Neural Comput & Applic (1997)6:19-41
© 1997 Springer-Verlag London Limited

Neural
Computing
& Applications

Combining Linear Discriminant Functions with Neural
Networks for Supervised Learning

Ke Chen'?, Xiang Yu' and Huisheng Chi'

'National Laboratory of Machine Perception and Center for Information Science, Peking University, Beijing, China; ?Department
of Computer and Information Science and The Center for Cognitive Science, The Ohio State University, Columbus, OH, USA

A novel supervised learning method is proposed by
combining linear discriminant functions with neural
networks. The proposed method results in a tree-
structured hybrid architecture. Due to constructive
learning, the binary tree hierarchical architecture
is automatically generated by a controlled growing
process for a specific supervised learning task.
Unlike the classic decision tree, the linear discrimin-
ant functions are merely employed in the intermedi-
ate level of the tree for heuristically partitioning a
large and complicated task into several smaller and
simpler subtasks in the proposed method. These
subtasks are dealt with by component neural net-
works at the leaves of the tree accordingly. For
constructive learning, growing and credit-assignment
algorithms are developed to serve for the hybrid
architecture. The proposed architecture provides an
efficient way to apply existing neural networks (e.g.
multi-layered perceptron) for solving a large scale
problem. We have already applied the proposed
method to a universal approximation problem and
several benchmark classification problems in order
to evaluate its performance. Simulation results have
shown that the proposed method vyields better results
and faster training in comparison with the multi-
layered perceptron.

Keywords: Constructive learning; Divide-and-con-
quer; Linear discriminant function; Modular and
hierarchical architecture; Multi-layered perceptron;
Supervised learning

Correspondence and offprint requests to: K. Chen, Department of
Computer and Information Science and The Center for Cognitive
Science, The Ohio State University, Columbus, OH 43210-1277,
USA. Email: kchen(@cis.ohio-state.edu.

1. Introduction

Neural networks, particularly Multi-Layered Per-
ceptrons (MLPs), have already been found to be
successful for various supervised learning tasks [1-
11]. Both theoretical and empirical studies have
shown that the neural network is of powerful capa-
bilities for pattern classification and universal
approximation which are typical supervised learning
tasks. Hornik er al. [12] and Irie and Miyate [13]
proved that a three-layered MLP with an infinite
number of nodes in the hidden layer can also solve
arbitrary mapping problems. However, the probilem
of training an MLP is NP-complete [14], and there-
fore all existing algorithms are heuristics; which
results in that the training of an MLP often suffers
from a slow convergence property, though some
methods have been suggested to tackle the problem
[15,16]. In addition, the exact number of hidden
layers and neurons in a hidden layer, as well as
connectivity between layers, must be specified
before learning can begin. For this problem, how-
ever, the aforementioned theoretical results on the
MLP are of little practical value, since they cannot
be utilised to determine an exact number of hidden
layers and neurons in a hidden layer. Although some
statistical techniques have been recently borrowed
for model selection [1,17,18], most of them are
involved in a time-consuming procedure for practical
use. Thus, the network architecture must be determ-
ined by trial and error. To overcome the difficulty
in determining a neural network architecture prior
to training, practical approaches for dynamic neural
network architecture generation have been sought
[19-21]. However, these models do not specify in
what exact sequence a neuron should be added to
give the maximum effect in classifying training

20

examples and keep the slow convergence property,
since they still suffer from serious catastrophic inter-
ference in both spatial and temporal crosstalk during
training. As a result, both determination of a neural
network architecture and fast training still remain
important research topics in the neural network com-
munity.

On the other hand, supervised learning has been
studied for a long time in the pattern recognition
community. The decision tree is one of the most
efficient tools for supervised learning in the pattern
recognition community [22-29]. In general, decision
trees are hierarchical structures which use a sequen-
tial decision making strategy to handle a supervised
learning task. At each internal node of a decision
tree, a test is evaluated to decide which child node
the feature vector will be sent to, while the leaves
of the decision tree are used to deal with unknown
data. In decision tree approaches, linear discriminant
functions or hyperplanes are commonly used for test
and decision [22,26,27]. The traditional approach to
the training of a decision tree has been to first
generate a set of possible hyperplanes, and then

_exhaustively search this set to find the best hyper-
planes with respect to some distortion metric
[22,26,27]. In most decision tree approaches, the
hyperplanes are constrained to be perpendicular to
the feature space axes. This is very restrictive, and
can result in a large number of hyperplane tests,
even in a linearly separable problem [26], if the
separating hyperplane is not perpendicular to the
feature space axes. Indeed, there are some decision
tree approaches which allow for non-perpendicular
hyperplanes [22-24,28,29], but these algorithms used
are computationally expensive due to the large
search space of hyperplanes that needs to be evalu-
ated. In comparison with neural networks, however,
the merits of decision trees are that there is no
problem of determining an architecture prior to the
training in the design of a decision tree, and the
performance of a linear decision tree is basically
similar to an MLP’s for a specific task [30,31]. As
a result, many rescarchers in the neural network
community have recently considered hybrid struc-
tures between decision trees and neural networks.
Although these techniques were developed as neural
networks whose structure could be automatically
determined, their outcome can be interpreted as
decision trees with nonlinear splits [32-39]. In most
of these hybrid structures, a small neural network at
each node of the tree classifier is used to implement
nonlinear and multivariate splits instead of a hyper-
plane in decision tree approaches. Accordingly, the
neural tree is automatically generated by training
the neural network at each node instead of searching

K. Chen et al.

for the best hyperplane with some distortion metric
in decision tree approaches. Basically, such neural
trees follow the principle underlying decision trees,
t.e. non-overlapping (‘hard’) split in each nonter-
minal node, and only one class label associated with
each leaf node [34,37-39]. For generalisation, a
pruning procedure is also needed in these neural
trees, as in decision tree approaches such as the
Classification And Regression Tree (CART) [22].
The other hybrid techniques between decision trees
and neural networks use elaborate methods for con-
verting a decision tree into a neural network, and
then retraining it [32,36]. However, these techniques
can be only used in simple pattern classification
problems, and their performance for a real world
problem remains unknown. Since neural networks
at all nodes of the tree need a time-consuming
training procedure like MLP, most of these hybrid
systems still suffer from slow training though their
performance could be improved to some extent.
More recently, Jordan and Jacobs [40] presented a
tree-structured modular neural network architecture
called Hierarchical Mixture of Experts (HME). In
the HME architecture, gating networks sit at the
nonterminal nodes and expert networks sit at the
leaves of the tree. The structures of gating and
expert networks could be different. The use of the
gating network distinguishes the HME from other
tree-based algorithms which make a ‘hard” decision
in the input space, in contrast to the ‘soft’ method
of the HME, which allows adjacent clusters to over-
lap. The HME can be used in both regression and
pattern classification tasks. However, the problem of
determining an architecture prior to training is still
encountered in practical use of the HME [41,42].
Unlike the aforementioned work, an alternative
tree-structured architecture is proposed in this paper
based upon our earlier work [43] for supervised
learning. The principle of divide-and-conquer is
directly employed in the proposed architecture,
which results in a new binary tree-structured hybrid
architecture. Unlike their use in decision trees, linear
discriminant functions or hyperplanes sitting at non-
terminal nodes merely play a ‘divide’ role to heuris-
tically partition a large and complicated problem
into several smaller and simpler problems, while
neural networks (e.g. MLPs) sitting at the leaves of
the tree play a ‘conquer’ role to solve those smaller
and simpler problems. Motivated by the idea under-
lying the HME, we adopt a ‘soft’” method to partition
the input space such that there might be an overlap-
ping between two adjacent partitioned input data
subsets. As a result, a tree-structured hybrid architec-
ture can be automatically generated during training
for a specified task through use of the proposed

Combining Linear Discriminant Functions with Neural Networks

constructive learning algorithms. For an unknown
pattern during test, the output of the generated archi-
tecture is produced by combining outputs of neural
networks at the leaves of the tree with ‘credits’
assigned by the constructive learning algorithms. On
the basis of the framework, moreover, some tech-
niques are also introduced to the constructive learn-
ing algorithms in order to speed up training and
to control the size of a generated architecture for
generalisation. To evaluate the performance of the
proposed architecture, we have already applied the
proposed architecture to several hard supervised
learning tasks, including pattern classification and
function approximation. Simulations have shown that
the proposed architecture yields both satisfactory
performance and fast training for supervised learning
tasks. In particular, experimental results have also
suggested that the performance of the proposed
architecture is insensitive to architectures of compo-
nent neural networks, which implies that the pro-
posed architecture, to a large extent, could avoid
the problem of determining an architecture prior
to training.

The remainder of this paper is organised as fol-
lows. Section2 reviews two linear discriminant
functions employed in the proposed method.
Section 3 describes the proposed architecture and
constructive learning algorithms. Section 4 reports
simulation and comparative results in great detail.
Discussions and conclusions are presented in the
last section.

2. Linear Discriminant Functions

In this section, we review two linear discriminant
functions used in the proposed method. One is
Fisher’s linear discriminant function [44], and the
other is a specific linear discriminant function rel-
evant to the normal density [45].

