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a b s t r a c t

In this paper we present a theoretical analysis to understand sparse filtering, a recent and effective
algorithm for unsupervised learning. The aim of this research is not to show whether or how well sparse
filtering works, but to understand why and when sparse filtering does work. We provide a thorough
theoretical analysis of sparse filtering and its properties, and further offer an experimental validation
of the main outcomes of our theoretical analysis. We show that sparse filtering works by explicitly
maximizing the entropy of the learned representations through themaximization of the proxy of sparsity,
and by implicitly preserving mutual information between original and learned representations through
the constraint of preserving a structure of the data. Specifically, we show that the sparse filtering algo-
rithm implemented using an absolute-value non-linearity determines the preservation of a data structure
defined by relations of neighborhoodness under the cosine distance. Furthermore, we empirically validate
our theoretical results with artificial and real data sets, and we apply our theoretical understanding to
explain the success of sparse filtering on real-world problems. Our work provides a strong theoretical
basis for understanding sparse filtering: it highlights assumptions and conditions for success behind this
feature distribution learning algorithm, and provides insights for developing new feature distribution
learning algorithms.

Crown Copyright© 2017 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Unsupervised learning deals with the problem of modeling data,
stated as the problem of learning a transformation which maps
data in a given representation onto a new representation. Con-
trastedwith supervised learning,wherewe are provided labels and
we learn a relationship between the data and the labels, unsuper-
vised learning does not rely on any provided external semantics in
the form of labels. In order to learn, unsupervised learning relies
on the specification of assumptions and constraints that express
our very understanding of the problem of modeling the data; for
example, if we judge that a useful representation of the datawould
be provided by grouping together data instances according to a
specific metric, then we may rely on distance-based clustering
algorithms to generate one-hot representations of the data.

Often, the tacit aim of unsupervised learning is to generate
representations of the data that may simplify the further problem
of learning meaningful relationships through supervised learn-
ing. Coates, Ng, and Lee (2011) clearly showed that very simple
unsupervised learning algorithms (such as k-means clustering),
when properly tuned, can generate representations of the data
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that allow even basic classifiers, such as a linear support vector
machine, to achieve state-of-the-art performances.

One common assumption hard-wired in several unsupervised
learning algorithms is sparsity (for a review on the use of sparsity
in representation learning see Bengio, Courville, & Vincent, 2013).
Sparse representation learning aims at finding a mapping that
produces new representations where few of the components are
active while all of the others are reduced to zero. The adoption
of sparsity relies both on biological analogies and on theoretical
justifications (for discussion on the justification of sparsity see,
for instance, Bengio et al., 2013; Földiák & Young, 1995; Ganguli &
Sompolinsky, 2012; Olshausen & Field, 1997). Several state-of-the-
art algorithms have been developed or have been adapted to learn
sparse representations (for a recent survey of these algorithms, see
Zhang, Xu, Yang, Li, & Zhang, 2015).

1.1. Sparse filtering and related work

In 2011, Ngiam, Chen, Bhaskar, Koh, and Ng (2011) proposed
a novel unsupervised learning framework for generating sparse
representations. Most of the successful unsupervised algorithms
may be described as data distribution learning algorithms that try
to learn new representations which better model the underlying
probability distribution that generated the data. In contrast, they
proposed the possibility of developing feature distribution learning
algorithms that try to learn new representations having desirable
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properties, without the need of taking into account the problem of
modeling the distribution of the data.

Consistently with the feature distribution learning framework,
they defined an algorithmnamed sparse filtering, which ignores the
problem of learning the data distribution and instead focuses only
on optimizing the sparsity of the learned representations. Sparse
filtering proved to be an excellent algorithm for unsupervised
learning: it is extremely simple to tune since it has only a single
hyper-parameter to select; it scales very well with the dimension
of the input; it is easy to implement; and, more importantly,
it was shown to achieve state-of-the-art performance on image
recognition and phone classification (Goodfellow, Erhan, Carrier,
Courville, Mirza, Hamner, Cukierski, Tang, Thaler, Lee, Zhou, Ra-
maiah, Feng, Li, Wang, Athanasakis, Shawe-Taylor, Milakov, Park,
Ionescu, Popescu, Grozea, Bergstra, Xie, Romaszko, Xu, Chuang, &
Bengio, 2013; Ngiam et al., 2011; Romaszko, 2013). Thanks to its
success and to the simplicity of implementing and integrating the
algorithm in already existing machine learning systems, sparse
filtering was adopted in many real-world applications (see, for
instance, the works of Dong, Pei, He, Liu, Dong, & Jia, 2014; Lei, Jia,
Lin, Xing, & Ding, 2015; Raja, Raghavendra, Vemuri, & Busch, 2015;
Ryman, Bruce, & Freund, 2016).

Some studies have also provided sparse filtering with some
biological support. Bruce, Rahman, and Carrier (2016) analyzed dif-
ferent biologically-grounded principles for representation learning
of images, using sparse filtering as a starting point for the definition
of new learning algorithms. Interestingly, Kozlov and Gentner
(2016) used sparse filtering to model the receptive fields of high-
level auditory neurons in the European starling, providing further
support to the general hypothesis that sparsity and normalization
are general principles of neural computation (Carandini & Heeger,
2012).

1.2. Problem statement

So far, sparse filtering has been successfully applied to many
scenarios, and its usefulness repeatedly confirmed (see, for in-
stance, its application in Dong et al., 2014; Han, Lee, Nam, & Lee,
2016; Liu, He, Xie, Gu, Liu, & Pei, 2016; Raja et al., 2015). In
general, however, a clear theoretical explanation of the algorithm
is still lacking. Ngiam et al. (2011) drew connections between
sparse filtering, divisive normalization, independent component
analysis, and sparse coding, while Lederer and Guadarrama (2014)
provided a deeper analysis of the normalization steps inside the
sparse filtering algorithm. However, the reasons why and on what
conditions sparse filtering works are left unexplored. In this paper,
we aim at understanding from a theoretical perspective why and
when sparse filtering works. It is worth clarifying that our work
does not concern itself with showing whether or how well well
sparse filtering works, as there have been abundant evidence in
literature on its successes in different real applications.

We begin by arguing that any unsupervised learning algorithm,
in order to work properly, has to deal with the problem of pre-
serving information conveyed by the probability distribution of the
data. Given that feature distribution learning ignores the problem
of learning the data distribution itself, a natural question arises:
how is the information conveyed by the data distribution preserved in
feature distribution learning and, specifically, in sparse filtering?

The actual success of sparse filtering suggests that the algorithm
is indeed able to preserve relevant information conveyed in the
distribution of the data. However, no explanation for this behavior
has been given. We suggest that information may be preserved
through the preservation of the structure of the data. To under-
stand how this may be, we study the properties of the transforma-
tionswithin the algorithmand pose the following question: is there
any sort of data structure that is preserved by the processing in sparse
filtering?

Through a theoretical analysis we show that sparse filtering
implemented using an absolute-value non-linearity does indeed
retain information through the preservation of the data structure
defined by the relations of neighborhoodness under the cosine
distance. Relying on this, we investigate whether our theoretical
results can be used to explain the success or the failure of sparse
filtering in real applications. In particular we consider the follow-
ing questions: can the success of sparse filtering be explained in
terms of the type of structure preserved? Can the failure of alternative
forms of sparse filtering using different non-linearities be explained
counterfactually on the grounds of information preservation? Is it
possible to identify scenarios in which sparse filtering is likely to be
helpful and other scenarios in which it is likely not to be useful?

1.3. Contributions

We summarize the contributions made in this study as follows:

• We provide a theoretical analysis to understand why and
when sparse filtering works. We show that the standard
sparse filtering algorithm implemented with an absolute-
value non-linearity implicitly works under the assumption
of an intrinsic radial structure of the data. This assumption
naturallymakes the algorithmmore suitable for certain data
sets.

• We empirically validate our main theoretical findings, both
on artificial data and real-world data sets.

• We provide useful insights for developing new feature dis-
tribution learning algorithms based on our theoretical un-
derstanding.

1.4. Organization

The rest of this paper is organized as follows. We first review
the concepts and ideas forming the foundations of our work (Sec-
tion 2). Next, we provide a formal theoretical analysis of the sparse
filtering algorithmbased on a rigorous conceptualization of feature
distribution learning (Section 3). The theoretical results inform the
following experimental simulations (Section 4). We then discuss
the results we collected, in relation to sparse filtering, in particular,
and to feature distribution learning, in general (Section 5). Finally,
we draw conclusions by summarizing our contributions and high-
lighting future developments (Section 6).

To facilitate our presentation, Table 1 summarizes the notation
system used in this manuscript.

2. Foundations

In this section we review basic concepts underlying our study.
We provide a rigorous description of unsupervised learning, we
present its formalization in information-theoretic terms, we for-
malize the property of sparsity, and, finally, we bring all these
concepts together in the definition of the sparse filtering algorithm.

2.1. Unsupervised learning

Let X = {X(i)
∈ RO

}
N
i=1 be a set of N samples or data points

represented as vectors in an O-dimensional space. We will refer
to the given representation of a sample X(i) in the space RO as the
original representation of the sample X(i) and to RO as the original
space. From an algebraic point of view, we can formalize the data
set as a matrix X of dimensions (O× N); from a probabilistic point
of view, we can model the data points X(i) as i.i.d. samples from a
multivariate random variable X = (X1, X2, . . . , XO) with pdf p (X).

Unsupervised learning discovers a transformation f : RO
→

RL mapping the set X from an O-dimensional space to the set
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Table 1
Notation.

N Number of samples.

O Original dimensionality of the samples.

L Learned dimensionality of the samples.

X Matrix of original representations with domain RO×N .

X Data set or collection of data.

X(i) ith sample from X; vector of shape (O × 1) with domain RO , 1 ≤ i ≤ N .

Xj jth feature from X; vector of shape (1 × N) with domain RN , 1 ≤ j ≤ O.

X(i)
j jth feature of the ith sample from X; scalar with domain R.

X Multivariate random variable (random vector) modeling the original
data X(i).

p(X) Probability density function of the original representations.

p
(
X(i)
)

Probability of the outcome X(i) when sampling from p(X).

p
(
X(i)
)
is the shorthand for the more rigorous notation p

(
X = X(i)

)
.

Z Matrix of learned representations with domain RL×N .

F/F̃/F̂ Matrix of intermediate representations with domain RL×N .

Y Vector of labels associated with the data with domain R1×N .

W Matrix of weights with domain RL×O.

Z = {Z(i)
∈ RL

}
N
i=1 in an L-dimensional space. We will refer to the

transformed representation Z(i) in the space RL as the learned rep-
resentation of the sample X(i) and to RL as the learned space. Again,
from an algebraic point of view, we can formalize the transformed
data set as a matrix Z of dimensions (L × N); from a probabilistic
point of view, we can model the data points Z(i) as i.i.d. samples
from a multivariate random variable Z = (Z1, Z2, . . . , ZL) with
pdf p (Z).

Unsupervised learning is often used for learning better repre-
sentations for ensuing supervised tasks. Suppose that we are given
a set Y = {Y(i)

∈ R}
N
i=1 of N labels, such that the ith label in Y is

associated to the ith sample in X. From an algebraic point of view,
we can formalize the labels as a vector Y of dimensions (1 × N);
from a probabilistic point of view, we can model the labels Y(i) as
i.i.d. samples from a random variable Y with pdf p (Y ). Let us now
consider the new data set (X,Y) =

{(
X(i),Y(i)

)
∈ RO

× R
}N
i=1. In

this scenario, the aim of unsupervised learning is to learn from
X(i) representations Z(i) such that modeling the relationship g ′

:

Z(i)
↦→ Y(i) or the distribution P(Y |Z) is easier than modeling the

relationship g ′′
: X(i)

↦→ Y(i) or the distribution P(Y |X).
Clustering. A specific form of unsupervised learning is

clustering.
Hard clustering discovers a transformation f : RO

→ RL map-
ping the original samples X(i) onto one-hot representations Z(i),
where the single non-null component of Z(i) encodes the assign-
ment of the original sample to a cluster.

