of divide-and-conquer, respectively. Instead 
of a 'hard' partition, a 'soft' partition is adopted to 
'divide' a problem. As a result, data belonging to 
different classes could reach the same leaf node at 
which a neural network associated with multiple 
class labels is located. All of these characteristics 
might distinguish the proposed method from the 
decision tree and its variants. It is worth pointing 
out that the 'soft' partition method plays an 
important role in the proposed method. From the 
standpoint of computational geometry, Minsky and 
Papert [57] have shown that some problems (e.g. 
connectedness) cannot be computed at all in parallel 
by a diameter-limited or order-limited perceptron; 
moreover, an m t P  seems to encounter the same 
difficulty [57]. A salient reason is that such problems 
are solvable only if the global information is avail- 
able, while an order-limited perceptron can only 
capture local information. The 'soft' partition in 
the proposed method provides a way of combining 
multiple order-limited neural networks such that the 
local information can be accumulated to achieve 
the global information by means of communication 
among those neural networks. Our credit-assignment 
algorithm is designed just for the purpose by 
incorporating the 'soft' partition method. The appli- 
cation of the proposed method in the two spirals 
problem, which belongs to a problem of computing 
connectedness, has demonstrated the usefulness of 
the 'soft' partition method for such a problem. On 
the other hand, the HME is a modular neural net- 
work architecture based upon the principle of divide- 
and-conquer [40]. In contrast to the stacked general- 
isation [58], which makes explicit partitions of the 
input space, the HME preferentially weights the 
input space by the posterior probabilities that experts 
generated the output from the input. The outputs of 
expert networks are combined by gating networks 
which are simultaneously trained to stochastically 
select the expert which is performing best at solving 
the problem. There are at least two points in dis- 
tinguishing the proposed method from the HME 
architecture. One is that the HME also suffers from 
the problem of determining a structure prior to 
training like an MLP, while the proposed method 
might automatically generate a structure for a given 
problem. The other is that the 'soft' partition method 
in the HME is different from that used in the 



Combining Linear Discriminant Functions with Neural Networks 39 

proposed method. Different 'soft '  partition methods 
lead to two different training procedures; all samples 
in the training set must be fed to every expert and 
gating network in the HME, while only a part of  the 
samples in the training set can reach a subnetwork at 
the leaf node in the proposed method during train- 
ing. 

There are still some open problems in the pro- 
posed method. Simulation results have shown that 
the performance of a self-generated hybrid system 
seems insensitive to the architectures of  its subnet- 
works. Instead of an empirical study, a theoretical 
analysis on the issue will be of significance and 
should be underway. Simulations have also indicated 
that the performance of a hybrid system is highly 
influenced by the size of an overlapping region 
between two adjacent data sets split by a hyperplane. 
How to determine the optimal size of  an overlapping 
region will be another important issue to be studied. 
Since a specific overlapping region could finally 
determine the training set of  a subnetwork at the 
leaf node, the architecture of a subnetwork should 
also depend upon the size of an overlapping region. 
Therefore, there is an intrinsic relation between both 
issues. We expect that solutions to these problems 
will provide a way to significantly improve the 
performance of the self-generated hybrid architecture 
in the future. 

Acknowledgements. We wish to thank Liping 
Yang for valuable and constructive discussions, as 
well as for providing a program on the Levenberg-  
Marquat algorithm for simulation. We also wish to 
thank DeLiang Wang and the anonymous reviewers, 
whose extensive comments have significantly 
improved the presentation of the paper. This work 
was in part supported by Chinese National Nature 
Science Foundation Grant 69571002, and Grant 
69475007 as well as the NSF Grant IRI-9423312. 

References 

1. Bishop M. Neural Networks for Pattern Recognition. 
Oxford University Press, 1995. 

2. Cohen M, Franco H, Morgan N, Rumelhart D, Abrash 
V. Context-dependent multiple distribution phonetic 
modeling with MLPs. In: SJ Hanson, JD Cowan, CL 
Giles (eds.), Advances in Neural Information Pro- 
cessing Systems. Morgan Kaufmann, 1993, pp. 649- 
657. 