2.1. Fisher’s Linear Discriminant Function

One of the recurring problems encountered in apply-
ing statistical techniques to pattern recognition is
the so-called curse of dimensionality. That is, pro-
cedures that are analytically or computationally man-
ageable in low-dimensional spaces can become com-
pletely impractical in a space of high-dimensions.
To tackle the problem, Fisher’s suggestion [44,45]
was to look for the linear function which maximises
the ratio of the between-class scatter to within-class
scatter. The use of this method can find a linear
combination of the variables such that the values

21

are as close as possible within classes, and as far
apart as possible between classes. Suppose that we
have a set of N p-dimensional samples x;,...,Xy, N,
is the subsct ¥, labelled w, and N, in the subset
&, labelled w,. If we form a linear combination of
the components of x, we obtain the scalar

y=w'x (H

and a corresponding set of N samples y,,...,yy div-
ided into the subsets ¥, and ¥,. Based upon Eq. (1),
the sample mean for the projected points is given by

1
= > y=wim, 2)
N;
yeY;
where m; = l/N,Exe%i x. If we define the scatter for
projected samples labelled w; by

§=2 o-m) (3)
ye¥y;

Fisher’s linear discriminant function is thus defined
as the linear function w' x for which the criterion
Junction

I
J(w) = ERYs (4)
is maximum, where |, —r,| = [w'(m; —m,)|

according to Eq. (2).

To obtain J as an explicit function of w, we
define the scatter matrices S,, the within-class scatter
matrix Sy and the between-class scatter matrix S,
respectively, by

S;= 2 (x—m)(x —m)" (5)
xeX;
Sg = (m; — m,)(m; —m,)" &)

Using Eqgs(2) and (3) and these definitions, we
can obtain

S+ 8&=wlSyw 8)
and
}”Alx - ,1”1212 =w' Spw 9

Thus, the criterion function J in Eq.(4) can be
rewritten as

wiS,w

Iw) = wiSy,w

(10)

This expression is well known as the generalised
Rayleigh quotient. If Sy is nonsingular, the final
solution [45] is

22

w = Sy(m; — m,) (1D

Thus, we have obtained Fisher’s linear discriminant
function, the linear function with the maximum ratio
of between-class scatter to within-class scatter.

2.2. A Linear Discriminant Function for the
Normal Density

In the Bayesian decision, the minimum-error-rate
classification can be achieved by use of the discrim-
inant functions [45]

g(x) = log p(x|w,) + log P(w)) (12)

where ; is the label of class i, p(x|w;) is the
conditional probability density for x and P(w;) is a
priori probability. If the densities p(x|w;) are multi-
variate normal, i.e. p(xjw;) ~ N(m,,X,), then

gix) =— % (x-m)" 37(x —m)

p !
5 log 27— log[3,|

+ log P(w;) (13)

where x is a p-component column vector, m; is the
p-component mean vector and 2, is the p-by-p
covariance matrix.

Let us examine this result for the special case:
3, = oI, where I is the identity matrix. After ignor-
ing some unimportant additive constants from
Eq. (13), we can obtain the simple discriminant
functions

__lx-mj?
8ix) =—"— 5+ logP(w) (14
where | - | is the Euclidean norm, with
[x ~ myf* = (x - m)"(x — m,) (15)

Expansion of the quadratic form (x —m,)"(x —m,)
in Eq. (14) yields

1
gi(x) = — 7 [xx" - 2mx + mm,]

- 20?
+ log P(w;) (16)

which appears to be a quadratic function of x. After

ignoring an additive constant x"x from Eq. (16), we

obtain the equivalent linear discriminant functions
gi(X) = WiX + wy (17)

where w;=1/0%, m; and wo=-— 1/20° mm, +
log P(w,;). According to Eq. (17), we can obtain the

K. Chen et al.

decision boundary between class i and class j by
the linear equations g(x) = g/(x)

wix-x)=0 (18)
where
w=m, - m, (19)
and
1
X, = 2 (m; + m)
o Plw,)
- mfF ' by ™™™
(20)

Equation (18) provides another linear discriminant
function which defines a hyperplane through the
point x, and orthogonal to the vector w. Since
w =m, - m, the hyperplane is orthogonal to the line
between the means. If P(w;) = P(w;), then the point
X, is halfway between the means and the hyperplane
is the perpendicular bisector of the line between the
means. If P(w;) # P(w;), the point x, shifts away
from the more likely mean. Note, however, that if
the variance o* is small relative to the squared
distance |m; — m?, then the position of the decision
boundary is relatively insensitive to the exact values
of the a priori probabilities [45].

3. Architecture and Constructive
Learning Algorithms

In this section, we propose a self-generating hybrid
architecture for a supervised learning task by com-
bining linear discriminant functions and neural net-
works (e.g. MLPs). A heuristic splitting rule is
proposed to divide a large and complicated task into
two smaller and simpler subtasks in the section.
Accordingly, constructive learning algorithms, i.e.
growing and credit-assignment, are also presented
to support the proposed architecture. The growing
algorithm is developed to automatically generate a
structure by recursively using the splitting rule and
training subnetworks for a specific task during learn-
ing, while the credit-assignment algorithm is
designed to produce the final output for unknown
data by combining the outputs of neural networks
during the test.

3.1. The Hybrid Architecture

The basic idea underlying the proposed architecture
is to use hyperplanes defined by linear discriminant

Combining Linear Discriminant Functions with Neural Networks

Fig. 1. A typical tree-structured architecture which can be auto-
matically generated by the proposed method during training (H:
hyperplane; NN: subnetwork (neural network).

functions for recursively partitioning a large task
into several smaller subtasks, and to use neural
networks, hereinafter called subnetworks, for finally
solving these subtasks. Based upon the idea, a tree-
structured architecture is automatically generated by
a controlled growing process for a specific super-
vised learning task. As illustrated in Fig. 1, the
architecture generated using the proposed method is
a binary tree structure, in which hyperplanes sit at
nonterminal nodes and subnetworks sit at the leaves
of the tree. During training, each hyperplane at the
nonterminal node can be determined according to a
heuristic splitting rule. A subnetwork is trained on
a data set ¥. The training of the subnetwork will
terminate once a pre-specific condition (failure
condition) is satisfied. In this circumstance, the cur-
rent subnetwork is aborted from the node, and a
new hyperplane determined by the splitting rule is
created, and sits at the current node instead of the
aborted subnetwork. As a result, the data set & used
for training the aborted subnetwork is partitioned by
the hyperplane into two adjacent subsets ¥, and &,
where X =%, U %, and ¥, N &, # ¢ (¢ denotes the
null set). Accordingly, two subnetworks are created
and trained on ¥, and &,, respectively. Such a one-
step splitting process is illustrated in Fig. 2. The
aforementioned recursive procedure proceeds until
all subnetworks created at the leaves of the tree
satisfy another condition (success condition). As a
result, the proposed method transfers the problem of
determining an appropriate architecture of a neural
network for a given task to the problem of finding

[Hyperplane ’

Subnetwork

Replaced
Subnetwork | |Subnetwork

Failure condition
is satisfied
X 8 Ar >

Fig. 2. A one-step splitting process when the failure condition
defined for splitting is satisfied. This one-step splitting process
proceeds recursively during growing until all subnetworks created
satisfy the success condition defined to terminate splitting.

23

a tree of the right size. During the test, the unknown
data is fed to the root node and a series of decisions
are made traversing paths down to the leaves of the
tree due to the overlapping (¥, N &, # ¢). The final
result is produced by combining results produced
by subnetworks at the leaves of the tree.

3.2. Splitting Rule

In the proposed method, a splitting rule consists of
two parts: determining a hyperplane for partitioning
a data set into two adjacent data subsets; and sel-
ecting an appropriate size of the overlapping region
between two adjacent data subsets. For determining
a hyperplane, we propose three heuristic criteria
for different learning tasks based upon the linear
discriminant functions described in Sect. 2. Given a
training data set & with N p-dimensional samples
X;,.--,Xy, the mean m of all samples in ¥ can be
computed by

m=%]2x 21

xe¥

For pattern classification, moreover, N samples are
assumed to be associated with K classes, N, in the
subset ¥, labelled w,, k=1,....K and XX, N, =N.
For all samples labelled by w; in the case of pattern
classification, its'mean m, can be achieved by

1
m, =+ >x, k=1,..K (22)
k

xe®y

For all samples in &, we can find two means of
samples labelled by o, and o, , say m; and m,,
subject to

il (23)
where || - || is the Euclidean norm in Eq. (15). In the
sequel, we shall develop criteria merely based upon
samples labelled by w,, and o, except that they
are not available.

Criterion 1

For the samples labelled by o, and @, we look
for Fisher’s discriminant function based upon the
method described in Sect. 2. As a result, we can
compute the within-class scatter matrix Sy, using
Egs (5) and (6). If the matrix Sy is nonsingular and
[m,, —m, | # 0, accordingly, we can obtain the
Fisher’s linear discriminant function by Eq.(11),
that is,

W = S;VI(mko - mkl) (24)

24

Therefore, a hyperplane can be determined using w
in Eq. (24) as

N,
Ix)=w" [X - (—ﬁ— m,
Ne, + N, ™o

+ L =0 (25
Neg+ N)|~)

Criterion 2 ,
In Criterion 1, Fisher’s linear discriminant function

will be not available if the within-class scatter matrix

Sy is singular in Eq. (24). In this case, we use
the decision boundary described in Egs (18)—(20) to
determine a hyperplane for use in the splitting rule
instead. Since the hyperplane is merely used to
heuristically partition a data set, the hyperplane is
determined by the linear discriminant function in
Eq. (20), regardless of any information on density
in this circumstance. When [jm, —m, [| # 0, it is
m, +m
‘] 0

(26)

I(x)=w" I:X — 7

where W =m, —m,,.