Soft clustering discovers a transformation f : RO
→ RL map-

ping the original samples X(i) onto representations Z(i), where the
value of each component of Z(i) encodes the degree of membership
of the original sample to each cluster. Soft clustering algorithms
may be used for learning representations Z(i) that simplify the
problem of modeling the relationship g ′

: Z(i)
↦→ Y(i); in this

case, the soft clustering algorithm is normally grounded in the
following assumptions. (i) Samples are taken to be first generated
by a stochastic process with pdf p (X∗); the samples are corrupted
by various forms of noise; the noisy samples that we receive as
original representations X(i) follow a noisy pdf p(X); the noiseless
distribution underlying the data is referred to as true pdf p (X∗).
(ii) Noiseless samples generated by the true pdf p (X∗) are taken
to have a stronger correlation to the labels Y(i) than the original
samplesX(i). (iii) The true pdf p (X∗)may be approximated through
a mixture model. (iv) Relationships of neighborhoodness under a
chosenmetric in the original spaceRO allows us to recover the true
pdf p (X∗). Based on these assumptions, soft clustering algorithms

instantiate a set of C clusters (each one describing one component
of the mixture model) and group into clusters nearby data points.
Two data points X(1) and X(2) falling in the same clusters are repre-
sented by the same exemplar X̄, assuming that such an exemplar
contains all the relevant information carried by X(1) and X(2), and
that the information contained in the difference between X(1) or
X(2) and the exemplar X̄ amounts to noise. If the assumptions are
correct, a soft clustering algorithm will learn new representations
Z(i) whose pdf p(Z) is closer to the true pdf p (X∗) than the original
pdf p(X); therefore, it will be easier to learn g ′

: Z(i)
↦→ Y (i) or

p(Y |Z) than learning g ′′
: X(i)

↦→ Y(i) or p(Y |X).
Distribution Learning. Another form of unsupervised learning

is distribution learning.
Data distribution learning is a generic term for algorithms

that aim at estimating the true pdf p (X∗) from the available
data. Examples of data distribution learning algorithms in-
clude (Ngiam et al., 2011): denoising auto-encoders (DAE) (Vin-
cent, Larochelle, Bengio, & Manzagol, 2008), restricted Boltzmann
machines (RBM) (Hinton, Osindero, & Teh, 2006), and independent
component analysis (ICA) (Bell & Sejnowski, 1997). In the context
of learning for supervised tasks, if we learn a pdf p(Z) that well
approximates the true pdf p (X∗), we can reasonably expect that
the ensuing learning of p(Y |Z) will be simplified (Bengio et al.,
2013).

Feature distribution learning, in contrast, denotes algorithms
aimed at learning a pdf p (Z)which has a set of desirable properties.
It overlooks the problem of estimating the true distribution p (X∗)

and focuses instead on shaping the learned pdf p (Z) according to
chosen criteria. The most representative algorithm of this family is
sparse filtering (SF) (Ngiam et al., 2011). In the context of learning
for supervised tasks, learning a pdf p(Z) with specific properties
is meaningful if we know a priori that certain properties (such as
sparsity or smoothness) will be useful for supervised learning.

2.2. Information-theoretic aspects of unsupervised learning

Relying on conceptual tools from information theory, Vincent,
Larochelle, Lajoie, Bengio, andManzagol (2010) argued that an un-
supervised learning algorithm can generate good representations
by satisfying two requirements: (i) retaining information about the
input, and (ii) applying constraints that lead to the extraction of
useful information from noise.

In more general terms, we may state that a good unsupervised
representation may be obtained by satisfying the two following
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information-theoretic requirements: (i) maximizing the mutual
information between input and output (infomax principle, Linsker,
1989), and (ii) maximizing a measure of information of the output
(informativeness principle1).

As such, in order to generate good representations, an unsuper-
vised learning algorithm has to somehow negotiate the trade-off
between the infomax principle and the informativeness principle:

max
p(Z)∈P

D [p(X, Z) ∥ p(X)p(Z)]  
infomax
principle

+ D [p(Z) ∥ q(Z)]  
informativeness

principle

(1)

where D [·] is a measure of distance or divergence between pdfs,
such as the Kullback–Leibler divergence (MacKay, 2003), q is an
entropy-maximizing pdf, and P is the space of all the pdfs defined
on the space of the learned representations Z.

Maximizing the infomax principle may be expressed as the
maximization of the mutual information I [X; Z], or, equivalently,
as the maximization of the relative entropy between p(X, Z) and
p(X)p(Z). Maximizing the informativeness may be expressed as
the minimization of the entropy H [Z] or the maximization of the
relative entropy between the learned pdf p (Z) and the entropy-
maximizing pdf q.

Unfortunately, the objective defined in Eq. (1) is bound to re-
main mainly theoretical, as information-theoretic quantities are
extremely hard to estimate in practice. Therefore we need to rely
on approximations or heuristics tomake these quantities tractable.

2.3. Sparsity

Given a generic vector v in an N-dimensional space, v is sparse
if a small number of components of the vector accounts for most of
the energy of the vector (Hurley & Rickard, 2009). Practically, the
vector v is sparse if n ≪ N components of the vector v are active
(that is, have a value different from zero)while the remainingN−n
components are inactive (that is, have the value zero). A vector v
is k-sparse if exactly k components are active. By analogy, we may
define sparsity for matrices (with reference to their components)
and for random variables (with reference to their realizations).

Several measures of sparsity have been proposed in the liter-
ature (for a review of different measures of sparsity and their
properties, see Hurley & Rickard, 2009). A common family of

measures of sparsity is the ℓp-norm family: ℓp(v) =
p
√∑N

i=1|vi|
p.

The most intuitive measure is the ℓ0-norm which computes the
number of non-zero components of a vector; however, this mea-
sure is practically inadequate, as in concrete implementations the
components of a vector are rarely reduced perfectly to zero. The
simplest relaxation of the ℓ0-norm is the ℓ1-norm, which is often
referred to as activation in the sparse filtering literature. The nega-
tive form of the ℓ1-normworks as an efficient proxy for measuring
the ℓ0-norm (Elad, 2010). Given a representation Z(i), ℓ1

(
Z(i)
)

or activation
(
Z(i)
)
quantifies the sparsity of Z(i). Minimizing the

activation of the learned representation Z(i) will maximize the
ℓ0-norm and the sparsity of Z(i).

2.4. Sparse filtering

Sparse filtering is the most representative example of feature
distribution learning algorithms (Ngiam et al., 2011). Its aim is
learning a pdf p(Z) which maximizes the sparsity of the learned
representations Z(i).

Enforcement of sparsity in sparse filtering. Sparse learned
representations Z(i) are achieved by enforcing three constraints on
the matrix of learned representations Z:

1 We named this principle informativeness principle for lack of a better term.

• Population sparsity: each sample Z(i), is required to be sparse,
that is, described only by a few features. The sparsity of
a sample Z(i) is computed as its activation: ℓ1

(
Z(i)
)

=∑L
j=1

⏐⏐⏐Z(i)
j

⏐⏐⏐.
• Lifetime sparsity: each feature Zj, is required to be sparse,

that is, to describe only a few samples. Lifetime sparsity
is often referred to as selectivity (Goh, Thome, Cord, &
Lim, 2012). The sparsity of a feature Zj is computed as its
activation: ℓ1

(
Zj
)

=
∑N

i=1

⏐⏐⏐Z(i)
j

⏐⏐⏐.
• High dispersal: all the features are required to have approx-

imately the same activation. The dispersal of the features
is computed as the variance of the activation across all the
features: Var

[
activation

(
Zj
)]

= E
[
ℓ1
(
Zj
)2]

− E
[
ℓ1
(
Zj
)]2.

Lower variance corresponds to higher dispersal.

The enforcement of these three properties translates into learning
non-degenerate sparse representation.

Sparse filtering algorithm. Sparse filtering is implemented as
a simple algorithm in six steps (refer to Fig. 1 for an illustration of
the transformations on a two-dimensional data set):

A0. Initialization of the weights: the weight matrixW ∈ RL×O is
initialized sampling each component from a normal distri-
bution N (0, 1).

A1. Linear projection of the original data: fA1(X) = WX. The
weight matrix W can be interpreted as a dictionary (Denil
& de Freitas, 2012) or as a filter bank (Dong, Wu, Pei, & Jia,
2015), where each row is a codeword or a filter applied to
each sample. Refer to Fig. 1(a) and 1(b) for an illustration of
this transformation.

A2. Non-linear transformation: F = fA2 (WX), where fA2(·) :

R → R is an element-wise non-linear function. Although
this non-linear function can, in principle, be arbitrarily cho-
sen, all the implementations known to the authors used
an element-wise absolute-value function f (x) = |x|. For
practical reasons, this non-linearity is implemented as a soft
absolute-value f (x) =

√
x2 + ϵ, where ϵ is a small negligible

value (for instance, ϵ = 10−8). Refer to Fig. 1(b) and 1(c) for
an illustration of this transformation.

A3. ℓ2-normalization along the features (or along the rows):

F̃ = fA3 (F) =

⎡⎣ F(i)j√∑N
i=1

(
F(i)j
)2
⎤⎦. In this step, each feature

is normalized so that its squared activation is one, that is,∑N
i=1

(
F̃(i)j
)2

= 1. Refer to Fig. 1(c) and1(d) for an illustration
of this transformation.

A4. ℓ2-normalization along the samples (or along the columns):

Z = F̂ = fA4
(
F̃
)

=

⎡⎣ F̃(i)j√∑L
j=1

(
F̃(i)j
)2
⎤⎦. In this step, each

sample is normalized so that its squared activation is one,

that is,
∑L

j=1

(
F̂(i)j
)2

= 1. Refer to Fig. 1(d) and 1(e) for an
illustration of this transformation.

A5. ℓ1-minimization: minF̂∈RL×N
∑

ijF̂
(i)
j . This minimization is

the objective of sparse filtering; by minimizing the overall
activation of the matrix F̂, we maximize the sparsity of the
learned representations. Notice that, when learning, this
objective is optimized by back-propagation with respect to
the only learnable parameterW, so that the actual objective
function of sparse filtering can be defined as argminW∈RL×O∑

ijF̂
(i)
j .

After learning, new data X′ is processed through step A1 to A4,
such that Z′

= fA1:A4
(
X′
)

= fA4
(
fA3
(
fA2
(
WX′

)))
.
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Fig. 1. Illustration of sparse filtering. Sparse filtering is applied to a random set of data X constituted by the matrix X containing five samples (N = 5) in two dimensions
(O = 2). Each point is generated by sampling its coordinates from a uniform distribution Unif (−5, 5). Sparse filtering is used to learn a new representation of the data in
two dimensions (L = 2). This figure shows the transformations determined by the sparse filtering algorithm at iteration 0, after the weight matrix W has been randomly
initialized and before any training. (a) Original representation of the data X in R2 . (b) Linear projection of the data onto the intermediate representationWX. (c) Non-linear
projection of WX using an absolute-value function onto the intermediate representation F. (d) ℓ2-normalization of the data F along the features, yielding the intermediate
representation F̃. (e) ℓ2-normalization of the data F̃ along the samples, yielding the final learned representation F̂ = Z. Notice that the colors and the markers of the data
points X(i) do not have any meanings. A random color and marker have been assigned to each point in order to allow the tracking of the location of the points through the
different transformations applied by sparse filtering. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

As explained by Ngiam et al. (2011), the combination of the
ℓ1-minimization with the two ℓ2-normalizations guarantees the
learning of a representation with the properties of population
sparsity, lifetime sparsity, and high dispersal.

3. Theoretical analysis of sparse filtering

In order to better understand sparse filtering we first re-
formulate and explain this algorithm in terms of information-
theoretic concepts. Relying on this improved understanding, we
will then move on to a formal analysis of the sparse filtering
algorithm.

In particular, Section 3.1 presents our thesis stating that sparse
filtering must satisfy the informativeness and the infomax prin-
ciple. Section 3.2 shows how sparse filtering satisfies the infor-
mativeness principle, while Section 3.3 introduces the hypothesis
that sparse filtering satisfies the infomax principle through the
preservation of structure of the data. The hypothesis on the preser-
vation of structure is then analyzed in details in the following
sections: Section 3.4 rules out the simplest hypothesis that sparse
filtering preserves a structure explained by the Euclidean metric;
Section 3.5 proves that sparse filtering preserve collinearity; Sec-
tion 3.6 proves that collinear points are mapped onto identical
representation; similarly, Section 3.7 proves that points having
the same moduli are mapped onto identical representations; and,
finally, Section 3.8 puts together these results to conclude that
sparse filtering preserves relations of cosine neighborhoodness.
Sections 3.9 and 3.10 delve deeper in the dynamics of sparse
filtering providing a geometric interpretation of the algorithm in
terms of basis of the learned space and filters in the original space.
Sections 3.11 and 3.12 investigate the limits of the sparse filtering
algorithm, by evaluating more closely the role of the absolute-
value non-linearity in the preservation of structure and by deriving

a probabilistic bound on the preservation of Euclidean structure.
Finally, Section 3.13 draws together all the results by discussing
the use of sparse filtering as a representation learning algorithm.

3.1. Information-theoretic aspects of sparse filtering

With reference to the information-theoretic description of un-
supervised learning presented in Section 2.2, the aim of sparse
filtering seems to be a pure optimization of the informativeness
principle. Indeed, sparse filtering algorithm explicitly maximizes a
property of the learned distribution (related to the informativeness
principle), but it makes no reference to the problem of preserving
information in the original distribution (related to the infomax
principle); its loss function seems to be concerned only with the
second term in Eq. (1) and to disregard the first term.