3. Gyuyon I, Albrecht P, LeCun Y, Denker J, Hubbard 
W. Applications of neural networks to character recog- 
nition. Int J Pattern Recognition and Artificial Intelli- 
gence 1991; 5: 353-382. 

4. Haykin S, Deng C. Classification of radar clutter using 
neural networks. IEEE Trans Neural Networks 1991; 
2: 589-600. 

5. LeCun Y, Boser B, Denker JS, Henderson D, Howard 
RE, Hubbard W. Handwritten digit recognition with 
a back-propagation network. In: DS Touretsky, (ed.), 
Advances in Neural Information Processing Systems. 
Morgan Kaufmann, 1990, pp. 396-404. 

6. Narendra KS, Parthasarathy K. Indentification and con- 
trol of dynamical systems using neural networks. IEEE 
Trans Neural Networks 1990; 1: 4-27. 

7. Pomerleau DA. Neural network perception for mobile 
robot guidance. PhD Thesis, School of Computer 
Science, Carnegie Mellon University, 1992. 

8. Rajavelu A, Musavi M, Shivaikar M. A neural net- 
work approach to character recognition. Neural Net- 
works 1989: 2(5): 387-394. 

9. Rumelhart D, McClelland J. Parallel Distributed Pro- 
cessing. MIT Press, Cambridge, MA, 1986. 

10. Sejnowski TJ, Resenberg CR. Parallel networks that 
learn to pronounce English text. Complex Systems 
1987; 1: 145-168. 

11. Sejnowski TJ, Yuhas BP, Goldstein MH, Jenkins RE. 
Combining visual and acoustic speech signals with a 
neural network improves intelligibility. In: DS Touret- 
sky (ed.), Advances in Neural Information Processing 
Systems. Morgan Kaufmann, 1990, pp. 232-239. 

12. Hornik K, Stinchcombe M, White H. Multilayer feed- 
forward networks are universal approximators. Neural 
Networks 1989; 2: 359-366. 

13. Irie B, Miyake S. Capabilities of three-layered per- 
ceptrons. Proc IEEE Int Conf Neural Networks, vol 1, 
1988; pp. 641-648. 

14. Judd S. Learning in networks is hard. Proc IEEE Int 
Conf Neural Networks, vol 2, 1987, pp. 685-692. 

15. Jacobs RA. Increased rates of convergence through 
learning rate adaptation. Neural Networks 1988; 1: 
295-307. 

16. Van Der Smagt PP. Minimization methods for training 
feedforward neural networks. Neural Networks 1994; 
7(1): 1-11. 

17. Ripley BD. Pattern Recognition and Neural Networks. 
Cambridge University Press, New York, 1996. 

18. Wahba G. Generalization and regularization in nonlin- 
ear learning systems. In: MA Arbib (ed.), The Hand- 
book of Brain Theory and Neural Networks. MIT 
Press, 1995, pp. 426-430. 

19. Fahlman SE, Lebiere C. The cascade-correlation learn- 
ing architecture. In: DS Touretsky (ed.), Advances 
in Neural Information Processing Systems. Morgan 
Kaufmann, 1990, pp. 524-532. 

20. Nadal JP. New algorithms for feedforward networks. 
In: Theumann and Kiberle (eds.), Neural Networks 
and Spin Glasses. World Scientific, 1989, pp. 80-88. 

21. Shadafan RS, Niranjan M. A dynamic neural network 
architecture by sequential partitioning of the input 
space. Neural Computation 1994; 6: 1202-1222. 