Criterion 3

It is obvious that both Criteria 1 and 2 will be
invalid when [jm, —my || =0. In addition, Criteria 1
and 2 cannot be used for splitting in a regression
task, since no class label is available. For this case,
we adopt a heuristic way to determine a hyperplane
as follows: the training data set should be partitioned
into two almost equal size subsets. Therefore, the
hyperplane could be

(X)=mTx-m)=0 ifm=0 or
(X)=xx=0 ifm=0 27

where w = m if m # O0.or w = X, if m=0; x, is
a sample in ¥ and randomly chosen.

For pattern classification, criteria are used for
determining the hyperplane in the splitting rule in
this order of priority: Criterion 1 if the within-class
scatter ~matrix Sy iS nonsingular and ||
m, —m, || # 0; Criterion 2 if |m, —my|/# 0 and
Criterion 3. For regression or function approxi-
mation, Criterion 3 is merely used for determining
the hyperplane in the splitting rule. Since we adopt
the ‘soft’ method to partition data sets, an overlap-
ping factor m is also needed for determining the
size of an overlapping region between two adjacent
data subsets in the splitting rule. Once both the
hyperplane I(x) =0 and the overlapping factor n are
determined, the splitting rule is defined as follows:
for the sample x; in &,

K. Chen et al.

x; e &, ifl(x)=<D;

if (x) =-D (28)

where D=mD, and 7> 0*%* The value of D,
depends upon the criterion used for determining the
hyperplane /(x) =0 in the splitting rule. In Criteria
1 and 2, D, is equal to min{
dydi,} where d, and d,, denote the distances from
means m,, and m,, to the hyperplane I(x)=0,
respectively. In Criterion 3, D, is equal to d.y,
where d,,, denotes the maximal one among dis-
tances from all x in & to the hyperplane I(x)=0.

Intuitively, the splitting rule suggests a hyperplane
which intends to segregate those data belonging to
the two classes, such that the distance between their
centroids is the furthest among all classes for pattern
classification, or partition a large data set into two
smaller data subsets with an almost equal number
of samples for regression or function approximation.
Moreover, the overlapping defined by the splitting
rule is effective to maintain the balance of the
number of significant samples used to train two
subnetworks for pattern classification, or to keep the
smooth property of a function at the boundary of
two adjacent data subsets for function approxi-
mation. As a result, Fig. 3 illustrates how the split-
ting rule works through the use of different criteria,
and only partial data labelled with w,, and @, in &
appears in (a) and (b) of Fig. 3. It is worth noting
that the cases depicted in Fig. 3 are merely special
examples. In fact, any two data subsets with distinct
labels could be overlapping (instead of separation
in Fig. 3) for the general case. Anyway, the splitting
rule always works as shown in Fig. 3.

X, € &,

3.3. Constructive Learning Algorithms

As mentioned above, the constructive learning algor-
ithms consist of a growing algorithm and a credit-
assignment algorithm in the proposed method.

In general, the growing algorithm provides a pro-
cedure to automatically generate a binary tree for a
given task. There are at least two issues worth
considering in developing the growing algorithm;
that is, splitting and stopping rules. The splitting
rule has been described in the preceding section.
Here, we only consider the stopping rule, and
develop a growing algorithm using both the splitting
and stopping rules. For controlling the growing pro-
cess, we define two kinds of conditions, called

*Jf the number of samples in & is Ng, the value of % must be
chosen under the condition that max{Nyg ,Ngfr} < N where
Ng, and Ny are numbers of samples in &, and &,, respectively.

Combining Linear Discriminant Functions with Neural Networks

25

Fig. 3. A diagrammatic procedure demonstrates how the splitting rule works with different criteria. (a) criterion 1; (b) criterion 2;

(c) criterion 3.

success and failure, respectively. To formally define
these two conditions, first we introduce several thre-
sholdst to two kinds of conditions. Let us denote
Iy, E and S, as the upper bound of epochs, Mean
Square Error (MSE) of a subnetwork during training,
and the lower bound of the number of samples in a
training set for training the subnetwork, respectively.
Thus, the success condition is defined as follows:
E, < E; if and only if I =1, or Ny = S, where
I, E; and Ny denote the epochs of training a subnet-
work, the value of MSE of the subnetwork after [
epochs and the number of samples in the training
sets &, respectively. Intuitively, the success con-
dition means that the training set for a subnetwork
is not partitioned into two smaller training subsets,
and the node at which the subnetwork is located is
one of leaf nodes in the tree generated. Furthermore,
we introduced another threshold to the failure con-
dition to speed up training by dividing a large task
into several smaller subtasks prior to training any
subnetwork. We denote S,,,, as the threshold of the
maximal number of samples used to train a subnet-
work. Accordingly, the failure condition is defined
as follows: I>1; and E; > E; and Ny > S, or
Ny = Spax, Where Ng is the number of samples in
the training set ¥. Intuitively, the failure condition
means that the current training set must be divided
into two smaller subsets, and the node with the
training set is only a nonterminal node in an inter-
mediate level of the generated tree (or only a hyper-
plane can be located at the node). Therefore, the
stopping rtule is defined as follows: when a subnet-
work satisfies the success condition, it will reside
at the leaf node and the growing process at the leaf

T One may also use other constraints beyond the thresholds
mentioned here to define both success and failure conditions for
more efficiently controlling the growing process for a specific
problem.

node will stop; otherwise, the satisfaction of the
failure condition results in the use of a splitting rule
to continue the growing process. When the success
condition is satisfied, two cases will still need con-
sidering further. If I <[, and E, < E, training of
the subnetwork on & terminates. If Ny =< S, ., how-
ever, the training of the subnetwork on & is pro-
longed by iterating KprXx I, (Kpy> 1) epochs then
stop, where Kpr is hereinafter called the prolong-
training factor. Based upon both the splitting and
stopping rules, the growing algorithm is summarised.

Growing Algorithm

1. Initialisation. Tnput the training set J corre-
sponding to the given task. Set ¥ «— J. Select a
subnetwork architecture and an existing learning
algorithm for training the subnetwork. Initialise
the weight matrix of the subnetwork as W,. Set
the overlapping factor m and prolong-training
factor Kpr. Set thresholds I, Ep, S, and So...

2. Let Ny denote the number of samples in &. Use
the splitting rule in Eq. (28) to partition & into
X, and X, if Ny > Spax.

3. Set ¥ +—%, and go to step 2 if Ny > S Set
X —%, and go to step 2 if Ny > Six.

4. For a training set ¥, create a chosen subnetwork
and train it on ¥ using the chosen learning
algorithm with the initial weight matrix W, until
either the success condition or the failure con--
dition is satisfied. ,

5. If the failure condition is satisfied, use the split-
ting rule in Eq. (28) to partition the current &
into &, and %,." Randomly perturb the weight
matrix of the subnetwork at th¢ current node on
%, and put the perturbing version of W, into W,
and W, Set X — &, and W, — W,, then go to
step 4. Set ¥ —&*, and W, — W,, then go to
step 4.

26

6. If the success condition is satisfied, the subnet-
work will reside at the leaf node. Moreover, stop
the training of the subnetwork on ¥ if I =1,
and E; = E;; otherwise (Nyp = S,,;n), continue to
train the subnetwork by iterating Ky X I- epochs,
then stop the training.

7. Repeat from step 4 to step 6 until all created
subnetworks at the leaves of the tree satisfy the
success condition.

For unknown data during testing, the output pro-
duced by the proposed tree-structured architecture
could depend upon several subnetworks at the leaves
of the tree, since the ‘soft’” method is adopted in
the splitting rule. To draw the final result according
to the outputs produced by subnetworks, we develop
a credit-assignment algorithm. To serve for develop-
ment of the algorithm, we first define two func-
tions as

1 x <-=-D
c=12"" p=x=p
2D
0 x>D (29)
and
0 x<-=-D
cw=12** p=y=p
2D
1 x>D (30

For Eqs(29) and (30), it is easy to show that
C{x) + C,(x) = 1. Thus, the credit-assignment is sum-
marised.

Credit-Assignment Algorithm

1. Initialisation. Let x,, denote an unknown pattern
for test. «=1 and pointer « root. I(x)=0
is the hyperplane which resides at the current
nonterminal node pointed by the pointer.

2.If Ix,)=D, do
pointer «—pointer — leftchild.

3.If Ix,)=-D, do a+—axCJl(x,)] and
pointer «—pointer — rightchild.

4. Repeat steps 2 and 3 until credits are assigned
to all the subnetworks which x, can reach.

The credit-assignment algorithm provides a way
to assign credits to all the subnetworks at the leaves
of the tree for unknown data. Suppose that N, is
the set of subnetworks at the leaves of the tree that
an unknown pattern X, can reach; the output of the
tree-structured hybrid system, O(x,), is

a—axClix,)] and

K. Chen et al.

Ox,) = >, afX,) X Ofx,) 31

ieN,

where ay(x,) is the credit assigned to the ith subnet-
work and O«(x,) is the result produced by the ith
subnetwork (i € N,).