However, based on our information-theoretic understanding
of unsupervised learning we argue that, actually, sparse filtering
must, in some way, take into account the infomax principle. In the
following, we demonstrate the following thesis:

Sparse filtering does satisfy the informativeness principle through
the maximization of the proxy of sparsity and it satisfies the
infomax principle through the constraint of preservation of the
structure of cosine neighborhoodness of the data.

3.2. Informativeness principle in sparse filtering

Showing that sparse filtering satisfies the informativeness prin-
ciple is straightforward. Since the explicit the minimization of the
entropy H[Z] is computationally hard, the sparse filtering algo-
rithm adopts the standard proxy of sparsity. Increasing the sparsity
of the representations Z(i) concentrates the mass of the pdf p(Z)
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around zero; as the pdf p(Z) gets closer to a Dirac delta function,
its entropy isH[Z] is minimized (Hurley & Rickard, 2009; Principe,
2010). Using the formalism of Pastor, Mora-Jiménez, Jäntti, and
Caamaño (2015):

− ℓ1 (Z) ↑≡ H [Z] ↓,

that is, as the sparsity, measured by the negative ℓ1-norm of the
learned representationsZ(i) increases, so the entropy of the pdf p(Z)
decreases.

3.3. Infomax principle in sparse filtering

Showing that sparse filtering satisfies the informativeness prin-
ciple is more challenging. By definition, as a feature distribution
learning algorithm, sparse filtering does not address the problem
of modeling the data distribution. However, by virtue of the fact
that sparse filtering works and its learned representations Z(i) al-
low the achievement of state-of-the-art performance when learn-
ing p (Y |Z), it must be that the algorithm preserves information
contained in the original representations X(i). If it were not so,
sparse filtering could simply solve its optimization problem by
mapping the original data matrix X onto a pre-computed sparse
representation matrix Z̄, containing a constant 1-sparse learned
representation Z̄(1), with a minimal computational complexity of
O(1). The matrix Z̄ would have maximal sparsity, and the associ-
ated pdf p(Z) would be a Dirac delta function centered on Z̄(1) with
minimal entropy. However, if we were to use Z̄ to perform further
supervised learning with respect to a vector of label Y, the pre-
computed learned representations Z(i)

= Z̄(1) would be useless as
they would provide no information about the labels because of the
independence between the pre-computed representations and the
given labels: p(Y |Z) = p(Y ).

Since sparse filtering does not try to explicitly model the distri-
bution of the original data we hypothesize that it must implicitly
preserve information about the pdf p(X) through the proxy of the
preservation of data structure. The geometric structure of the data
in the original space RO constitutes a set of realizations of the
random variable X through which we can estimate the pdf p(X).
Preserving relationships of neighborhoodness (under a given met-
ric) allows us to preserve information conveyed by the pdf p(X):
regions of high density and low density in the domain of p(X) can
be maintained by preserving relationships of neighborhoodness in
the domain of p(Z). Thus, preservation of the geometric structure
under a chosen metric may act as a proxy for the maximization of
mutual information I[X; Z].

3.4. Non-preservation of Euclidean distance

The preservation of absolute or relative distances under the Eu-
clidean metric is the most common way to preserve the structure
of the data. However, it can be easily ruled out that sparse filtering
preserves this type of structure.

Proposition 1. Let
{
X(i)

∈ RO
}N
i=1 be a set of points in the original

spaceRO. Then, the transformations from A1 to A4 do not preserve the
structure of the data described by the Euclidean metric.

Proof Sketch. This proposition is provedby counterexample show-
ing that there is at least a case for which the transformations from
A1 to A4 do not preserve the Euclidean distance. The full proof is
available in Appendix A.1. ■

3.5. Preservation of collinearity

Having ascertained that sparse filtering cannot preserve the
data structure defined by the Euclidean metric, we investigate

other properties of the algorithm that may lead us to discover
the preservation of alternative data structures. A first relevant
observation is that sparse filtering preserves collinearity of point
lying on the same line passing through the origin of the space RO.

Theorem 1. Let X(1),X(2)
∈ RO be collinear points in the original

space RO. Then, the outputs of transformations from A1 to A4, that is
fA1:A4

(
X(1)

)
, fA1:A4

(
X(2)

)
∈ RL, are collinear.

Before proving this theorem, we present a set of auxiliary lem-
mas. The proofs of these lemmas are elementary and they can be
found in Appendices A.2–A.5.

Lemma 1. Let us consider u, v ∈ RO, two generic collinear vectors,
and let f : RO

→ RL be a linear transformation defined as f (u) =

Wu, whereW is the matrix associated with the linear transformation.
Then, f (u) , f (v) ∈ RL are also collinear.

Lemma 2. Let us consider u, v ∈ RL, two generic collinear vectors,
and let f : RL

→ RL be the element-wise absolute-value function
f (u) = |u| =

[⏐⏐uj
⏐⏐]. Then f (u) , f (v) ∈ RL are also collinear.

Lemma 3. Let us consider u, v ∈ RL, two collinear vectors whose
components are all strictly positive,2 and let f : RL

→ RL be the
ℓ2-normalization along the features. Then f (u) , f (v) ∈ RL are also
collinear.

Lemma 4. Let us consider u ∈ RL, a vector whose components are all
strictly positive,3 and let f : RL

→ RL be the ℓ2-normalization along
the samples. Then f (u) ∈ RL have the same angular coordinates as u.

Using these lemmas, we can prove Theorem 1.

Proof of Theorem 1. To prove that the transformations from A1 to
A4 preserve collinearity it is necessary to prove that all transfor-
mations preserve collinearity.

Concerning transformation A1, by Lemma 1, linear transfor-
mations preserve collinearity. Concerning transformation A2, by
Lemma 2, absolute-value function preserves collinearity; indeed,
it rigidly folds all the orthants on the first one. Concerning trans-
formation A3, by Lemma 3, normalization along the features pre-
serves collinearity; indeed, it acts simply as a rescaling of the axes.
Concerning transformation A4, by Lemma 4, normalization along
the samples preserves angular distances in general, and, therefore,
collinearity.

Since all the transformations from A1 to A4 preserve collinear-
ity, the overall transformation fA1:A4(·) preserves collinearity. ■

3.6. Homo-representation of collinear points

An immediate consequence of the previous result is the follow-
ing theoremwhich states that all the collinear points in the original
representation space are mapped to an identical representation.
This result is significant as it gives us a first understanding of the
principle and the type of metric that sparse filtering uses to map
original samples X(i) onto their representations Z(i).

Theorem 2. Let X(1)
∈ RO be a point in the original space RO. Then

there is a set of infinite points X(i)
∈ RO such that fA1:A4

(
X(1)

)
=

fA1:A4
(
X(i)
)
. The set of the points collinear with X(1) is included in this

set.

2 Notice that we can safely make the assumption of strict positivity in sparse
filtering since u and v are the output of an absolute-value function implemented
as f (x) =

√
x2 + ϵ.

3 Notice that we can safely make the assumption of strict positivity in sparse
filtering sinceu is the output of the normalization along the featurewhich preserves
the positivity.
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fA1
(
X(1))

= WX(1) fA1
(
X(2))

= kWX(1)

fA2
(
WX(1))

=
⏐⏐WX(1)

⏐⏐ fA2
(
kWX(1))

= k
⏐⏐WX(1)

⏐⏐
fA3
(⏐⏐WX(1)

⏐⏐) = c ◦
⏐⏐WX(1)

⏐⏐ fA3
(
k
⏐⏐WX(1)

⏐⏐) = k
(
c ◦
⏐⏐WX(1)

⏐⏐)
fA4
(
c ◦
⏐⏐WX(1)

⏐⏐) =
c ◦
⏐⏐WX(1)

⏐⏐
ℓ2
(
X(1)

) fA4
(
k
(
c ◦
⏐⏐WX(1)

⏐⏐)) =
k
(
c ◦
⏐⏐WX(1)

⏐⏐)
ℓ2
(
X(2)

)
Box I.

Proof. Let us consider a point X(1) and a generic collinear point
X(2)

= kX(1), k ̸= 0. Let us apply the transformation fA1:A4 to the
points X(1) and X(2). Then we get the equations given in Box I,
where c is a vector of normalizing constants and ◦ is the element-
wise product (as in Lemma 3). Now, since ℓ2

(
X(2)

)
= kℓ2

(
X(1)

)
, it

follows:

k
(
c ◦
⏐⏐WX(1)

⏐⏐)
ℓ2
(
X(2)

) =
k
(
c ◦
⏐⏐WX(1)

⏐⏐)
kℓ2

(
X(1)

) = fA4
(
c ◦
⏐⏐WX(1)

⏐⏐) .
Thus, X(1) and any collinear point X(2) are mapped onto the same
representation fA1:A4

(
X(1)

)
. ■

3.7. Homo-representation of points with same moduli

A further analysis of sparse filtering reveals that not only
collinear points are mapped to the same representation, but also
points in the learned representation space having the same mod-
uli (that is, the same absolute value for their components) are
mapped to identical representations. Again, this result is relevant
since it sheds light on the type of structure preserved by sparse
filtering.

Theorem 3. Let F(1) ∈ RL be a point in the codomain of the linear
map defined by the matrix W. It holds that for F(1) strictly in the first
orthant, there are at least 2L points F(i) ∈ RL such that fA2:A4

(
F(1)
)

=

fA2:A4
(
F(i)
)
.

Proof. By definition, F(1)j > 0, ∀j, 1 ≤ j ≤ L. It follows that
fA2(F(1)) = F(1), as the application of the absolute-value maps F(1)
to itself.

However, all the vectors F(i) such that F(i)j = ±F(1)j are mapped
to F(1) by the absolute-value fA2(·). By combinatorial analysis, there
are 2L possible ways of picking the values of F(i), thus defining 2L

points in RL that are mapped to the same value F(1). Since all the
points F(i) are mapped to the same point F(1) at the end of step A2,
the application of the remaining deterministic functions will map
them to the same representation, fA2:A4

(
F(1)
)

= fA2:A4
(
F(i)
)
. ■

3.8. Preservation of cosine neighborhoodness

In Theorem 2 we have shown that sparse filtering maps points
having the same angles to the same representation. However,
this property is not sufficient to preserve any complex structure.
Here we further prove that sparse filtering maps points having a
small cosine distance in the original space onto point having small
Euclidean distance in the representation space.

Theorem 4. Let X(1),X(2)
∈ RO be two original data samples and let

Z(1), Z(2)
∈ RL be their representations computed by sparse filtering.

If the cosine distance between the original samples is arbitrarily small
DC
[
X(1),X(2)

]
< δ, for δ > 0, then the Euclidean distance between

the computed representations is arbitrarily small DE
[
Z(1), Z(2)

]
< ϵ,

for ϵ > 0, and ϵ = L ·

(
k+
⏐⏐⏐√2δ−δ2

⏐⏐⏐
ℓ2

(
F̃(2)

) −
1

ℓ2

(
F̃(1)

)
)
, where k is a constant

accounting for partial collinearity and ℓ2

(
F̃(i)
)
is the ℓ2-norm of the

representations computed by sparse filtering after step A3. In the limit,
it holds that limδ→0 ϵ = 0.

Proof Sketch.We provide here a synthetic sketch of the proof; the
full proof is available in Appendix A.6.

We prove this theorem with the following approach: at each
step of sparse filtering, (i) we consider the displacement between
the representation of the two points X(1) and X(2); (ii) we upper
bound the displacement.