22. Breiman L, Friedman JH, Olshen RA, Stone CJ. 
Classification and Regression Trees. Wadsworth & 
Brooks, 1984. 

23. Brown DE, Pittard CL. Classification trees with opti- 
mal multivariate splits. Proc IEEE Int Conf Systems, 
Man and Cybernetics, vo13, Le Touquet, 1993, 
pp. 475-477. 

24. Friedman JH. A recursive partitioning decision rule 
for nonparametric classification. IEEE Trans Computer 
1977; 26: 404-408. 

25. Kim B, Landgrebe DA. Hierarchical classifier design 



40 K. Chen et al. 

in high-dimensional numerous class cases. IEEE Trans 
Geosci Remote Sens 1991; 29(4): 518-528. 

26. Murthy KVS. On growing better decision trees from 
data. PhD Thesis, The Johns Hopkins University, 
1995. 

27. Park Y, Sklansky J. Automated design of linear tree 
classifiers. Patt Recogn 1990; 23(12): 1393-1412. 

28. Shi QY, Fu KS. A method for the design of binary 
tree classifiers. Patt Recogn 1983; 16: 593-603. 

29. Sklansky J, Wassel GN. Pattern Classifiers and Train- 
able Machines. Springer-Verlag, New York, 1981. 

30. Curram SP, Mingers J. Neural networks, decision 
tree induction and discriminant analysis: An empirical 
comparison. J Operat Res Soc 1994; 45(4): 440-450. 

31. Park Y. A comparison of neural net classifiers and 
linear tree classifiers: their similarities and differences. 
Patt Recogn 1994; 27(11): 1493-1503. 

32. Cios KJ, Liu N. A machine learning method for 
generation of a neural network architecture: A continu- 
ous ID3 algorithm. IEEE Trans Neural Networks 1992; 
3(2): 280-291. 

33. Golea M, Marchand M. A growth algorithm for neural 
network decision trees. EuroPhysics Lett 1990; 12(3): 
205-210. 

34. Guo H, Gelfand SB. Classification trees with neural 
network feature extraction. IEEE Trans Neural Net- 
works 1992; 3(6): 923-933. 

35. Herman GT, Yeung KTD. On piecewise-linear classi- 
fication. IEEE Trans Pattern Analysis and Machine 
Intelligence 1992; 14(7): 782-786. 

36. Ishwar K, Sethi K. Entropy nets: from decision trees to 
neural networks. Proc IEEE 1990; 78(10): 1605-1613. 

37. DAlche-Buc F, Zwierski D, Nadal JP. Trio learning: 
A new strategy for building hybrid neural trees. Int J 
Neural Systems 1994; 5(4): 259-274. 

38. Sankar A, Mammone RJ. Growing and pruning neural 
tree networks. IEEE Trans Computer 1993; 42(3): 
291-299. 

39. Sirat JA, Nadal JP. Neural tree: A new tool for 
classification. Network: Computation in Neural Sys- 
tems 1990; l(4): 423-438. 

40. Jordan MI, Jacobs RA. Hierarchical mixture of experts 
and the EM algorithm. Neural Computation 1994; 6: 
181-214. 

41. Chen K, Xie DH, Chi HS. A modified HME architec- 
ture for text-dependent speaker identification. IEEE 
Trans Neural Networks 1996; 7(5): 1309-1313. 

42. Chen K, Xie DH, Chi HS. Speaker identification using 
time-delay HMEs. Int J Neural Systems 1996; 7(1): 
29-43. 

43. Chen K, Yang LP, Yu X, Chi HS. A self-generating 
modular neural network architecture for supervised 
learning. Neurocomputing 1997; 16(1): 33-48. 

44. Fisher RA. The use o f  multiple measurements in 
taxonomic problem. Ann Eugenics 1936; 7: 179-188. 

45. Duda R, Hart P. Pattern Classification and Scene 
Analysis. John Wiley & Sons, New York, 1973. 

46. Murthy PM, Aha DW. UCI Repository of machine 
learning database. [http://www.ics.uci.edu/mlearrd 
MLRepository.html], Department of Information and 
Computer Science, Irvine, CA: University of Califor- 
nia, 1994. 