4. Simulations

This section presents simulation results on a variety
of problems that have appeared in the literature.
Most of them have been viewed as benchmarks in
machine learning [46], and a function approximation
problem has also been used to evaluate the perform-
ance of the proposed hybrid architecture. All of
these problems were solved on a SUN Sparc II
workstation, and programs were written in the C
language. In simulations, three-layered MLPs were
chosen as the architectures of subnetworks for use
in the proposed hybrid architecture. To simplify the
presentation, we denote a three-layered MLP with
n; input neurons, n, hidden neurons and n, output
neurons as the MLP with n-n,-n, or MLP (n;-n,-
n,). For training MLPs in the growing algorithm,
the Levenberg-Marquat method, a second-order
algorithm [16,47], was employed for parameter esti-
mation of all the subnetworks, instead of the stan-
dard Back-Propagation (BP) learning algorithm. For
the proposed tree-structured hybrid architecture, we
denote a generated tree with Ny nonterminal nodes
and Ny, terminal nodes as the tree with (Ng,
Nyp). The resulting tree-structured architecture for
a specific task is hereinafter called the Modular
Tree, denoted as MT (n-n,-n,) if the architecture of
subnetworks are the MLP with n;-n,-n,. In addition,
we have conducted more than one simulation for
each problem using different architectures of the
subnetworks (or MLPs) to see if the performance
of the proposed hybrid system is sensitive to the
architectures of component neural networks or sub-
networks. For the purpose of comparison, we have
applied MLPs individually to all problems, and the
two-fold cross-validation technique was used to sel-
ect an appropriate architecture from multiple candi-
dates for a specific problem, except that for the
problem an appropriate architecture of the individual
MLP has been suggested in the literature. For some
problems, we have also applied classic methods,
such as decision trees, to those problems for the
purpose of comparison. In the sequel, we describe
all the experimental results in detail.

Combining Linear Discriminant Functions with Neural Networks

Table 1. Classification of irises: generalisation ability of modular trees when the number of
samples in the training set is 21. ‘no. of errors’ stands for number of classification errors and
is averaged over five trials corresponding to five randomly chosen training sets with 21
samples. During training, thresholds in the growing algorithm are chosen as follows: I, =8,
E;=003, S,..=20, Spin =9 and the prolong-training factor Kpr=2-0. The architecture of
subnetworks is the MLP with 4-3-3.

Overlapping factor 03 04 05 0-6 0-7 0-8 09
No. of errors 54 50 5-0 4.8 4-8 4-6 7-0
architectures (Ny, Nyp) (1,2) (1,2) 1,2) (2,3) 2,3) (2,3) (3.4)

Table 2. Classification of irises: generalisation ability of modular trees when the number of
samples in the training set is 30. ‘no. of errors’ stands for number of classification errors and
is averaged over five trials corresponding to five randomly chosen training sets with 30
samples. During training, thresholds in the growing algorithm are chosen as follows: I,= 10,
Er=003, 5,:=29, Snin=9 and the prolong-training factor Kpr=2-0. The architecture of
subnetworks is the MLP with 4-3-3.

Overlapping factor n 03 0-4 05 0-6 0-7 0-8 09
No. of errors 40 42 42 42 4-6 52 70
architectures (Ny, Nuyrp) (1,2) (2,3) 2,3) (3.4) 3.4 G4 4,5)

Table 3. Classification of irises: generalisation ability of modular trees when the number of
samples in the training set is 60. ‘no. of errors’ stands for number of classification errors and
is averaged over five trials corresponding to five randomly chosen training sets with 60
samples. During training, thresholds in the growing algorithm are chosen as follows: I.= 10,
Er=002, Spax =59, Smin =12 and the prolong-training factor Kp;=2-5. The architecture of

27

subnetworks is the MLP with 4-3-3.

Overlapping factor 0-3 04 05 0-6 0-7 0-8 09
No. of errors 4.2 4.8 4.4 4.6 3-6 4-6 52
architectures (N, Nyp) 12y 23 G4 GH G5 &5 5.6

4.1. Classification of Irises

The classification of irises is a famous benchmark
problem in pattern recognition. Fisher used the data
set in his classic paper on discriminant analysis
[44], and the data set has since become a favourite
example in pattern recognition [45]. Irises are classi-
fied into three categories: setosa, versicolor and
virginica. Each category consists of 50 samples.
Each sample possesses four attributes: sepal length,
sepal width, petal length and petal width. In experi-
ments, a subset of data was randomly chosen for
training, and the remaining data were used for test-
ing. The generalisation ability of a modular tree was
evaluated by mean prediction error. For reliability,
we randomly selected five subsets of data as training
sets for a specific number of samples. An MLP
with 4-3-3 was first chosen as the architecture of

subnetworks in the proposed tree-structured hybrid
architecture, and different overlapping factors in the
splitting rule were also investigated in the experi-
ments. Tables 1, 2 and 3 show the generalisation
capabilities of the resulting modular trees in terms
of different overlapping factors when the number of
samples is 21, 30 and 60 in the training sets,
respectively. It is obvious that the performance of
a resulting modular tree is highly influenced by the
overlapping factor in the splitting rule. We also
report results produced by the individual MLP with
4-4-3, the method of structural learning with forget-
ting viewed as a method which can yield better
generalisation than the standard BP algorithm [48],
as well as the proposed method for comparison, in
Table 4. In the same table, we also report the results
produced by modular trees in which the architecture
of subnetworks was the MLP with 4-4-3 (other

28

K. Chen et al.

Table 4. Classification of irises: generalisation ability. ‘no. of errors’ stands for the
number of classification errors for test data and is the average over five trials starting
from different initial connection weights. SLF (4-4-3) and MLP (4-4-3) respectively
denote the method of structural learning with forgetting of the MLP with 4-4-3 and
the individual MLP with 4-4-3. The overlapping factors used for generating modular
trees are 0-8, 0-3 and 0-7 when numbers of the training sets are 21, 30 and

60, respectively.

No. of samples No. of errors

Training Test SLF (4-4-3) MLP (4-4-3) MT (4-3-3) MT (4-4-3)
21 129 68 162 46 46
30 120 50 64 40 4.2
60 90 52 4.8 36 3.6

Table 5. Classification of iris: averaging CPU time of training different architec-
tures for all experiments. ‘no. of samples’ denotes the number of samples in a

training set. (unit: second.)

No. of samples MLP (4-4-3) SLF (4-4-3) MT (4-3-3) MT (4-4-3)
21 54-8 86-4 21-6 22.8
30 61-5 103-8 236 247
60 106-8 163-4 29-8 313

parameters in the growing algorithm remained
unchanged for generating modular trees), in order
to investigate whether the performance of resulting
modular trees is influenced by different architectures
of the subnetworks. All averaging training times for
the different methods are listed in Table 5. Accord-
ing to Table 4 and 5, modular trees generalise better
than the individual MLP, as well as the method of
structural learning with forgetting, and yields faster
training. From Table 4, in particular, the use of
different architectures of the subnetworks in modular
trees yields a quite similar generalisation perform-
ance. This implies that the performance of the modu-
lar tree is insensitive to the architecture of its subnet-
works (MLPs) for the classification of iris problem.

4.2. Two Spirals Problem

A well-known benchmark in the neural network
community is the so-called two spirals problem, as
illustrated in Fig. 4. It consists of 194 two-dimen-
sional vectors lying on two interlocked spirals,
which are the classes in this case. The task is to
construct a classifier which can distinguish between
the two classes. The benchmark is interesting
because, due to the low data dimensionality, it is
possible to visualise the decision regions of the
network during and after training. Moreover, it

seems to be a rather difficult task for typical feedfor-
ward neural networks (e.g. MLPs with sigmoidal
activation functions). Lang and Witbrock [49] could
not solve the problem with a standard MLP, and
had to use additional connections to achieve conver-
gence. Fahlman and Lebiere [19] used a constructive
learning algorithm to solve the problem successfully.
The problem has since been popular in the neural
network community, and has been extensively used
for evaluating both nonlinear separability and gener-
alisation ability of a neural architecture. Here, we
use the benchmark to evaluate the performance of
the proposed tree-structured architecture.

In simulations, all parameters used in the growing
algorithm are as follows: n=0-08, Kpr=3, I-= 10,
Er=001, S,., =90 and S, =20. We adopt MLPs
with 2-2-1 and 2-3-1 as the architectures of the
subnetworks, respectively, for two independent
simulations. The resulting decision regions of modu-
lar trees in which subnetworks are MLPs with 2-2-
1 and 2-3-1 are, respectively, shown in Figs 5 and
6. The resulting decision regions produced by two
modular trees with different architectures of subnet-
works are slightly different. For the two spirals
problem, it implies that the performance of modular
trees seems insensitive to the architectures of the
subnetworks. Furthermore, it is worth noting that the
resulting modular trees with different architectures of

Combining Linear Discriminant Functions with Neural Networks 29

+ + + +
+ .
+
+ ° © ° °
° ° +
+
° T o
+ + +
+ © +
. o © ° e o o + ©
3
+ © © M *
+ o + + + 4+ i o <o
° © + + i +
+ + + o +
* ° ° + RIS AN + + °
* ° N ° + °
+ >
o + ° + © + © + o + ° +
.t ©
+ 4 ++ F > + o
+ © © i+t g + + °
o + & o o
° +
@ + ° <@ +
+ o0 0 ° + 3 °
° © + +
+ + ° +
+ ° e o+ ° °
° . o o +
5 o © + °
o + 4
+ + <&
o + * o
@ o
4]

Fig. 4. The two spirals problem (training data).

I]

Fig. 5. Decision regions produced by the Modular Tree (2-3-1)
for the two spirals problem.

subnetworks share the same architecture, which is
depicted in Fig. 7. To visualise the process of grow-
ing a modular tree during training, we diagrammati-
cally show how the input space is split up in Fig. 8.
In addition, we have also applied the MLP with 2-
5-5-5-1 and additional connections suggested by
Lang and Witbrock [49] and the cascade correlation
achitecture [19] to the two spirals problems on the
same workstation. As a result, the CPU time of
training modular trees and those architectures are
listed in Table 6 for comparison. Although both the
special MLP and the cascade correlation can also

Fig. 6. Decision regions produced by the Modular Tree (2-2-1)
for the two spirals problem.

produce approximately correct resulting decision
regions, the modular trees yield faster training.