Before sparse filtering the displacement vector X̄ between X(1)

and X(2) is:

X̄ = (k − 1)X(1)
+ B (2)

where k ∈ R, k ̸= 0, is a constant accounting for partial collinearity
and B is a bias vector. Knowing that the cosine distance between
the samples is bounded by DC

[
X(1),X(2)

]
< δ, the displacement

can be upper bounded component-wise as:

X̄j ≤ X(1)
j

(
k − 1 +

√
2δ − δ2

)
. (3)

After steps A1 and A2, the new displacement is:

F̄l = (k − 1) F(1)l ± |WB|l, (4)

whose upper bound is:

F̄l ≤

(
k − 1 +

⏐⏐⏐√2δ − δ2
⏐⏐⏐)
⏐⏐⏐⏐⏐⏐

O∑
j=1

W(l)X(1)
j

⏐⏐⏐⏐⏐⏐ . (5)

After the normalization along the rows in step A3, the displace-
ment is reduced to:

¯̃Fl = (k − 1) F̃(1)l +
|WB|l

cl
, (6)

where {cl}Ll=1, c ∈ R are constant accounting for feature-dependent
sums across the N samples. Consequently the new upper bound is
simply:

¯̃Fl ≤
1
cl
F̄l. (7)

Finally, after step A4, the new displacement is:

Z̄l =

⎛⎝k
ℓ2

(
F̃(1)
)

ℓ2

(
F̃(2)
) − 1

⎞⎠ Z(1)
l +

|WB|l

clℓ2
(
F̃(2)
) , (8)

which can be upper bounded as:

Z̄l ≤

⏐⏐⏐∑O
j=1 W

(j)
l X(1)

j

⏐⏐⏐
cl

⎛⎝k +

⏐⏐⏐√2δ − δ2
⏐⏐⏐

ℓ2

(
F̃(2)
) −

1

ℓ2

(
F̃(1)
)
⎞⎠ . (9)
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Therefore, the overall Euclidean distance between the representa-
tions Z(1) and Z(2) can be bounded by:

DE
[
Z(1), Z(2)]

≤ L ·

⎛⎝k +

⏐⏐⏐√2δ − δ2
⏐⏐⏐

ℓ2

(
F̃(2)
) −

1

ℓ2

(
F̃(1)
)
⎞⎠ . (10)

Thus ϵ = L ·

(
k+
⏐⏐⏐√2δ−δ2

⏐⏐⏐
ℓ2

(
F̃(2)

) −
1

ℓ2

(
F̃(1)

)
)
. ■

Sparse filtering can then preserve cosine neighborhoodness by
mapping points that have similar angular coordinates to repre-
sentations that are close to each other under an Euclidean metric.
However points that have large cosine distance in the original
space will not necessarily be far in the representation space; this
is a consequence of the fact that transformation in sparse filtering
preserve collinearity and cosine neighborhoodness, but not cosine
metric in general.

3.9. Basis and basis pursuit

Let us now consider the space of the learned representations
RL. This space is spanned by the canonical set of orthonormal basis
vectors {ei}Li=1, where e1 =

[
1 0 . . . 0

]
, e2 =

[
0 1 . . . 0

]
, . . . ,

eL =
[
0 0 . . . 1

]
.

Let Z be the set of vectors
{
Z(i)
}N
i=1 produced by the sparse

filtering algorithm through the steps A1 to A4. If we now consider
the optimization in step A5, it is easy to prove that the optimal
set Z that minimizes the ℓ1-norm is given by a multi-set4 of the
orthonormal basis vectors of RL.

Proposition 2. Let
{
Z(i)
}N
i=1 be a set of normal vectors in RL. Then{

Z(i)
}N
i=1 is an optimal set of vectors with respect to the ℓ1-norm

optimization problem minZ∈RL×N
∑N

i=1
∑L

j=1Z
(i)
j if and only if this set{

Z(i)
}N
i=1 is a multi-set of the orthonormal basis vectors of RL.

Proof Sketch. This proposition is proved geometrically, following
the proof given by Bishop (2007) to show that the solutions to
regularized least-squares optimization problems are sparse. The
full proof is available in Appendix A.7. ■

Thus, the optimal solution for the sparse filtering algorithm
is to map a set of original representations X(i)

∈ RO onto the
orthonormal basis vectors of RL, as the basis vectors {ei}Li=1 have
a minimal ℓ1-norm in RL under the constraint of sparse filtering.

Ideally, through gradient descent, sparse filtering progressively
pushes all the learned representations Z(i)

∈ RL towards the
orthonormal basis vectors of RL. However, in general, notice that
sparse filtering is not guaranteed to find an optimal solution and
it may settle into a local minimum, where the original represen-
tations X(i) are mapped onto k-sparse (k > 1) representations in
RL. The quality of the solution depends on the original data set X,
on the dimensionality of the learned space L, and on the random
initialization of the weight matrixW.

Understanding the dynamics of sparse filtering in terms of
basis and pursuit of basis naturally prompts a comparison with
other sparse learning techniques used in signal processing and
machine learning. Basis pursuit (Chen, Donoho, & Saunders, 2001)
defines a similar ℓ1-minimization problem, but it considers only a
constraint given by a linear transformation, while sparse filtering
transforms the data through non-linear transformations.Matching
pursuit (Mallat & Zhang, 1993) aims at learning a sparse represen-
tation; differently from sparse filtering which operates on all the

4 We now explicitly refer to Z as a multi-set because the optimal Z may contain
repeated orthonormal basis vectors of RL in case N > L.

data in parallel, matching pursuit works by finding a linear decom-
position in an iterative way by selecting one basis vector at each
iteration. Dictionary learning algorithms, such as the method of
optimal directions (Engan, Aase, & Husoy, 1999) or k-Singular Value
Decomposition (Aharon, Elad, & Bruckstein, 2006), try to learn a
dictionary and a sparse representation at the same time; however,
they typically alternate between updating the dictionary and the
sparse representation, while sparse filtering explicitly optimizes
only the sparsity of the learned representation.

3.10. Representation filters

The idea of orthonormal basis and pursuit of this basis allows
us to introduce a last conceptual tool that gives us a better insight
into the dynamics of sparse filtering.

From Theorem 2 we learned that sparse filtering identifies sets
of collinear points in the original space to be mapped onto basis
vectors; fromTheorem3we can deduce that theremust a symmet-
ric structure around lines of collinear points; from Theorem 4 we
learned that cosine neighborhoodness is translated into Euclidean
neighborhoodness. Putting together these results, we can infer that
sparse filtering defines precise maps in the original representation
space RO in the form of representation filters:

Definition (Representation Filter). A representation filter Rej is a
function Rej : RO

→ R≥0 such that, for any point X(i)
∈ RO,

Rej
(
X(i)
)

= DE
(
ej, Z(i)

)
, where Z(i)

∈ RL is the learned represen-
tation of X(i) and DE (·, ·) is the Euclidean distance.

A representation filters Rej maps points in the original represen-
tation space RO to their Euclidean distance from the basis vector
ej. Plotting a representation filter Rej in RO defines a region of
space having a hyper-conical shape, such that all the points on the
line of its height are mapped onto the basis vector ej, and all the
points in the neighborhood defined by its volume are mapped into
the neighborhood of the basis vector ej. Moreover, given a point
X(i)

∈ RO, we say that the representation filter R
ej
X(i) is centered on

X(i) if R
ej
X(i)

(
X(i)
)

= 0, that is, the point X(i) lies on the line of the
height of the representation cone defined by R

ej
X(i) .

The optimization process of sparse filtering can be interpreted
as the search for an optimal location of the representation filters:
hyper-conical representation filter are rotated in a continuousway
in the original representation space during learning, until their
placement provides an optimal solution in terms of sparsity of the
learned representations. Inspecting the representation filters can
provide a way to assess the progress of learning in sparse filtering.

3.11. Non-preservation of cosine neighborhoodness in alternative im-
plementations of sparse filtering

The choice of the absolute-value non-linearity in step A2 of
sparse filtering is crucial for guaranteeing the preservation of
cosine neighborhoodness. Ngiam et al. (2011) suggest that this
non-linearity may be substituted by other non-linear functions;
for instance, standard non-linear functions from the neural net-
works literature, such as the sigmoid non-linearity or the recti-
fied linear unit (ReLU), may be used. Despite this possibility, all
the implementations of sparse filtering so far have relied on the
absolute-value non-linearity. An unpublished technical report by
Thaler5 states that sparse filtering with alternative non-linearities
(ReLU and quadratic non-linearity) does not perform as well as
the absolute-value non-linearity, but does not clarify the reasons
of this failure. For plain empirical reasons, the absolute-value has

5 https://www.kaggle.com/c/challenges-in-representation-learning-the-black-
box-learning-challenge/forums/t/4717/1st-place-entry.

https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/forums/t/4717/1st-place-entry
https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/forums/t/4717/1st-place-entry
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always been recommended as the best non-linearity for sparse
filtering.

One theoretical reason for the limited success of alternative
implementations of sparse filtering is the fact that other non-
linearities cannot provide strong guarantees on preservation of
relevant data structures. If we replace the absolute-value non-
linearity with another non-linearity, such as sigmoid or ReLU func-
tion, we lose the property of preservation of structure guaranteed
by standard sparse filtering, as it is proved by the following two
propositions.

Proposition 3. Let us consider the sparse filtering algorithm im-
plemented using a sigmoid non-linearity σ (x) =

1
1+e−x . Let{

X(i)
∈ RO

}N
i=1 be a set of points in the original space RO. Then, the

transformations A1, A2*, A3 and A4, where A2* is the sigmoid non-
linearity, do not preserve the structure of the data described neither
by the Euclidean metric nor by the cosine metric.

Proof Sketch. This proposition is proved by counterexample. The
full proof is available in Appendix A.8. ■

Proposition 4. Let us consider the sparse filtering algorithm im-
plemented using a soft ReLU non-linearity ReLU(x) = max (ϵ, x),
where ϵ is a small negligible value (for instance, ϵ = 10−8). Let{
X(i)

∈ RO
}N
i=1 be a set of points in the original space RO. Then, the

transformations A1, A2*, A3 and A4, where A2* is the ReLU non-
linearity, do not preserve the structure of the data described neither
by the Euclidean metric nor by the cosine metric.

Proof Sketch. This proposition is proved by counterexample. The
full proof is available in Appendix A.9. ■

The non-preservation of the Euclidean metric is not surprising
and it is due to the fact that the normalization in step A4 does
not preserve Euclidean distances. The non-preservation of cosine
distances, collinearity or cosine neighborhoodness is instead due
to the sigmoid andReLUnon-linearities in stepA2, since these non-
linearities do not determine a folding of the space in the same way
of the absolute-value function.

Despite this result, it may still be possible to implement sparse
filtering with alternative non-linearities in order to preserve other
types of structures. It is important that the preservation properties
of alternative non-linearities agreewith the structure preserved by
the other steps of sparse filtering (A1, A3, A4). From a theoretical
perspective, the absolute-value non-linearity is a good choice for
the sparse filtering algorithm, in that it preserves the common
property of collinearity which is also preserved by all the other
steps of the algorithm, therefore guaranteeing the preservation of
the overall structure defined by cosine neighborhoodness.

3.12. Bounds on probability of preserving Euclidean neighborhood-
ness

Interestingly, despite the fact that sparse filtering cannot guar-
antee the preservation of the Euclidean metric, it is still possible
to determine probabilistic bounds on the preservation of the Eu-
clidean neighborhoodness under very simplified assumptions on
the dimensionality of the original spaceRO and the region of space
within which the samples X(i) may be drawn.

Theorem 5. Let X(1)
∈ RO be a point in the original space RO and let

Rek
X(1) be a representation filter centered on X(1), that is, Rek

X(1)

(
X(1)

)
=

0. Let us now consider a point X(2)
∈ RO within the same representa-

tion cone, that is, a point such that Rek
X(1)

(
X(2)

)
≤ ϵ for an arbitrarily

small ϵ ∈ R, ϵ > 0.

Let us assume that: (i) points X(i)
∈ RO distribute in a limited

region of space bounded by a hyper-sphere of radiusM; and, (ii) points
X(i)

∈ RO distribute uniformly in this limited region of space.
Then, given that Rek

X(1)

(
X(2)

)
≤ ϵ, it follows:

Oδ(M
m

)O−1 ·
Γ
( O+1

2

)
Γ
( O+2

2

) ≤ P
(
DE
[
Z(1), Z(2)]

≤ δ
)

≤
Oδ

m
·
Γ
( O+1

2

)
Γ
( O+2

2

) ,
where δ ∈ R, δ > 0 defines the neighborhood of X(1), m is the distance
of X(1) from the origin, and Γ (·) is the gamma function.

Proof Sketch. This proposition is proved geometrically, evaluating
the limit of the ratio between the volume of a representation filter
and the neighborhood of the point when the dimensionality tends
to infinity. The full proof is available in Appendix A.10. ■

Notice that this proof is based on two simplified assumptions.
First, the region of the original space in which a point X(i) can fall
is limited; this assumption is reasonable because, practically, the
range of any feature is always bounded within a certain interval.
Second, a point X(i) has a uniform probability of falling anywhere
within the area defined by the representation filter Rek

X(1) ; this is
clearly a simplified assumption because the pdf of the data p(X)
may have a very irregular distribution within the area defined by
the representation filter Rek

X(1) ; however, assuming a uniform dis-
tribution, which is a distribution that maximizes our uncertainty,
seems a reasonable choice. If these two assumptions are accepted,
approximate bounds can be computed to evaluate the probability
that sparse filtering will preserve relationship of Euclidean neigh-
borhoodness.

3.13. Sparse filtering for representation learning

Given the above results, we may now interpret sparse filtering
as a soft clustering algorithm for representation learning.