47. Fletcher R. Practical Methods of Optimization. John 
Wiley & Sons, New York, 1987. 

48. lshikawa M. Structural learning with forgetting. Neural 
Networks 1996; 9(3): 509-521. 

49. Lang KJ, Witbrock MJ. Learning to tell two spirals 
apart. In: D Touretzky, G Hinton, T Sejnowski (eds.), 
Proc 1988 Connectionist Models Summer School, 
Morgan Kaufmann, 1989; 52-59. 

50. Deterding DH. Speaker normalization for automatic 
speech recognition. PhD Thesis, University of Cam- 
bridge, 1989. 

51. Robinson AJ. Dynamic error propagation networks. 
PhD Thesis, University of Cambridge, 1989. 

52. Cybenko G. Approximation by superpositions of a 
sigmoidal function. University of Illinois, Urbana, 
1988. 

53. Funahashi K. On the approximate realization of con- 
tinuous mappings by neural networks. Neural Net- 
works 1989; 2: 183-192. 

54. Chen K, Yu X, Chi HS. Text-dependent speaker 
identification based on the modular tree. Chinese J 
Electa" 1996; 5(2): 63-69. 

55. Chen K, Yu X, Chi HS. Text-dependent speaker 
identification based on the modular tree: an empirical 
study. In: S Amari et  al.  (eds.), Progress in Neural 
Information Processing. 1996, Springer-Verlag, Singa- 
pore, pp. 294-299. 

56. Blum A, Rivest R. Training a 3-node neural net is 
NP-complete. In: DS Touretsky (ed.), Advances in 
Neural Information Processing Systems, Morgan Kauf- 
mann, 1989, pp. 494-501. 

57. Minsky M, Papert S. Perceptrons: An Introduction to 
Computational Geometry. MIT Press, Camridge, 1988. 

58. Wolpert DH. Stacked generalization. Technical Report 
LA-UR-90-3460, The Santa Fe Institute, 1990. 

N o m e n c l a t u r e  

X 

q~ 

N~ 
m 

cok 
~k 

mk 

N~ 

W 

l(x) 

K~T 

ET 
Sm~x 

input data (a feature vector in pattern 
classification) 
a training data set consisting of input data 
the null set 
one of two adjacent subsets of 
( ~  U ~ = ~ and ~ A ~g~ ~ qS) 
one of two adjacent subsets of 
(~r U ~fz = ~ and f~r ffl ~ / #  qb) 
the number of samples in 
the mean of samples in a data set 
the label of class k in pattern classification 
the data set labelled by ~o k in pattern classi- 
fication 
the mean of samples in ~ in pattern classi- 
fication 
the number of samples in ~k in pattern 
classification 
weight vector of a linear discriminant func- 
tion 
linear discriminant function 
overlapping factor of determining size of 
an overlapping region in the proposed split- 
ting rule 
prolong-training factor for prolonging the 
training of a subnetwork under the suc- 
cess condition 
threshold of iteration (epochs) for a subnet- 
work 
threshold of MSE for a subnetwork 
threshold of maximal number of samples 
used for training a subnetwork 



Combining Linear Discriminant Functions with Neural Networks 41 

Stain 

I 

EI 

Xu 

threshold of minimal number of samples 
used for training a subnetwork 
the number of iterations (epochs) during 
the training of a subnetwork 
the MSE value of a subnetwork after I iter- 
ations 
unknown data for test 

a;(x.) 

O;(x.) 
O(xu) 
(NH,NML, o) 

II-[L 

the credit assigned to the ith subnetwork 
for xu 
the output of the ith subnetwork for x. 
the output of modular tree for x. 
the architecture of a modular tree con- 
sisting of NH hyperplanes and NMLp MLPs 
the Euclidean norm 