4.3. Waveform Recognition Problem

The synthetic waveform recognition problem was
first introduced [22] to study the behaviour of Classi-
fication And Regression Tree (CART). It is a three-
class problem based on the waveforms h,(f), hy(f)
and h;(), depicted in Fig. 9. Each class is a random
convex combination of two of these waveforms. The

30 K. Chen et al.

(H) 2 (H)3

()< (H)5 (We (W7

OF O Ol (W) 11 W1z (Wi (W4 (W15

OLMIOL MO BIMLPI%IMLPI (1)20[mLP] (H 2 f[MLP](H)22[mLp] [MLP]
IMLPl wmLp] [mip] [Mep] [mie] [mip] [wip] [mip] [mp] [mLp] (n)2s
@ Hyperplane MLP with 2-2-1 or 2-3-1

Fig. 7. The modular tree (subnetworks are MLPs with either 2-3-1 or 2-2-1) for the two spirals problem. Each label corresponds to
a specific hyperplane used for partitioning input space (see Fig. 8).

7
|
2
]
i
°
° @ ¢ °
i+ o
o + +
° " - i\e ¥ °
+ Py
S S
+ 10 d,xf e e 8 T °
° AR N e v
+ 70 ad AN N - >
s " 18 Al /A AN It 16 S
’q_/____.Q—-::Kq. /1 ¢J Oo\o [N}~ R e 2
-~ Ny 9oL N © T
. ot [0 A o
RS A LI A o SN S S
- . N ~
1 7 o e i N ™ Tl
A P G B SR M e PR oy z >
RN o ot % L R e
e AN B0 1
. [} N, ‘ ~ A
15 R COREN B/ . F e
- L N-T, N + G-
o “X- ettt S o+ "
+ et N - L o
. \ R > . +4
° ot NO ong 9T -7
~N =y Pl +
~—— N > i - ;o
+ o PN A /
° T /t'] +
+ e o i
N /
°
+ o & °21) *
+ &
+ + + ,’l
i
/
/
3
!
H
H

Fig. 8. The process of partitioning input space for the two spirals problem and each labelled line segment corresponds to a hyperplane
in the modular tree (the resulting modular tree structure is illustrated in Fig. 7). Note: the overlapping region between any two adjacent

clusters is not depicted in the figure.

Combining Linear Discriminant Functions with Neural Networks

31

Table 6. The two spirals problem: CPU time of training different architectures. (unit:

second.)

MLP (2-5-5-5-1) Cascade-Correlation

MT (2-2-1) MT (2-3-1)

CPU time 3429 236

112 116

ht h2 h3

i

15 20 25

00 5 10

Fig.9. Three basic waveforms in the waveform recognition
problem.

pattern vector is obtained by sampling 21 points
and adding noises. Hence, the components of the
pattern vector are given as follows:

For class 1,

x=uh (D) + (1 —wh() + €,

i=1,...,21

For class 2,
x; =uh () + (1 —whs(i) + €,
i=1,.,21

For class 3,
x; = uhy() + (1 —whs(D) + €,
i=1,..21

Here u is a uniform random variable on the interval
[0, 1], and €,,...,6,; are independent Gaussian ran-
dom variables with zero mean and unit variance.
The three classes have equal a priori probabilities.
Breiman er al. [22] reported that the Bayesian mis-
classification rate for this problem is approxi-
mately 14%.

In simulations, we randomly produced seven inde-
pendent training sets ranging in size from 500 to
2000 samples. For each training set, a modular tree

with the specific architecture of subnetworks was
generated. During testing, an additional set of 5000
independent samples was employed to obtain the
error rate, so that the performance of modular trees
generated on distinct training sets can be respect-
ively evaluated. In experiments, the architecture of
the subnetworks was chosen as the MLP with either
21-12-3 or 21-15-3, and other parameters used in
the growing algorithm are as shown in Table 7. As
a result, 14 architectures of the resulting modular
trees are shown in Table 8, and the error rates
produced by the resulting modular trees are illus-
trated in Fig. 10. It is evident from Fig. 10 that
modular trees with different architectures of the
subnetworks yield a performance similar to the
waveform recognition problem. For comparison, we
also illustrate testing results produced by the
resulting modular trees with MT (21-12-3), CART
with two different splitting rules {22] and an individ-
val four-layered MLP consisting of 21 neurons in
the input layer, 20 neurons in the first hidden layer,
five neurons in the second hidden layer and three
neurons in the output layer [34] in Fig. 11. Accord-
ing to Fig. 11, it is shown that modular trees outper-
form CART in all cases, and the four-layered MLP
when the number of samples in the training set is
1000, 1250, 1500 and 1750. In addition, the CPU
times of training the individual MLLP and modular
trees are shown in Table 9 for comparison. It is
evident from this table that the proposed method
yields significantly faster training than the individual
MLP for the problem, though the Levenberg—Mar-
quat learning algorithm was used for training both
the individual MLP and subnetworks of modular
trees.

4.4. Speaker Independent Vowel Recognition

To explicitly investigate the generalisation capability
of the proposed method, we performed experiments
with a speaker independent vowel recognition prob-
lem. The data used was collected by Deterding [50],
who recorded examples of the 11 steady-state vow-
els of English spoken by 15 speakers for a speaker
normalisation study. Eleven words including 11
vowel sounds were recorded, and each word was
uttered once by each of the 15 speakers, seven of

32

error rate (%)

K. Chen et al.

Table 7. The waveform recognition problem: parameters used in the growing algorithm and ‘architectures
of resulting modular trees. ‘no. of samples’ stands for the number of samples in a training set.

No. of samples 500 750 1000 1250 1500 1750 2000
Overlapping factor 7 09 0-6 0-6 0-6 04 04 03
Prolong-training factor Kpp 3-0 2:5 2.5 2.5 2-0 20 2:0
Threshold I 20 20 20 20 20 20 20
Threshold E; 0-4 0-4 0-4 04 04 0-4 04
Threshold S;,.x 450 700 800 900 800 950 1100
Threshold S, 50 75 100 125 150 175 200
Architectures (Ny, Nyp) (1,2) (1,2) (2,3) 6.7) (5,6) (6,7) (5,6)

Table 8. The waveform recognition problem:

use of different architecture of subnetworks.

resulting structures of modular trees on

No. of samples 500 750 1000 1250 1500 1750 2000
MT (21-12-3) 12y (12 (23 6,7 (5,6) 6,7) (5.6)
MT (21-15-3) 1,2y 1.2 (23 (5,6 (5,6) 6,7) 6.7
20
30
19)\ — Moduiar Tree with MLP (21-12-3) 28 1
A -~ Modular Tree with-MLP (21-15-3) 26 CART coordinate split
18} :\‘; 24 4 ‘\\\‘
S
© 224
17} =
£ 201
@ CART linear split
16 18
16 4 Large multilayer net
15 e P
14 - The proposed method =
pro . ' 500 750 1000 1250 1500 17I50 20I00

14
500
samples size

Fig. 10. Error rates of modular trees with different architecture

of
or

subnetworks on the waveform recognition problem. Each ‘o’
‘x” corresponds to the result produced by a generated modular

tree trained on an independent training set.

whom were female and eight male. The speech
signals were low pass filtered at 4.7 kHz and then

di

gitised to 12 bits with a 10kHz sampling rate.

12-order linear predictive analysis was carried out
on six 512-sample Hamming windowed segments
from the steady part of the vowel. The reflection
coefficients were used to calculate 10 log area para-
meters, giving a 10-dimensional input space. Each
speaker thus yielded six frames of speech from 11
vowels. This gave 990 frames from the 15 speakers.

Robinson [51] used this data to investigate several

types of neural network algorithms and classic clas-

samples size

Fig. 11. Error rates versus samples size for CART method, a
large individual MLP with 21-20-5-3 and the Modular Tree (21-
17-3) on the waveform recognition problem.

sifiers. He used 528 frames from four male and
four female speakers to train the networks, and the
remaining 462 frames from four male and three
female speakers to test the performance. The classi-
fiers he examined were single-layer perceptrons,
multilayer neural networks with sigmoidal, Gaussian,
and quadratic activation functions, a modified
Kanerva model, radial basis networks, and also a
conventional method, the nearest-neighbour clas-
sifier.

In our experiments, the architecture of the subnet-
works was chosen as the MLP with either 10-18-
11 or 10-20-11, and all the parameters used in the

Combining Linear Discriminant Functions with Neural Networks

33

Table 9. The waveform recognition problem: CPU time of training the individual

MLP and modular trees. (unit: second.)

No. of samples 500 750

1000

1250 1500 1750 2000

MLP (21-20-5-3) 793 1123

1494
MT (21-12-3) 380 459 588
MT (21-15-3) 414 466 601

1981 2087 2385 2698
673 715 818 869
659 732 826 893

Table 10. The speaker independent vowel recognition problem: parameters used in the growing algor-

ithm.

Overlapping factor 02 03 04 05 0-55 0-6 07
Prolong-training factor Kpr 3.0 3.0 3.0 3.0 30 3.0 30
Threshold I 12 12 12 12 12 12
Threshold Er 011 011 011 011 011 0-11 0-11
Threshold S, 320 3200 320 320 320 320
Threshold S, 30 30 30 30 30 30 30

Table 11. The speaker independent vowel recognition problem: architectures of resulting
modular trees, (Ny, Ny p), with different architectures of subnetworks.