Indeed, we may state that sparse filtering implicitly makes all
the assumptions made by traditional soft clustering algorithms
(see Section 2.1): (i) it aims at discovering less noisy representa-
tions Z(i) whose pdf p(Z) may automatically be closer to the true
stochastic generating process with pdf p (X∗); (ii) it expects the
true pdf p (X∗) to have a stronger correlation to the labelsY(i); (iii) it
models the true pdf p (X∗) with a mixture model whose compo-
nents are related to the basis vectors {ej}Lj=1; and, (iv) it relies on
the cosine metric to evaluate relationships of neighborhoodness
in the original space RO. From this perspective, we can interpret
the dimensionality of the learned space as the number of clusters
for soft clustering, the basis vectors as the cluster centroids in a
space described by the cosine metric, the pursuit of the basis as
the sequential process of update of the location of the centroids,
and the learned representations Z(i) as the (stochastic) degree of
membership of the original data samples X(i) to each cluster.

Given this interpretation, we can align and meaningfully com-
pare sparse filtering with other soft clustering algorithms for
representation learning that use different metrics. The choice of
an appropriate metric is critical for a distance-based clustering
algorithm (Xing, Ng, Jordan, & Russell, 2003), and it expresses
our understanding on which spatial directions encode relevant
changes (Simard, LeCun, Denker, & Victorri, 1998). It is natural
then to compare sparse filtering with other standard algorithms
which adopt the Euclidean metric to explain the data. Preserving
the relationships of neighborhoodness under the Euclidean metric
means preserving the information conveyed by the pdf p(X) in
the representation space defined by the Cartesian product of the
random variables X1, X2, . . . , XO, while preserving the relation-
ships of neighborhoodness under the cosinemetricmeans preserv-
ing information conveyed by the pdf p(X) in the representation
space defined by the projection into polar (or hyper-spherical)
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coordinates of the random variables X1, X2, . . . , XO. Choosing one
metric instead of the other depends on our expectation whether
the structure of the data with respect to a set of labels p(Y |X) is
better explained by an Euclidean structure or by a radial structure.

4. Empirical validation

Based on the theoretical analysis provided in the previous sec-
tion, we conduct a set of simulations aimed at verifying our theo-
retical results empirically. In order tomake our results visualizable
and easily understandable, we first conduct simple simulations
in low dimensions; experiments in higher dimensions general-
ize our results but they do not add anything conceptually new
to our conclusions. We further validate our theoretical findings
with a number of benchmark data sets pertaining to real-world
applications.

4.1. Properties of sparse filtering

First, we run simulations on elaborately designed toy data sets
in order to validate our basic understanding of sparse filtering.
These simulations aim at verifying: (i) the property of homo-
representation of collinear points (see Section 3.6); (ii) the use-
fulness of representation filters (see Section 3.10); and, (iii) the
dynamics of pursuit of basis (see Section 3.9).

We generate a random set of data X of three samples (N = 3)
in two-dimensional space (O = 2). Each point is generated using
spherical coordinates: the radial distance ρ is sampled from a uni-
form distribution Unif (−5, 5); the angular coordinate θ is set to
π
3 for the first two points and sampled from a uniform distribution
Unif (0, π) for the third point. A sparse filtering module is trained
on this data set in order to learn a new representation of the data
in two dimensions (L = 2). After training, we create a dense mesh
of points X′ in the original representation space RO; we project
each point X′ to its representation Z′ in the learned representation
space RL, and we compute the distance from each basis vector ej
inRL. The plot of each representation cone is then shown as a two-
dimensional contour plot in the original space RO.

Fig. 2 shows the state of sparse filtering before training. From
the plots 2(b) and 2(d) we can immediately verify the property
of homo-representation of collinear points; indeed, in the learned
space RL the collinear points occupy the same location and their
matrix representation is the same. From the plots 2(e) and 2(f)
we can verify the existence of representation filters in the original
space RO and appreciate how points in the original space are
mapped onto basis vectors of the learned space. Notice that, at this
point, after the random initialization of the weight matrix W, the
quality of the representations generated by the untrained sparse
filtering module is far from satisfactory.

Fig. 3 shows the state of sparse filtering at the end of train-
ing. From the plots 3(b) and 3(d) we can see that the trained
sparse filtering module has found an optimal solution that maps
all the points to basis vectors; as expected, the collinear points are
mapped to the same basis vector, while the third point is mapped
to the remaining basis vector. From the plots 3(e) and 3(f) we can
validate our intuition about the pursuit of basis; indeed, training
corresponded to a rotation of the representation filters in order to
center them on the available samples.

4.2. Preservation of cosine neighborhoodness

Next, we run more simulations on other toy data sets in order
to validate the properties of data structure preservation in sparse
filtering. These simulations aim at verifying: (i) that sparse fil-
tering preserves a structure defined by cosine neighborhoodness
(see Section 3.8); and, (ii) that the absolute-value non-linearity is

crucial in preserving structure and substituting it with other non-
linearities negates this property (see Section 3.11).

We generated a random set of data X of nine samples (N =

9) in two-dimensional space (O = 2). Each point is generated
by randomly sampling its spherical coordinates. The first three
points have a radial distance ρ ∼ Unif (−2, 0) and an angular
coordinate θ ∼ Unif

(
π
9 − η, π

9 + η
)
; the following three points

have a radial distance ρ ∼ Unif (0, 3) and an angular coordi-
nate θ ∼ Unif

( 2π
9 − η, 2π

9 + η
)
; the last three points have a

radial distance ρ ∼ Unif (2, 4) and an angular coordinate θ ∼

Unif
( 4π

9 − η, 4π
9 + η

)
. The parameter η is meant to represent a

form of noise and its value is set to η =
π
45 . In this way, we

generate three clusters of points, such that the cosine distances
among the points belonging to the same cluster are small, while
the cosine distances among points belonging to different clusters
are large. Three implementations of sparse filtering with different
non-linearities (absolute-value, sigmoid, and ReLU6) are used to
learn a new representation of the data in two dimensions (L = 2).

Fig. 4 shows the state of the modules of the three implementa-
tions of sparse filtering at the end of the training. From the plots
4(a)–4(c) we can immediately verify that sparse filtering with an
absolute-value non-linearity preserves cosine neighborhoodness.
The plots of representation filters show that points with similar
angular coordinates fall within the same representation filter. The
matrix plot shows that points with similar angular coordinates
are projected onto very similar representations; in other words,
points that originally had a small cosine distance are projected onto
almost identical representations. On the other hand, from plots
4(d)-4(i) we can easily see that sparse filtering with an alterna-
tive non-linearity does not preserve cosine neighborhoodness. The
plots of representation filters show that the sigmoid and the ReLU
non-linearity do not induce representation cones, but, instead
define large regions of the original space to bemapped onto a basis
vector; several points are thus indistinctly mapped onto a basis
vector. The matrix plots show that the representations computed
by these alternative sparse filtering modules are not related to the
original cosine distances anymore; points originally belonging to
the same cluster aremapped to opposite representations, and, vice
versa, points originally belonging to different clusters are mapped
to identical representations.

4.3. Sparse filtering for representation learning

In the following set of simulations, we compare sparse filtering
against another unsupervised algorithm in order to show under
which conditions sparse filtering is a good choice for processing
data. These simulations aim at verifying the following intuitive
implication: if the structure of the data with respect to a specific
set of labels p(Y |X) is better explained by the cosine metric, then
sparse filtering is likely to be a good option for unsupervised
learning.

In our comparison, we measure sparse filtering against the soft
k-means algorithm (MacKay, 2003). We choose this algorithm
for the following reason: (i) like sparse filtering, the soft k-means
algorithm is a soft clustering algorithmproducing sparse represen-
tations; (ii) the algorithm is based on the Euclidean metric, thus
providing a different interpretation of the data from sparse fil-
tering; and, (iii) k-means is a well-known and easy-to-interpret
algorithm (even if, analogous results may be obtained with other
algorithms, such as Gaussian mixture models or sparse auto-
encoders).

6 ReLU has been implemented in a soft version, like the absolute-value:

softReLU(x) =

{
x if x > 0
ϵ otherwise for ϵ = 10−8 .
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Fig. 2. Experimental validation of the properties of sparse filtering (homo-representation of collinear points, representation filters). Data is generated as explained in the
text (the blue circle dots represent collinear points). (a) Data in the original representation space RO; (b) data in the learned representation space RL; (c) matrix plot of the
original data X; (d) matrix plot of the learned representations Z; (e) plot of first representation filter showing distances from the basis vector e1 = [0, 1]T ; (f) plot of the
second representation filter showing distances from the basis vector e2 = [1, 0]T .

To validate our hypothesis, we generate two data sets, XEuclid
and Xcosine. The data set XEuclid contains data where p(Y |X) is ex-
plained by the Euclidean metric. It is composed of nine samples
(N = 9) in two dimensions (O = 2) sampled from three mul-
tivariate normal distribution. The first three points are sampled
from N

([
1
1

]
,

[
.05 0
0 .05

])
; the second three points are sampled

from N
([

2
−1

]
,

[
.05 0
0 .05

])
; the last three points are sampled from

N
([

−1
−1

]
,

[
.05 0
0 .05

])
. The data setXcosine contains datawhere p(Y |X)

is explained by the cosine metric. The data is generated following
the same protocol used in the simulation in Section 4.2. Sparse
filtering is used to learn a new representation of the data in three
dimensions (L = 3).

From Fig. 5, we can see that our understanding of sparse filter-
ing is correct: if p(Y |X) is better explained by the cosine metric,
then sparse filtering produces a good representation; otherwise, if
p(Y |X) is better explained by the Euclidean metric, then it is rea-
sonable to opt for a different unsupervised learning algorithm, such

as soft k-means. In the case of the data setwith Euclidean structure,
plot 5(b) shows that sparse filtering is not able to preserve the
identity of the generating clusters, and indeed it maps samples
from the first and the third clusters onto the same representation
(because of their collinearity); instead, plot 5(c) shows that soft
k-means algorithmmaps points from different clusters to different
representations. In contrast, in the case of the data set with cosine
structure, plot 5(e) shows that sparse filtering preserves the iden-
tity of the generating clusters, while plot 5(f) shows that the soft
k-means algorithm is unable to map samples from different clus-
ters onto consistent representations.

4.4. Sparse filtering on real data sets

In this last set of simulations we apply our discoveries about
sparse filtering to real-world data sets to further verify our results.
Once again, these experiments aim at validating the connection
between the radial structure of the data and the success of sparse
filtering. In the first simulation, we extend the result that we
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Fig. 3. Experimental validation of the properties of sparse filtering (pursuit of basis). Data is generated as explained in the text. The meaning of the subplots is the same as
in Fig. 2.

proved in Section 4.3 for toy data sets to real data sets; that is,
we verify the direct implication: if the structure of the data with
respect to a specific set of labels p(Y |X) is better explained by the
cosine metric, then sparse filtering is likely to be a good option
for unsupervised learning. In the second simulation, we validate,
instead, the reverse implication: if sparse filtering happens to be
a good option for unsupervised learning, then the structure of the
data with respect to a specific set of labels p(Y |X) is likely to be
better explained by the cosine metric.

When dealingwith real data sets, it is very challenging to assess
the structure of the data. With few samples in low dimensions
and with the simplified assumption that all the data belonging to
a given class are generated by a single highly localized cluster, a
simple visualization or a computation of distances is enough to
understand which metric is underlying the data. However, when
we consider real data sets, we have to deal with a large number
of samples in high dimensions, and with the fact that samples
belonging to the same class may be generated by different clusters
spread throughout the space. In order to explore high-dimensional
data in the original space before any normalization, we decided to
rely on the k-nearest neighbors algorithm (KNN).We implemented

two versions of KNN, one selecting k neighbors according to the
Euclidean distance and one selecting k neighbors according to the
cosine distance.7 If p(Y |X) is better explained by the Euclidean
distance, we expect KNN with the Euclidean metric to provide
better results; alternatively, if p(Y |X) is better explained by the
cosine distance, we expect KNN with the cosine metric to provide
better results.