04 0-5 0-55 0-6 0-7

Overlapping factor 7 02 03
MT (10-18-11) 45 &3
MT (10-20-11) (4,5) 4,5)

4.5) (5.6) (6,7) 6,7)
4.,5) (5.6) (5,6) 6.7)

(10,11)
9.10)

growing algorithm are listed in’ Table 10. We gener-
ated several modular trees corresponding to different
overlapping factors with the same data used by
Robinson [51], and thereafter used his test data to
evaluate the generalisation ability of modular trees.
As a result, all the architectures of the resulting
modular trees are shown in Table 11, and the error
rates produced by the modular trees corresponding
to different overlapping factors are illustrated in
Fig. 12. The architecture of the modular tree, MT
(10-18-11), producing the best result (corresponding
to the overlapping factor 1 =0-55) is illustrated in
Fig. 13. In addition, the CPU times of generating
modular trees with different overlapping factors are
listed in Table 12, and both the results in Robinson
[51] and ours are shown in Table 13 for comparison.
It is evident from the simulation that the proposed
method outperforms the classical classifiers. We
could conjecture that the proposed method also

yields significantly faster training than MLPs, since

Robinson reported that the training of an MLP for

4]
D
1

- Modular Tree with MLP (10-18-11)
—— Modular Tree with MLP (10-20-11)

error rate (%)
o~ H o o [¢)]
=2] [=] N Y
. : T T

£

42

40 L L L . L L L L L
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

overlapping factor

Fig. 12. Error rates of modular trees with different architecture
of subnetworks on the vowel recognition problem in terms of
different overlapping factors in the splitting rule. Each ‘0’ or X’
corresponds to the result produced by a generated modular tree
trained using a specific overlapping factor.

34 K. Chen et al.

@ Hyperplane MLP with 10-18-11

Fig. 13. The generated modular tree corresponding to the recognition rate 59% (the overlapping factor is m=0-55 in the splitting
rule) for vowel recognition problem.

Table 12. The speaker independent vowel recognition problem: CPU time of generating
modular trees corresponding to different architectures of subnetworks in terms of different
overlapping factors in the splitting rule. (unit: second.)

Overlapping factor 7 02 03 04 0-5 0-55 0-6 0-7
MT (10-18-11) 688 723 755 805 911 1022 1491
MT (10-20-11) 704 789 822 879 901 1043 1372

Table 13. The speaker independent vowel recognition problem: test results of different methods for comparison.
The table shows the network size, the number of correctly classified test patterns (out of 462), and the
corresponding percentages. The modular tree is MT (10-18-11) with overlapping factor =055 in the splitting
rule (the architecture is illustrated in Fig. 13).

Classifier No. of hidden neurons Correctly classified Percent correct
Single-layer perceptron - 154 33
Multilayer perceptron 88 234 51
Multilayer perceptron 22 206 45
Multilayer perceptron 11 203 44
Modified Kanerva model 528 231 50
Modified Kanerva model 88 197 43
Radial basis function 528 247 53
Radial basis function 88 220 48
Gaussian node network 528 252 55
Gaussian node network 88 247 53
Gaussian node network 22 250 54
Gaussian node network 11 211 47
Square node network 88 253 55
Square node network 22 236 51
Square node network 11 217 50
Nearest neighbour - 260 56

Modular tree (1 =0-55) 18 271 : 59

Combining Linear Discriminant Functions with Neural Networks

the problem took such a long time that the training
had to be terminated once a threshold of iterations
had been reached.

4.5. Image Segmentation

The image segmentation data was collected by Brod-
ley at the University of Massachusetts, and has
become a benchmark for machine learning in the
UCI Repository of machine learning database [46].
The instances were drawn randomly from a database
of seven outdoor images. The images were manually
segmented to create a classification for every pixel.
Each instance is a 3 x 3 region. The feature vector
consists of 19 continuous attributes associated with
region, density, contrast and intensity, etc. All the
data were classified into seven categories: brickface,
sky, foliage, cement, window, path and grass. In the
database [46], all data have been explicitly divided
into two sets, i.e. a training set and a test set. There
are 210 samples (30 instances/class) in the training
set, and are 2100 samples (300 instances/class) in
the test set. According to the statement on the data
[46], no result on the data has been published yet.

We applied the proposed method to the image
segmentation problem to evaluate the generalisation
ability of the resulting modular trees. In our experi-
ments, the architecture of the subnetworks was
chosen as the MLP with either 19-17-7 or 19-21-7.
As a result, all parameters used in the growing
algorithm are listed in Table 14, and the architec-
tures of the resulting modular trees based upon
different overlapping factors in the splitting rule are
also shown in Table 15. The testing results of these

35

modular trees corresponding to different overlapping
factors are shown in Fig. 14. According to these
testing results, it has been demonstrated that modular
trees with different architectures of the subnetworks
yield a similar performance. We also performed
some experiments on the use of individual MLPs
with the Levenberg—Marquat learning algorithm to
solve the same problem. For comparison, the results
of some modular trees and individual MLPs are
shown in Table 16, and the training time is accord-
ingly listed in Table 17. It is evident from the
simulation results that modular trees yield a better
generalisation and faster training than the MLPs.

20[— \ - Modular Tree with MLP (19-17-7)
A

\ —— Modular Tree with MLP (19-21-7)

error rate (%)
-
[=2]

o
T

10 . T L) . . .)
0.2 0.3 0.4 0.5 0.6 0.7 08 0.8 1
overlapping factor

Fig. 14. Error rates of modular trees with different architecture
of subnetworks on the image segmentation problem in terms of
different overlapping factors in the splitting rule. Each ‘0’ or x’
corresponds to the result produced by a generated modular tree
trained using a specific overlapping factor.

Table 14. The image segmentation problem: parameters used in the growing algorithm.

n 0-2 03 0-4 05 0-6 0-7 0-8 0-9 1-0
Kor 3.0 3.0 3.0 3.0 3:0 30 3.0 3-0 3.0
I 6 6 6 6 6 6 6 6 6
Er 018 018 018 018 018 018 018 018 018
Soman 100 100 100 100 100 100 100 100 100
Snin 20 20 20 20 20 20 20 20 20

Table 15. The image segmentation problem: architectures of resulting modular trees, (Ny;, Nyp), with different architec-

tures of subnetworks.

M 02 03 0-4 05 0-6 0-7 0-8 09 10
MT (19-7-7) (11,12) 6.7) (13,14) (21,22) (22,23) (63,64) (76,77) (157,158) (430,431)
MT (19-21-7) (10,12) (5,6) (12,13) (20,21) (21,22) (59,61) (72,73) (148,149) (423,425)

36

K. Chen et al.

Table 16. The image segmentation problem: test results of MLPs and the resulting modular trees.
The table shows the network architecture, the number of correctly classified test patterns (out of
2100), and the corresponding percentages. The architecture of subnetworks in resulting modular
trees is the MLP with either 19-17-7 or 19-21-7.

Classifier Architecture Correctly classified Percent correct
Three-layered MLP (1) 19-17-7 1735 82:6
Three-layered MLP (2) 19-28-7 1770 84.3
Three-layered MLP (3) 19-50-7 1712 81-5
Four-layered MLP (4) 19-22-10-7 1787 852
MT (19-7-7) (n=0-9) (157,158) 1862 88-6
MT (19-21-7) (n=0-7) (59,61) 1859 88:3

Table 17. The image segmentation problem: CPU time of training four individual MLPs and
some modular trees listed in Table 16. (unit: minute.)

MLP (1) MLP (2)

MLP (3)

MLP (4) MT (19-17-7) MT (19-21-7)

CPU time 785 893 99-4

2182 33.8 26-4

4.6. Function Approximation

It is well known that an MLP with a sigmoidal
activation function can perform the universal
approximation of any continuous multivariate func-
tion to any desired degree of accuracy, provided
that sufficiently many hidden neurons are available
[12,52,53]. To evaluate the universal approximation
ability of the proposed method, we performed an
experiment by learning a multivariate function
approximation task. To visualise the results, we
selected a function as

*
2 b

—10=xy=10 (32)
In the experiment, we used a training set with 625
samples to learn the mapping. All parameters used
in the growing algorithm, architectures of both sub-

networks and resulting modular trees are listed in
Table 18. Obviously, the two resulting modular trees

fxy) = (¥ — y*) sin

with different architectures of subnetworks share the
same architecture. To exactly evaluate the generaliz-
ation ability of the modular tree, we used three data
sets with 1600, 2500 and 4489 samples for testing,
respectively. Two modular trees produce very simi-
lar testing results on all three testing data sets. Due
to the limited space, we merely show the results
produced by the modular tree, MT (2-2-1). As a
result, the data in the training set is shown in
Fig. 15(a) for reference, and the testing results pro-
duced by the resulting modular tree on different
testing data sets are respectively shown in
Figs 15(b)~(d). It is evident from the simulation
that the modular tree can perform the universal
approximation task very well in multiple scales. For
comparison, we also employed an individual five-
layered MLP (two input neurons, three neurons in
the first hidden layer, five neurons in the second
hidden layer, three neurons in the third hidden layers
and one output neuron) along with the Levenberg—
Marquat learning algorithm to deal with the same

Table 18. Function approximation: parameters used in the growing algorithm and
architectures of modular trees. The architecture of subnetworks in resulting modular
trees is the MLP with either 2-2-1 or 2-3-1.

n Kpr I Er Sinax

Smin MT (2-2-1) MT (2-3-1)

02 3 10 0-005 200

20 (55,56) (55,56)

Combining Linear Discriminant Functions with Newral Networks

-
R
N
R
Nh

10
-5 5

5 -5
10

b

37

AL
S

505

otat

N
X

SRR

G500 IRRB RSO AL
R
fsiatathiniianiin:

e XS

TTETeie
RSSO,
A s s e e

ANt % 0 % %

s
o

R
Q:-‘tx‘tﬁg‘\{t}%%
CAAPT Sk N
RS LAE AN
R
R

et e
\\\\\“\\\ ‘\‘\ !
ey \‘3\“‘ 0

W
M

W W
AT

d

Fig. 15. The results of universal approximation on the function in Eq. (32) (10 = x,y = 10). (a) the surface produced by the function
in Eq. (32) on the training data (625 samples); (b) the resulting surface produced by the modular tree on test data (1600 samples);
(c) the resulting surface produced by the modular tree on test data (2500 samples); (d) the resulting surface produced by the modular

tree on test data (4489 samples).

problem. The CPU time of the training modular
trees and the MLP are listed in Table 19. It is
obvious from the table that the propesed method
yields significantly faster training than the MLP,
though both can yield satisfactory performance for
universal approximation.

5. Discussions and Conclusions

We have described a novel method for supervised
learning by combining linear discriminant functions

Table 19. Function approximation: CPU time of training
an individual MLP and modular trees. (unit: second.)

MLP (2-3-4-3-1) MT (2-2-1) MT (2-3-1)

CPU time 3892 227 236

and neural networks. The extensive simulation
results have shown that the self-generated tree-struc-
tured hybrid system outperforms MLPs for several
benchmark problems of classification, and a problem
of universal approximation. In particular, the pro-
posed method yields significantly faster training. The
application of the proposed method in a real world
problem called speaker recognition has been already
investigated [54,55]. It has also shown that the
proposed method is a more effective way than other
classic methods to solve a large scale problem [54].

The basic idea underlying the proposed method
is the use of the principle of divide-and-conquer.
The issue is worth discussing here further. As stated
previously, linear discriminant functions play a cru-
cial role for dividing a large or complicated problem
into simpler or smaller problems, while neural net-
works serve to solve those simpler and smaller
problems. In the splitting rule, three types of linear
discriminant functions could be used for the purpose.
The Fisher or normal density related linear discrimi-

38

nant functions could result in an optimal or sub-
optimal partition to distinguish between the data that
belong to two different classes, and the Euclidean
distance between their centroids is furthest among
all data in a given classification task, while the
linear discriminant function in Eq. (27) intends to
partition all data into two sets with an almost equal
size. Obviously, what these linear discriminant func-
tions do is either reduce the complexity of the
original problem, or transfer the original problem
into two smaller problems. As theoretically and
empirically shown previously, the training time of
an MLP often increases exponentially with the size
of the problem [14,56,57]. Thus, a real world prob-
lem (e.g. image processing) will often be intractable
when the MLP is used directly. In our growing
algorithm, linear discriminant functions first partition
a large problem into several smaller problems prior
to the training of MLPs or subnetworks, in order to
limit the scale of the problems to a solvable extent
for those MLPs or subnetworks. As shown pre-
viously, each linear discriminant function is analyti-
cally determined according to the given training
data. Thus, the partition of a large scale problem
can be rapidly available, and all MLPs or subnet-
works merely need to independently solve multiple
small scale problems simultaneously. Moreover, the
growing algorithm has taken the size of the self-
generated hybrid architecture into consideration by
using a threshold such that training samples could
be sufficient for all subnetworks for generalisation.
On the other hand, it has been well known that an
MLP suffers from serious catastrophic interference
that later training disrupts the results of previous
training. Fortunately, the problem, to a great extent,
can be alleviated in the hybrid system during both
training and updating by distributing data to multiple
subnetworks. It is also worth mentioning that any
improved technique for training an MLP could be
expected to improve the performance of the hybrid
system if such an MLP, along with the improved
technique, is used as a subnetwork of the hybrid
system. As a result, the proposed method provides
a novel way to use MLPs to solve a large scale
problem.

It might be interesting to consider the difference
between the proposed architecture and other archi-
tectures associated with the use of the principle of
divide-and-conquer. As described previously, two
architectures might be relevant to the proposed
architecture. The decision tree and its variants are
a kind of typical architectures to use the principle
of divide-and-conquer for dealing with a problem
[22]. The basic characteristics of the decision tree
might be summarised as follows: (1) uniform appar-

K. Chen et al.

atus are used for both dividing and conquering a
problem; (2) ‘hard’ partition way is adopted; and
(3) each leaf node is only associated often with a
class label. As for the proposed method, different
apparatus (i.e. a linear discriminant function and
neural network) could be used in nonterminal and
leaf nodes to serve for different purposes in the
principle of divide-and-conquer, respectively. Instead
of a ‘hard’ partition, a ‘soft’ partition is adopted to
‘divide’ a problem. As a result, data belonging to
different classes could reach the same leaf node at
which a neural network associated with multiple
class labels is located. All of these characteristics
might distinguish the proposed method from the
decision tree and its variants. It is worth pointing
out that the ‘soft’ partition method plays an
important role in the proposed method. From the
standpoint of computational geometry, Minsky and
Papert [57] have shown that some problems (e.g.
connectedness) cannot be computed at all in parallel
by a diameter-limited or order-limited perceptron;
moreover, an MLP seems to encounter the same
difficulty [57]. A salient reason is that such problems
are solvable only if the global information is avail-
able, while an order-limited perceptron can only
capture local information. The ‘soft’ partition in
the proposed method provides a way of combining
multiple order-limited neural networks such that the
local information can be accumulated to achieve
the global information by means of communication
among those neural networks. Our credit-assignment
algorithm is designed just for the purpose by
incorporating the ‘soft” partition method. The appli-
cation of the proposed method in the two spirals
problem, which belongs to a problem of computing
connectedness, has demonstrated the usefulness of
the ‘soft’ partition method for such a problem. On
the other hand, the HME is a modular neural net-
work architecture based upon the principle of divide-
and-conquer [40]. In contrast to the stacked general-
isation [58], which makes explicit partitions of the
input space, the HME preferentially weights the
input space by the posterior probabilities that experts
generated the output from the input. The outputs of
expert networks are combined by gating networks
which are simultaneously trained to stochastically
select the expert which is performing best at solving
the problem. There are at least two points in dis-
tinguishing the proposed method from the HME
architecture. One is that the HME also suffers from
the problem of determining a structure prior to
training like an MLP, while the proposed method
might automatically generate a structure for a given
problem. The other is that the ‘soft’ partition method
in the HME is different from that used in the

Combining Linear Discriminant Functions with Neural Networks

proposed method. Different ‘soft’ partition methods
lead to two different training procedures; all samples
in the training set must be fed to every expert and
gating network in the HME, while only a part of the
samples in the training set can reach a subnetwork at
the leaf node in the proposed method during train-
ing.

There are still some open problems in the pro-
posed method. Simulation results have shown that
the performance of a self-generated hybrid system
seems insensitive to the architectures of its subnet-
works. Instead of an empirical study, a theoretical
analysis on the issue will be of significance and
should be underway. Simulations have also indicated
that the performance of a hybrid system is highly
influenced by the size of an overlapping region
between two adjacent data sets split by a hyperplane.
How to determine the optimal size of an overlapping
region will be another important issue to be studied.
Since a specific overlapping region could finally
determine the training set of a subnetwork at the
leaf node, the architecture of a subnetwork should
also depend upon the size of an overlapping region.
Therefore, there is an intrinsic relation between both
issues. We expect that solutions to these problems
will provide a way to significantly improve the
performance of the self-generated hybrid architecture
in the future.

Acknowledgements. We wish to thank Liping
Yang for valuable and constructive discussions, as
well as for providing a program on the Levenberg—
Marquat algorithm for simulation. We also wish to
thank Del.iang Wang and the anonymous reviewers,
whose extensive comments have significantly
improved the presentation of the paper. This work
was in part supported by Chinese National Nature
Science Foundation Grant 69571002, and Grant
69475007 as well as the NSF Grant IRI-9423312.

References

1. Bishop M. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

2. Cohen M, Franco H, Morgan N, Rumelhart D, Abrash
V. Context-dependent multiple distribution phonetic
modeling with MLPs. In: SJ Hanson, JID Cowan, CL
Giles (eds.), Advances in Neural Information Pro-
cessing Systems. Morgan Kaufmann, 1993, pp. 649—
657.

3. Gyuyon I, Albrecht P, LeCun Y, Denker J, Hubbard
W. Applications of neural networks to character recog-
nition. Int J Pattern Recognition and Artificial Intelli-
gence 1991; 5: 353-382.

4. Haykin S, Deng C. Classification of radar clutter using
neural networks. IEEE Trans Neural Networks 1991;
2: 589-600.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

39

. LeCun Y, Boser B, Denker JS, Henderson D, Howard

RE, Hubbard W. Handwritten digit recognition with
a back-propagation network. In: DS Touretsky, (ed.),
Advances in Neural Information Processing Systems.
Morgan Kaufmann, 1990, pp. 396-404.

. Narendra KS, Parthasarathy K. Indentification and con-

trol of dynamical systems using neural networks. IEEE
Trans Neural Networks 1990; 1. 4-27.