Berlin Emotional data set. The Berlin Emotional (EMODB) data
set is a well-known audio data set in the emotion recognition com-
munity (Burkhardt, Paeschke, Rolfes, Sendlmeier, & Weiss, 2005);
it contains recordings of ten German actors expressing seven dif-
ferent types of emotions. We opted for this data set to validate
the direct implication between data structure and effectiveness of
sparse filtering for the following reasons. (i) Samples in EMODB
naturally lend themselves to alternative labelings; the same data

7 The KNN using cosine distance has been implemented relying on the ‘‘trick’’
that the cosine distance between vectors u, v is the same as the Euclidean metric
on the ℓ2-normalized vectors. Therefore, we perform an ℓ2-normalization of each
data sample and then we run KNN with Euclidean distance, re-using off-the-shelf
KNN code optimized for the Euclidean metric.
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Fig. 4. Experimental validation of the preservation of cosine neighborhoodness. Data is generated as explained in the text (first set of points as blue circle dots, second set
of points cyan diamond dots, third set of points as green square dots). (a, d, g) Plot of the first representation filter showing distances from the basis vector e1 = [0, 1]T ,
respectively for the sparse filtering with absolute-value, sigmoid, and ReLU non-linearity; (b, e, h) plot of the second representation filter showing distances from the basis
vector e2 = [1, 0]T , respectively for the sparse filteringwith absolute-value, sigmoid, and ReLU non-linearity; (c, f, i) matrix plot of the learned representations Z, respectively
for the sparse filtering with absolute-value, sigmoid, and ReLU non-linearity.

may be used both for speaker recognition (using subject labels)
and for emotion recognition (using emotional labels). (ii) The same
set of Mel-frequency cepstrum (Childers, Skinner, & Kemerait,
1977) coefficient (MFCC) features may reasonably be used both
for speaker recognition and for emotion recognition (Schuller,
Batliner, Steidl, & Seppi, 2011; Wu, Parsons, & Narayanan, 2010).
Thus, the same features we can be used to explore the data under
different labeling.

We first explore the structure of the data with respect to
the two different labeling systems in order to evaluate whether
the Euclidean distance or the cosine distance better explains the

structure of the data. We run the KNN algorithm with different
values of neighbors (k = {2, 3, 5, 7, 10, 15, 20, 25, 50, 75, 100});
for each configuration of KNN, fifty simulations are executed; in
each simulation the data set is randomly partitioned into a training
data set (900 samples) and a test data set (311 samples); KNN is
then trained and tested using one of the two available metrics.

After this analysis, we use both an Euclidean-based unsuper-
vised learning algorithm, Gaussian mixture model (Bishop, 2007),
and a cosine-based unsupervised learning algorithm, sparse filter-
ing, to project the data into an L-dimensional space. We opted for
the Gaussian mixture of models (GMM) algorithm because it is
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Fig. 5. Representation data with Euclidean and cosine data structure. Data is generated as explained in the text (first set of points as blue circle dots, second set of points
cyan diamond dots, third set of points as green square dots). (a, d) Samples in the original space; (b, e) matrix plot of the representations learned by sparse filtering;
(c, f) matrix plot of the representations learned by soft k-means.

Fig. 6. Analysis of the data structure and the classification of the EMODB data set with respect to emotion labels. Classification is performed as explained in the text.
(a) Exploration of the data via KNN with Euclidean metric (green continuous line) and with cosine metric (blue dashed line); (b) Classification using a linear SVM after
processingwith a GMMalgorithm (green line) andwith sparse filtering (blue line). The plot shows the average accuracy and the standard error of SVM (over fifty simulations).

based on the Euclidean metric and yields better performance than
the soft k-means algorithm. After processing the data, we then run
a simple linear SVMclassifier on the processed data andwe analyze
how our observations on the structure of the data relate with the
actual classification performance. We consider several values of
dimensionality (L = {2, 3, . . . , 40}); for each configuration, fifty
simulations are executed; as before, in each simulation the data
set is randomly partitioned into a training data set (900 samples)
and in a test data set (311 samples).

Fig. 6(a) shows that the structure of EMODB data with respect
to emotional labels is better explained by the Euclidean distance.
This result is further confirmed by the classificationwith the linear
SVM module in Fig. 6(b). Classification using the GMM-processed
data with low learned dimensionality (L ≤ 15) returns an accuracy
that is significantly better than using sparse filtering-processed
data (Wilcoxon signed-rank test, p-value P = 5 · 10−85); how-
ever, in higher dimensions the classification with sparse filtering-
processed data approaches and overtakes the accuracy obtained
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Fig. 7. Analysis of the data structure and the classification of the EMODB data set with respect to subject labels. The meaning of the subplots is the same as in Fig. 6.

using GMM-processed data. In general, in low dimensions, the
Euclidean structure assumed by GMM explains the data better;
in high dimensions, sparse filtering provides good results (most
likely thanks to the property of sparsity), but the gap between
the accuracy provided by the two representations remains limited.
On the other hand, Fig. 7(a) shows that the structure of EMODB
data with respect to the speaker identity labels is better explained
by the cosine distance. This result is further confirmed by the
classification with the linear SVM module in Fig. 7(b). Classifi-
cation using the sparse filtering-processed data returns, for all
learned dimensionality, an accuracy that is significantly better
than GMM-processed data (Wilcoxon signed-rank test, p-value
P = 4 · 10−307). The assumption of the cosine metric allows
sparse filtering to explain the data much better, as is evident
from the large gap between the accuracy provided by the two
representations.

These results confirm a connection between the radial structure
of the data with respect to a set of labels and the usefulness of
sparse filtering.

Kaggle Black Box Learning Challenge data set. The Kaggle
Black Box Learning Challenge (KBBLC) data set is a visual data set
made up of obfuscated images of house numbers; the original im-
ages are taken from the well-known Street View House Numbers
(SVHN) data set (Netzer, Wang, Coates, Bissacco, Wu, & Ng, 2011).
Each sample in the KBBLC data set contains a single obfuscated
digit and it is accompanied by a label specifying the value of the
digit. We opted to validate the reverse implication between data
structure and effectiveness of sparse filtering on this data set for
the following reasons. (i) Sparse filtering provided state-of-the-
art performance in the competitive KBBLC contest, thus showing
that sparse filtering was a particularly suitable choice for this data
set. (ii) The KBBLC data set is available with labels. During the
challenge the authors provided obfuscated data without labels;
however, after the challenge they revealed the original source of
the data8 and they released the code they used for obfuscation.9
Thanks to this information, we were able to retrieve a large

amount of data and obfuscate it, and thus recreate the original
conditions of the challenge. However, differently from the chal-
lenge, we retain the labels in order to explore the structure of the
data. (iii) During the challenge, the original samples from the data
sets were processed without undergoing operations of windowing
or convolution. Since sparse filtering was directly applied to the

8 http://ufldl.stanford.edu/housenumbers/.
9 https://www.kaggle.com/c/challenges-in-representation-learning-the-black-

box-learning-challenge/forums/t/5167/the-data.

Fig. 8. Analysis of the data structure of the Kaggle Black Box Learning Challenge data
set. The KNNwith Euclidean metric (green continuous line) and with cosine metric
(blue dashed line) has been used to explore the structure of the data. The plot shows
the average accuracy and the standard error of KNN (over five simulations).

samples, we can analyze the structure of the samples straight-
forwardly. This condition is not always true. If we consider other
image data sets on which sparse filtering provided good results,
such as CIFAR-10 (Krizhevsky & Hinton, 2009) or STL-10 (Coates
et al., 2011), sparse filteringwas not applied to the original samples
but to random patches extracted from the images; in this case,
we should not analyze the data structure of the original samples,
but the data structure of the patches. However, patches are not
labeled, which hinders our ability to carry out an analysis of the
data structure.

In exploring the structure of the data (with respect to the digit
labels), we aim at evaluatingwhether the Euclidean distance or the
cosine distance better explains p(Y |X). We run the KNN with the
same settings as in the previous experiment. In each simulation a
random subset of 10000 samples from the data set was selected
and then partitioned into a training data set (9000 samples) and
a test data set (1000 samples). KNN was then trained and tested
using one of the two available metrics.

Fig. 8 confirms our intuition. For all the different values of k
we considered, the cosine distance proved to be a better metric
to explain the structure of the data in the Kaggle Black Box Learn-
ing Challenge. This provides an explanation why sparse filtering
proved so useful with the KBBLC data, when compared to other
standard unsupervised learning algorithms, especially those based

http://ufldl.stanford.edu/housenumbers/
https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/forums/t/5167/the-data
https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/forums/t/5167/the-data
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on the Euclidean metric. This result agrees with the fact that the
Euclidean metric is not a suitable metric for measuring distances
among samples of digits represented in the pixel space (Simard et
al., 1998).

5. Discussion

Our theoretical and empirical analysis showed that the standard
sparse filtering algorithm implemented with an absolute-value
non-linearity preserves the data structure explained by the cosine
neighborhoodness In our experiments, we have shown that, when
the relevant structure of the data has a radial structure, then sparse
filtering may be expected to perform significantly better than
the standard Euclidean-based alternatives. Indeed, sparse filtering
may be seen as an algorithm approximately transforming cosine
distances in the original space into Euclidean distances in the
representation space.

It is normally assumed that the data points X(i) are best ex-
plained as samples from a multivariate random variable X =

(X1, X2, . . . , XO), where each random variable Xj describes a com-
ponent X(i)

j . However, given the data points X(i), it is possible
to assume that the generating process is better described by a
multivariate random variable X ′

=
(
X ′

1, X
′

2, . . . , X
′

O−1

)
, where each

random variable describes an angular coordinate θj of X
(i)
j . Sparse

filtering tries to preserve the information about the O − 1 angular
coordinates θi, discarding the information about the radial coordi-
nate ρ. If p(Y |X) is better explained in terms of radial coordinates,
then sparse filtering is a very reasonable choice for unsupervised
representation learning.

Our study allowus to conclude that our original thesis is correct:
sparse filtering satisfies both the informativeness principle and
the infomax principle. In particular, the informativeness princi-
ple is satisfied through the adoption of the proxy of sparsity, as
shown in Section 3.2. The infomax principle is satisfied through
the preservation of a precise structure underlying the data, that
is, the radial structure of the data. Mutual information between
the original representations X(i) and the learned representations
Z(i) is retained when the structure of the data is explained by the
cosine metric, that is, in an ideal case, when all the information
is carried by the angular coordinates of the data, as demonstrated
in Section 3.8. Indeed, the mutual information between the orig-
inal and the learned representations can be formally expressed
as: I [X, Z] = H [X] − H [X |Z]. Given that the entropy of the
distribution of the data p(X) is fixed, the only way to maximize
the mutual information is by minimizing the conditional entropy
H [X |Z]. Since the representation Z preserve all the information
about the angular coordinates of the original data, the uncertainty
aboutX given Z is minimized if the structure of the data has indeed
a radial structure.

Following this reasoning, we suggested an interpretation of
sparse filtering as an unsupervised soft clustering algorithm based
on the cosine metric. This perspective allowed us to contrast the
results of sparse filtering with other standard algorithms for clus-
tering based on the Euclidean metric and conclude that sparse
filtering does not provide a better processing of the data in absolute
terms, but instead it offers an alternative interpretation of the data
based on a different metric.

While in our experiments, we were aware a priori of the metric
underlying synthetic data sets, in a real-world setting such knowl-
edge may not be available and simple exploratory analysis of the
data (using, for instance KNN) may be unsuitable. Sparse filtering,
thanks to its scalability and its efficiency, could also be used to
infer the data structure underlying the data. The usefulness of polar
coordinates in several scientific fields and physical applications
may suggest that interpreting data according to cosine distance
could be a sensible choice.

Additionally, we proved that, in high dimensions, sparse fil-
tering can still probabilistically preserve Euclidean distances. This
is justified by the fact that, under the assumptions we made,
the probability that unrelated points with high Euclidean dis-
tance will have the same angular coordinates θi can be bounded
(Section 3.12).

Interestingly, our study of sparse filtering as an unsupervised
learning algorithm shares a similar methodology with the very
recent work by McNamara, Ong, and Williamson (2016). Re-
casting our analysis in their framework we can demonstrate that,
with high probability, sparse filtering working on radial data con-
tributes to the reduction of the risk in standard supervised learners
by showing that: (i) P(X) has a structure explained by cosine
neighborhoodness; (ii) P(Y |X) share the same structure as P(X);
(iii) sparse filtering relies on the cosine distance; (iv) a supervised
learner, such as SVM, can exploit the new Euclidean structure in
the learned representations.

6. Concluding remarks

In this paper, we have explainedwhy sparse filtering works (by
proving its property of preservation of cosine neighborhoodness)
and when it should be expected to provide useful representations
(by considering the data structure of the samples).

Our theoretical analysis and simulations were not designed
to show that sparse filtering is able to provide state-of-the-art
performance against other algorithms, but, instead, to show how
the implicit assumptions and constraints of sparse filtering make
it better suited for certain scenarios instead of others. In particular,
for the standard sparse filtering algorithm implemented using an
absolute-value non-linearity we demonstrated that its success is
tied to the data having a structure explained by cosine neighbor-
hoodness. Consistently with the no-free lunch theorem (Wolpert
&Macready, 1997), we reached the conclusion that sparse filtering
is not a better algorithm than other Euclidean-based clustering
algorithms, but that there is a specific set of problems (in which
p(Y |X) is explained by the cosine metric) where the performance
of sparse filtering is excellent, balanced by a set of problems
(in which p(Y |X) is explained by the Euclidean metric or other
metrics) where its performance is less outstanding. This led us
to interpret the representation of sparse filtering as a ‘‘view’’ of
the data according to the cosine metric alternative to the more
standard Euclidean view. Combining these two different views
could provide representations with more discriminative power.