. Pomerleau DA. Neural network perception for mobile

robot guidance. PhD Thesis, School of Computer
Science, Carnegie Mellon University, 1992.

. Rajavelu A, Musavi M, Shivaikar M. A neural net-

work approach to character recognition. Neural Net-
works 1989: 2(5): 387-394.

. Rumelhart D, McClelland J. Parallel Distributed Pro-

cessing. MIT Press, Cambridge, MA, 1986.
Sejnowski TJ, Resenberg CR. Parallel networks that
learn to pronounce English text. Complex Systems
1987; 1. 145-168.

Sejnowski TJ, Yuhas BP, Goldstein MH, Jenkins RE.
Combining visual and acoustic speech signals with a
neural network improves intelligibility. In: DS Touret-
sky (ed.), Advances in Neural Information Processing
Systems. Morgan Kaufmann, 1990, pp. 232-239.
Homik K, Stinchcombe M, White H. Multilayer feed-
forward networks are universal approximators. Neural
Networks 1989; 2: 359-366.

Irie B, Miyake S. Capabilities of three-layered per-
ceptrons. Proc IEEE Int Conf Neural Networks, vol 1,
1988; pp. 641-648.

Judd S. Learning in networks is hard. Proc IEEE Int
Conf Neural Networks, vol 2, 1987, pp. 685-692.
Jacobs RA. Increased rates of convergence through
learning rate adaptation. Neural Networks 1988; 1:
295-307.

Van Der Smagt PP. Minimization methods for training
feedforward neural networks. Neural Networks 1994;
7(1): 1-11.

Ripley BD. Pattern Recognition and Neural Networks.
Cambridge University Press, New York, 1996.
Wahba G. Generalization and regularization in nonlin-
ear learning systems. In: MA Arbib (ed.), The Hand-
book of Brain Theory and Neural Networks. MIT
Press, 1995, pp. 426-430.

Fahlman SE, Lebiere C. The cascade-correlation learn-
ing architecture. In: DS Touretsky (ed.), Advances
in Neural Information Processing Systems. Morgan
Kaufmann, 1990, pp. 524-532.

Nadal JP. New algorithms for feedforward networks.
In: Theumann and Kiberle (eds.), Neural Networks
and Spin Glasses. World Scientific, 1989, pp. 80-88.
Shadafan RS, Niranjan M. A dynamic neural network
architecture by sequential partitioning of the input
space. Neural Computation 1994; 6: 1202-1222.
Breiman 1., Friedman JH, Olshen RA, Stone CJ.
Classification and Regression Trees. Wadsworth &
Brooks, 1984,

Brown DE, Pittard CL. Classification trees with opti-
mal multivariate splits. Proc IEEE Int Conf Systems,
Man and Cybernetics, vol3, Le Touquet, 1993,
pp. 475-477.

Friedman JH. A recursive partitioning decision rule
for nonparametric classification. IEEE Trans Computer
1977; 26: 404-408.

Kim B, Landgrebe DA. Hierarchical classifier design

40

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45.

46.

47.

48.

in high-dimensional numerous class cases. IEEE Trans
Geosci Remote Sens 1991; 29(4): 518-528.

Murthy KVS. On growing better decision trees from
data. PhD Thesis, The Johns Hopkins University,
1995.

Park Y, Sklansky J. Automated design of linear tree
classifiers. Patt Recogn 1990; 23(12): 1393-1412.
Shi QY, Fu KS. A method for the design of binary
tree classifiers. Patt Recogn 1983; 16: 593-603.
Sklansky J, Wassel GN. Pattern Classifiers and Train-
able Machines. Springer-Verlag, New York, 1981.
Curram SP, Mingers J. Neural networks, decision
tree induction and discriminant analysis: An empirical
comparison. J Operat Res Soc 1994; 45(4): 440-450.
Park Y. A comparison of neural net classifiers and
linear tree classifiers: their similarities and differences.
Patt Recogn 1994; 27(11): 1493-1503.

Cios KJ, Liu N. A machine learning method for
generation of a neural network architecture: A continu-
ous ID3 algorithm. IEEE Trans Neural Networks 1992;
3(2): 280-291.

Golea M, Marchand M. A growth algorithm for neural
network decision trees. EuroPhysics Lett 1990; 12(3):
205-210.

Guo H, Gelfand SB. Classification trees with neural
network feature extraction. IEEE Trans Neural Net-
works 1992; 3(6): 923-933.

Herman GT, Yeung KTD. On piecewise-linear classi-
fication. IEEE Trans Pattern Analysis and Machine
Intelligence 1992; 14(7): 782~786.

Ishwar K, Sethi K. Entropy nets: from decision trees to
neural networks. Proc IEEE 1990; 78(10): 1605-1613.
DAlche-Buc F, Zwierski D, Nadal JP. Trio learning:
A new strategy for building hybrid neural trees. Int J
Neural Systems 1994; 5(4): 259-274.

Sankar A, Mammone RJ. Growing and pruning neural
tree networks. IEEE Trans Computer 1993; 42(3):
291-299.

Sirat JA, Nadal JP. Neural tree: A new tool for
classification. Network: Computation in Neural Sys-
tems 1990; 1(4): 423-438.

Jordan MI, Jacobs RA. Hierarchical mixture of experts
and the EM algorithm. Neural Computation 1994; 6:
181-214.

Chen K, Xie DH, Chi HS. A modified HME architec-
ture for text-dependent speaker identification. IEEE
Trans Neural Networks 1996; 7(5): 1309-1313.
Chen K, Xie DH, Chi HS. Speaker identification using
time-delay HMEs. Int J Neural Systems 1996; 7(1):
29-43.

Chen K, Yang LP, Yu X, Chi HS. A self-generating
modular neural network architecture for supervised
learning. Neurocomputing 1997; 16(1): 33-48.

Fisher RA. The use .of multiple measurements in
taxonomic problem. Ann Eugenics 1936; 7: 179-188.
Duda R, Hart P. Pattern Classification and Scene
Analysis. John Wiley & Sons, New York, 1973.
Murthy PM, Aha DW. UCI ‘Repository of machine
learning database. [http://www.ics.uci.edu/mlearn/
MLRepository.html], Department of Information and
Computer Science, Irvine, CA: University of Califor-
nia, 1994,

Fletcher R. Practical Methods of Optimization. John
Wiley & Sons, New York, 1987.

Ishikawa M. Structural learning with forgetting. Neural
Networks 1996; 9(3): 509-521.

49,

50.

K. Chen et al.

Lang KJ, Witbrock MJ. Learning to tell two spirals
apart. In: D Touretzky, G Hinton, T Sejnowski (eds.),
Proc 1988 Connectionist Models Summer School,
Morgan Kaufmann, 1989; 52-59.

Deterding DH. Speaker normalization for automatic
speech recognition. PhD Thesis, University of Cam-
bridge, 1989.

51. Robinson AJ. Dynamic error propagation networks.
PhD Thesis, University of Cambridge, 1989.

52. Cybenko G. Approximation by superpositions of a
sigmoidal function. University of Illinois, Urbana,
1988.

53. Funahashi K. On the approximate realization of con-
tinuous mappings by neural networks. Neural Net-
works 1989; 2: 183-192.

54. Chen K, Yu X, Chi HS. Text-dependent speaker
identification based on the modular tree. Chinese J
Electr 1996; 5(2): 63-69.

55. Chen K, Yu X, Chi HS. Text-dependent speaker
identification based on the modular tree: an empirical
study. In: S Amari er al. (eds.), Progress in Neural
Information Processing. 1996, Springer-Verlag, Singa-
pore, pp. 294-299.

56. Blum A, Rivest R. Training a 3-node neural net is
NP-complete. In: DS Touretsky (ed.), Advances in
Neural Information Processing Systems, Morgan Kauf-
mann, 1989, pp. 494-501.

57. Minsky M, Papert S. Perceptrons: An Introduction to
Computational Geometry. MIT Press, Camridge, 1988.

58. Wolpert DH. Stacked generalization. Technical Report
LA-UR-90-3460, The Santa Fe Institute, 1990.

Nomenclature

X input data (a feature vector in pattern

classification)

24 a training data set consisting of input data

0] the null set

X, one of two adjacent subsets of %

FEUZ. =X and X NZ,.#)
. one of two adjacent subsets of &
@ U =Fand X.NZX, # ¢P)

Ng the number of samples in ¥

m the mean of samples in a data set

Wy the label of class k in pattern classification

X the data set labelled by w, in pattern classi-

fication

my the mean of samples in &, in pattern classi-

fication

Ny the number of samples in ¥, in pattern

classification

w weight vector of a linear discriminant func-

tion

(%) linear discriminant function

7 overlapping factor of determining size of

an overlapping region in the proposed split-
ting rule

Kpr prolong-training factor for prolonging the

training of a subnetwork under the suc-
cess condition

I threshold of iteration (epochs) for a subnet-

work

E; threshold of MSE for a subnetwork

Smax threshold of maximal number of samples

used for training a subnetwork

Combining Linear Discriminant Functions with Neural Networks

Smin
I

E,

threshold of minimal number of samples
used for training a subnetwork

the number of iterations (epochs) during
the training of a subnetwork

the MSE value of a subnetwork after 7 iter-
ations

unknown data for test

afx,)
O(x,)

O(x,)
(Nu-Nyap)

I-1

41

the credit assigned to the ith subnetwork
for x,

the output of the jth subnetwork for x,
the output of modular tree for x,

the architecture of a modular tree con-
sisting of Ny hyperplanes and N,, , MLPs
the Euclidean norm