At the foundation of our analysis lies the understanding that
sparse filteringmust preserve some information carried by the pdf
p(X). Despite sparse filtering ignoring the problem of explicitly
modeling the true pdf p (X), we showed that the algorithm is hard-
coded with an implicit constraint that guarantees the preservation
of some data structure. This is clearly a specific conclusion about
the particular algorithm of sparse filtering, but we can expect
that this principle will be applicable to the whole class of feature
distribution learning algorithms.Wemight expect that any feature
distribution learning algorithm, in order to be successful,must take
into account, through constraints or priors, the problemof preserv-
ing the mutual information between the original representations
X(i) and the learned representations Z(i).

Being aware of this requirement can give a precious contri-
bution in the future research and design of new feature distri-
bution learning algorithms; for instance, it may prevent us from
considering in sparse filtering alternative non-linearities that do
not preserve any interesting structure (such as, the ReLU function)
or it may help us to avoid solutions that, being unable to preserve
any structure of the data, are bound to produce unsatisfactory
representations. Ongoing research is focused on discoveringwhich
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[
1

√
N

]
fA3
(
X(1))

=

[
X(1)

j

√
2

√
N

]
=

[
1

√
N

]

fA4

([
1

√
N

])
=

[
X(1)

j

√
N

√
L

]
=

[
1

√
L

]
= Z(1) fA4

([
1

√
N

])
=

[
X(1)

j

√
N

√
L

]
=

[
1

√
L

]
= Z(1).

Box II.

structures may be preserved by alternative version of sparse fil-
tering, with a particular focus on periodic structures that may be
learned using trigonometric functions.

A deeper theoretical understanding of the dynamics of sparse
filtering may be developed in connection with manifold learning
and information geometry (Amari, 2016). The property of preser-
vation of structure that we uncovered in this paper may be more
formally explained in the framework of differential geometry, by
modeling the data samples as a points on a Riemannian manifold.
Relevant data structures (that we presented in terms of Euclidean
or cosine distance) may then be described in terms of Riemannian
metric tensors, and preservation properties may be studied in
terms of preservation of these tensors.

Another promising avenue in our research is the extension of
sparse filtering to semi-supervised learning. Indeed, the paradigm
of feature distribution learning seems perfectly suited for the sce-
nario in which we are provided with few labeled samples and
many unlabeled samples: we may exploit the information carried
by the labeled samples to better shape the feature distribution p(Z),
without addressing the problem of estimating the true pdf p (X∗);
at the same time, the constraint of sparsity would help us to not
overfit, and the constraint of structure preservation would help
us to preserve the information conveyed by p(X). Furthermore,
assuming some regularity in the original representation space,
we hypothesize that we could use the information in the labeled
samples to address the problem of covariate shift (Sugiyama &
Kawanabe, 2012) in a semi-supervised learning scenario.
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Appendix. Proofs

A.1. Proposition 1

Proposition 1. Let
{
X(i)

∈ RO
}N
i=1 be a set of points in the original

spaceRO. Then, the transformations from A1 to A4 do not preserve the
structure of the data described by the Euclidean metric.

Proof.We prove this proposition by counterexample.
Let us consider the case inwhichX(1) is a vector such thatX(1)

j =
1

√
2
, ∀j, 1 ≤ j ≤ O, X(2) is another vector such that X(2)

= −X(1),
L = O, and W = I, where I is the identity matrix.

The Euclidean distance between the vectors X(1) and X(2) is:

DE
(
X(1),X(2))

=

√ O∑
j=1

(
1

√
2

+
1

√
2

)2

=
√
2L.

Let us now apply the transformation fA1:A4 to the vectors X(1) and
X(2). Then we get the equations in Box II.
Thus, fA1:A4

(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(1). Now, the Euclidean

distance between the vectors fA1:A4
(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DE
(
Z(1), Z(1))

= 0.

Therefore the transformations from A1 to A4 do not preserve the
structure of the data described by the Euclidean metric. ■

A.2. Lemma 1

Lemma 1. Let us consider u, v ∈ RO, two generic collinear vectors,
and let f : RO

→ RL be a linear transformation defined as f (u) =

Wu, whereW is the matrix associated with the linear transformation.
Then, f (u) , f (v) ∈ RL are also collinear.

Proof. Let us consider the two collinear vectors u and v. By defini-
tion, collinearity means that there exists k ∈ R, k ̸= 0, such that
v = ku. Let us now consider the linear transformation f encoded
by matrixW and let us apply it to the vector v:

f (v) = Wv = W (ku) = k (Wu) = k · f (u).

Therefore, collinearity is preserved. ■

A.3. Lemma 2

Lemma 2. Let us consider u, v ∈ RL, two generic collinear vectors,
and let f : RL

→ RL be the element-wise absolute-value function
f (u) = |u| =

[⏐⏐uj
⏐⏐]. Then f (u) , f (v) ∈ RL are also collinear.

Proof. Let us consider the two collinear vectors u and v. By def-
inition, collinearity means that there exists k ∈ R, k ̸= 0, such
that v = ku. Let us now consider the element-wise absolute-value
function f and let us apply it to the vector v:

f (v) = |v| = |ku| = |k| · |u| = |k| · f (u).

Therefore, collinearity is preserved. ■

A.4. Lemma 3

Lemma 3. Let us consider u, v ∈ RL, two collinear vectors whose
components are all strictly positive,10 and let f : RL

→ RL be the
ℓ2-normalization along the features. Then f (u) , f (v) ∈ RL are also
collinear.

10 Notice that we can safely make the assumption of strict positivity in sparse
filtering since u and v are the output of an absolute-value function implemented
as f (x) =

√
x2 + ϵ.
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Proof. Let us consider the two collinear vectors u and v. By def-
inition, collinearity means that there exists k ∈ R, k ̸= 0, such
that v = ku. Let us now consider the function of normalization

along the features f (u) =

[
uj√∑

w={u,v...}w
2
j

]
. Normalizing along

the features means dividing each component uj by a constant cj
equal to the ℓ2-norm of the component j across all the available
vectors u, v, . . ., that is f (u) =

[
uj
cj

]
= c ◦ u, where c is the

vector containing all the constants cj and ◦ is the element-wise
product. Let us now apply the normalization along the features to
the vector v:

f (v) = c ◦ v = c ◦ (ku) = k · (c ◦ u) = k · f (u).

Therefore, collinearity is preserved. ■

A.5. Lemma 4

Lemma 4. Let us consider u ∈ RL, a vector whose components are all
strictly positive,11 and let f : RL

→ RL be the ℓ2-normalization along
the samples. Then f (u) ∈ RL have the same angular coordinates as u.

Proof. Let us consider the function of normalization along the

features f (u) =

[
uj√∑
ju

2
j

]
. Normalizing along the samples means

dividing each component uj by the ℓ2-norm of the same vector u,
that is f (u) =

[
uj

ℓ2(u)

]
=

1
ℓ2(u)

· u. Multiplying all the components

of the same vector u by the constant k =
1

ℓ2(u)
leaves the angu-

lar coordinates unaltered. Therefore, the angular coordinates are
preserved. ■

A.6. Theorem 4

Theorem 4. Let X(1),X(2)
∈ RO be two original data samples and let

Z(1), Z(2)
∈ RL be their representations computed by sparse filtering.

If the cosine distance between the original samples is arbitrarily small
DC
[
X(1),X(2)

]
< δ, for δ > 0, then the Euclidean distance between

the computed representations is arbitrarily small DE
[
Z(1), Z(2)

]
< ϵ,

for ϵ > 0, and ϵ = L ·

(
k+
⏐⏐⏐√2δ−δ2

⏐⏐⏐
ℓ2

(
F̃(2)

) −
1

ℓ2

(
F̃(1)

)
)
, where k is a constant

accounting for partial collinearity and ℓ2

(
F̃(i)
)
is the ℓ2-norm of the

representations computed by sparse filtering after step A3. In the limit,
it holds that limδ→0ϵ = 0.

Proof. In order to prove this theoremwe adopt the following strat-
egy: we compute the representations at each step of the computa-
tion (before sparse filtering, after steps A1 andA2, after step A3 and
after stepA4) andweupper bound the displacement accounting for
the Euclidean distance between the representations.

Recall that given two generic points X(1) and X(2), we can ex-
press X(2) as a function of X(1) plus a displacement vector X̄:

X(2)
= X(1)

+ X̄, (A.1)

so that we can easily account for the Euclidean distance between
X(1) and X(2) just as a function of the displacement vector X̄:

DE
[
X(1),X(2)]

= ℓ2
(
X̄
)
.

11 Notice that we can safely make the assumption of strict positivity in sparse
filtering sinceu is the output of the normalization along the featurewhich preserves
the positivity.

(Before sparse filtering.) Let us now consider two points X(1)

and X(2) which are almost collinear with an arbitrary small cosine
distance DC

[
X(1),X(2)

]
< δ. We can then express X(2) as a point

collinear with X(1) to which a bias vector B is added:

X(2)
= kX(1)

+ B,

where k ∈ R is a constant that preserves collinearity. With no
loss of generality, we will assume k > 1; we exclude values of k
smaller than zero which would generate a reflection (reflections
are not relevant for the following treatment as they induce a cosine
distance far greater than δ) andwe ignore values of k between zero
and one (in such a case, our proof will hold once we swap X(1) and
X(2)). The bias vector B accounts for a relative displacement be-
tween the perfectly collinear sample kX(1) and the almost collinear
sample kX(1)

+ B.
With reference to Eq. (A.1), the displacement vector X̄ is:

X̄ = (k − 1)X(1)
+ B, (A.2)

from which follows that:

DE
[
X(1),X(2)]

= ℓ2
(
X̄
)

= ℓ2
(
(k − 1)X(1)

+ B
)
.

(Before sparse filtering — Upper bound) To upper bound
DE
[
X(1),X(2)

]
, we can evaluate themaximum value that ℓ2

(
X̄
)
can

reach, consistent with the constraint of a bounded cosine distance
DC
[
X(1),X(2)

]
. Formally, we can set up the optimization problem:

max
X̄∈RO

ℓ2
(
X̄
)

under the constraint:

DC
[
X(1),X(2)] < δ.

The maximization can be rewritten as:

max
X̄∈RO

ℓ2
(
X̄
)

= max
X̄j∈R

√ O∑
j=1

X̄2
j

= max
Bj∈R

√ O∑
j=1

(
(k − 1)X(1)

j + Bj

)2

= max
Bj∈R

√ O∑
j=1

(
Bj
)2

= max
Bj∈R

Bj,

assuming: (i) that X(1) and k are given, and (ii) that X(1)
j and Bj

are both positive (as this constitute the worst case that needs
to be considered in the analysis of the upper bound). An upper
bound on the displacement X̄ can be then computed from the
solution to the individual constrained optimization problems for
each component Bj:

max
Bj∈R

Bj

under the constraint:

δ > DC
[
X(1),X(2)]

= DC
[
X(1), kX(1)

+ B
]
.

By construction, we know that DC
[
X(1), kX(1)

]
= 0. Therefore the

entire cosine distance must be accounted by the bias vector B.
Trigonometrically, from the cosine distance δ we can recover the
angle opposite to a cathetus corresponding to the radius of an
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hypersphere centered on kX(1) and bounding the module of B. Let
θ be the underlying angle between X(1) and X(2):

δ = 1 − cos θ

θ = arccos(1 − δ).

The radius of the hypersphere centered on kX(1) inducing at most
a cosine distance δ is:

Bj ≤ X(1)
j sin arccos(1 − δ)

= X(1)
j

√
1 − (1 − δ)2

= X(1)
j

√
2δ − δ2.

Substituting in Eq. (A.2), the displacement on each component can
the be upper bounded as:

X̄j = (k − 1)X(1)
j + Bj

≤ (k − 1)X(1)
j + X(1)

j

√
2δ − δ2

= X(1)
j

(
k − 1 +

√
2δ − δ2

)
.

This upper bound depends on the original cosine distance δ, but,
more significantly on the module of X(1) and the stretching con-
stant k. Indeed, the Euclidean distance along each component is
given by the stretch (X(1)

j (k − 1)) plus a small distance due to the
angle (X(1)

j

√
2δ − δ2).

(Steps A1 and A2) Let us now apply the linear projection and
the absolute-value function defined in transformation A1 and A2:

F(1) = fA1:A2
(
X(1))

=
⏐⏐WX(1)

⏐⏐
F(2) = fA1:A2

(
X(2))

=
⏐⏐W (

kX(1)
+ B

)⏐⏐ = kF(1) ± |WB| .

Component-wise we have:

F(1)l =

⏐⏐⏐⏐⏐⏐
O∑

j=1

W(j)
l X(1)

j

⏐⏐⏐⏐⏐⏐
F(2)l = kF(1)l + |WB|l = k

⏐⏐⏐⏐⏐⏐
O∑

j=1

W(j)
l X(1)

j

⏐⏐⏐⏐⏐⏐±
⏐⏐⏐⏐⏐⏐

O∑
j=1

W(j)
l Bj

⏐⏐⏐⏐⏐⏐ .
The new displacement and the new Euclidean distance are:

F̄l = (k − 1) F(1)l ± |WB|l, (A.3)

DE
[
F(1), F(2)

]
= ℓ2

(
F̄
)

=

√ L∑
l=1

(
(k − 1) F(1)l ± |WB|l

)2
.

(Steps A1 and A2 — Upper bound) The upper bound of each
component of the new bias vector follows immediately:

|WB|l =

⏐⏐⏐⏐⏐⏐
O∑

j=1

W(j)
l Bj

⏐⏐⏐⏐⏐⏐
≤

⎛⎝⏐⏐⏐⏐⏐⏐
O∑

j=1

W(j)
l X(1)

j

√
2δ − δ2

⏐⏐⏐⏐⏐⏐
⎞⎠

=

⏐⏐⏐√2δ − δ2
⏐⏐⏐
⏐⏐⏐⏐⏐⏐

O∑
j=1

W(j)
l X(1)

j

⏐⏐⏐⏐⏐⏐ ,

and then the upper bound on each component of the displacement
in Eq. (A.3) is:

F̄l ≤ (k − 1) F(1)l +

⏐⏐⏐√2δ − δ2
⏐⏐⏐
⏐⏐⏐⏐⏐⏐

O∑
j=1

W(j)
l X(1)

j

⏐⏐⏐⏐⏐⏐
= (k − 1)

⏐⏐⏐⏐⏐⏐
O∑

j=1

W(j)
l X(1)

j

⏐⏐⏐⏐⏐⏐+
⏐⏐⏐√2δ − δ2

⏐⏐⏐
⏐⏐⏐⏐⏐⏐

O∑
j=1

W(j)
l X(1)

j

⏐⏐⏐⏐⏐⏐
=

(
k − 1 +

⏐⏐⏐√2δ − δ2
⏐⏐⏐)
⏐⏐⏐⏐⏐⏐

O∑
j=1

W(l)X(1)
j

⏐⏐⏐⏐⏐⏐ .
(Step A3) Let us now apply the normalization along the rows

defined in transformation A3:

F̃(1)l = fA3
(
F(1)l

)
=

F(1)l√∑N
i

(
F(i)l
)2

F̃(2)l = fA3
(
F(2)l

)
=

kF(1)l + |WB|l√∑N
i

(
F(i)l
)2 = kF̃(1)l +

|WB|l√∑N
i

(
F(i)l
)2 .

Notice that the denominator is given by a feature-dependent sum
across N samples; for simplicity, we will take this value to be a
constant {cl}Ll=1, c ∈ R:

F̃(1)l =
F(1)l

cl

F̃(2)l = kF̃(1)l +
|WB|l

cl
.

The new displacement and the new Euclidean distance are:

¯̃Fl = (k − 1) F̃(1)l +
|WB|l

cl
, (A.4)

DE

[
F̃(1), F̃(2)

]
= ℓ2

(
¯̃F
)

=

√ L∑
l=1

(
(k − 1) F̃(1)l +

|WB|l

cl

)2

.

(Step A3 — Upper bound) The upper bound of each component
of the new bias vector follows immediately:

|WB|l

cl
≤

⏐⏐⏐√2δ − δ2
⏐⏐⏐ ⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
cl

and then the upper bound on each component of the displacement
in Eq. (A.4):

¯̃Fl ≤ (k − 1) F̃(1)l +

⏐⏐⏐√2δ − δ2
⏐⏐⏐ ⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
cl

= (k − 1)
F(1)l

cl
+

⏐⏐⏐√2δ − δ2
⏐⏐⏐ ⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
cl

= (k − 1)

⏐⏐⏐∑O
j=1 W

(j)
l X(1)

j

⏐⏐⏐
cl

+

⏐⏐⏐√2δ − δ2
⏐⏐⏐ ⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
cl

=

k − 1 +

⏐⏐⏐√2δ − δ2
⏐⏐⏐

cl

⏐⏐⏐⏐⏐⏐
O∑

j=1

W(j)
l X(1)

j

⏐⏐⏐⏐⏐⏐
=

1
cl
F̄l.
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Not surprisingly, after transformation A3, the Euclidean distance
DE

[
F̃(1), F̃(2)

]
is just rescaled since each component of the displace-

ment F̄l is reduced by a factor 1
cl

=
1√∑N

i

(
F(i)l
)2 .

(Step A4) Finally, let us apply the normalization along the
samples defined in transformation A4:

Z(1)
l = fA4

(
F̃(1)l

)
=

F̃(1)l

ℓ2

(
F̃(1)
) =

F(1)l
cl

ℓ2

(
F̃(1)
)

Z(2)
l = fA4

(
F̃(2)l

)
=

F̃(2)l

ℓ2

(
F̃(2)
) =

kF̃(1)l +
|WB|l
cl

ℓ2

(
F̃(2)
)

=

k F(1)l
cl

ℓ2

(
F̃(2)
) +

|WB|l
cl

ℓ2

(
F̃(2)
) .

Let us now consider the first term of Z(2)
l and let us multiply it by

ℓ2

(
F̃(1)

)
ℓ2

(
F̃(1)

) :

Z(2)
l =

k F(1)l
cl

ℓ2

(
F̃(2)
) ℓ2

(
F̃(1)
)

ℓ2

(
F̃(1)
) +

|WB|l
cl

ℓ2

(
F̃(2)
)

= kZ(1)
l

ℓ2

(
F̃(1)
)

ℓ2

(
F̃(2)
) +

|WB|l
cl

ℓ2

(
F̃(2)
) .

The new displacement and the new Euclidean distance are:

Z̄l =

⎛⎝k
ℓ2

(
F̃(1)
)

ℓ2

(
F̃(2)
) − 1

⎞⎠ Z(1)
l +

|WB|l

clℓ2
(
F̃(2)
) , (A.5)

DE
[
Z(1), Z(2)]

= ℓ2
(
Z̄
)

=

√ L∑
l=1

⎛⎝⎛⎝k
ℓ2

(
F̃(1)
)

ℓ2

(
F̃(2)
) − 1

⎞⎠ Z(1) +
|WB|l

clℓ2
(
F̃(2)
)
⎞⎠2

. (A.6)

For consistency, notice that ifX(1) andX(2) were to be collinear, then
ℓ2

(
F̃(2)
)

= kℓ2
(
F̃(1)
)
, and, by construction, B = 0; therefore, in

case of collinearity, DE
[
Z(1), Z(2)

]
computed in Eq. (A.6) would be

zero, thus agreeing with Theorem 2.
(Step A4 — Upper bound) Now, the upper bound of each com-

ponent of the bias vector can be immediately upper bounded:

|WB|l

clℓ2
(
F̃(2)
) ≤

⏐⏐⏐√2δ − δ2
⏐⏐⏐ ⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
clℓ2

(
F̃(2)
) ,

and then the upper bound on each component of the displa-
cement:

Z̄l ≤

⎛⎝k
ℓ2

(
F̃(1)
)

ℓ2

(
F̃(2)
) − 1

⎞⎠ Z(1)
l +

⏐⏐⏐√2δ − δ2
⏐⏐⏐ ⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
clℓ2

(
F̃(2)
)

=

⎛⎝k
ℓ2

(
F̃(1)
)

ℓ2

(
F̃(2)
) − 1

⎞⎠ F(1)l

clℓ2
(
F̃(1)
) +

⏐⏐⏐√2δ − δ2
⏐⏐⏐ ⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
clℓ2

(
F̃(2)
)

=

⎛⎝k
ℓ2

(
F̃(1)
)

ℓ2

(
F̃(2)
) − 1

⎞⎠
⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
clℓ2

(
F̃(1)
)

+

⏐⏐⏐√2δ − δ2
⏐⏐⏐ ⏐⏐⏐∑O

j=1 W
(j)
l X(1)

j

⏐⏐⏐
clℓ2

(
F̃(2)
)

=

⏐⏐⏐∑O
j=1 W

(j)
l X(1)

j

⏐⏐⏐
cl

⎡⎣k +

⏐⏐⏐√2δ − δ2
⏐⏐⏐

ℓ2

(
F̃(2)
) −

1

ℓ2

(
F̃(1)
)
⎤⎦ .

Notice that

⏐⏐⏐∑O
j=1W

(j)
l X(1)

j

⏐⏐⏐
cl

< 1 since cl =

√∑N
i

(
F(i)l
)2

. Thus:

Z̄l ≤

⎡⎣k +

⏐⏐⏐√2δ − δ2
⏐⏐⏐

ℓ2

(
F̃(2)
) −

1

ℓ2

(
F̃(1)
)
⎤⎦ .

The overall Euclidean distance between the representations Z(1)

and Z(2) can then be bounded by:

DE
[
Z(1), Z(2)]

=

√ L∑
l=1

(
Z̄l
)2

≤ L ·

⎛⎝k +

⏐⏐⏐√2δ − δ2
⏐⏐⏐

ℓ2

(
F̃(2)
) −

1

ℓ2

(
F̃(1)
)
⎞⎠ .

Thus ϵ = L ·

(
k+
⏐⏐⏐√2δ−δ2

⏐⏐⏐
ℓ2

(
F̃(2)

) −
1

ℓ2

(
F̃(1)

)
)
.

(Limit case) Lastly, let us consider the behavior of the Euclidean
distance DE [z1, z2] as the cosine distance DC [x1, x2] tends to
zero:

lim
δ→0

DE [z1, z2] = lim
δ→0

ϵ

= lim
δ→0

L ·

⎛⎝k +

⏐⏐⏐√2δ − δ2
⏐⏐⏐

ℓ2

(
f̃2
) −

1

ℓ2

(
f̃1
)
⎞⎠

= lim
δ→0

L ·

⎛⎝ k

ℓ2

(
f̃2
) −

1

ℓ2

(
f̃1
)
⎞⎠ .

Let us now substitute ℓ2

(
f̃2
)

with its definition. As the cosine
distance δ tends to zero, x1 and x2 tend to be collinear. Therefore,
ℓ2

(
f̃2
)
tends to kℓ2

(
f̃1
)
. We can then rewrite:

lim
δ→0

DE [z1, z2] = lim
δ→0

L ·

⎛⎝ k

ℓ2

(
f̃2
) −

1

ℓ2

(
f̃1
)
⎞⎠

= lim
δ→0

L ·

⎛⎝ k

k · ℓ2

(
f̃1
) −

1

ℓ2

(
f̃1
)
⎞⎠

= 0.

Thus, in the limit, it holds that limδ→0ϵ = 0. ■
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fA1
(
X(1))

= IX(1)
= X(1) fA1

(
X(2))

= IX(2)
= X(2)

fA2∗

(
X(1))

= σ
(
X(1))

= Σ(1) fA2∗

(
X(2))

= σ
(
X(2))

= Σ(2)

fA3
(
Σ(1))

=

⎡⎣ Σ
(1)
j√∑N

i=1 Σ
(i)
j

⎤⎦ fA3
(
Σ(2))

=

⎡⎣ Σ
(2)
j√∑N

i=1 Σ
(i)
j

⎤⎦
fA4

⎛⎝⎡⎣ Σ
(1)
j√∑L

j=1 Σ
(i)
j

⎤⎦⎞⎠ =

[
1

√
L

]
= Z(1) fA4

⎛⎝⎡⎣ Σ
(2)
j√∑L

j=1 Σ
(i)
j

⎤⎦⎞⎠ =

[
1

√
L

]
= Z(1).

Box III.

A.7. Proposition 2

Proposition 2. Let Z =
{
Z(i)
}N
i=1 be a set of vectors such that Z

(i)
∈ RL

and
∑L

j=1

(
Z(i)
j

)2
= 1. Then an optimal set of vectors that solve the

optimization problem minZ∈RL×N
∑N

i=1
∑L

j=1Z
(i)
j is given by a multi-

set of the orthonormal basis vectors of RL.

Proof.We will prove this proposition geometrically.
Let us consider the optimization problem:

min
Z∈RL

L∑
j=1

Z(1)
j ,

subject the constraint:
L∑

j=1

(
Z(1)
j

)2
= 1.

The constraint defines the set of points describing a unitary
hyper-sphere in RL, while the minimization problem defines
diamond-shaped level sets (Bishop, 2007). The minimal level set
intersecting the unitary hyper-sphere is the diamond inscribed in
the unit sphere. The intersection points constitute the solution
of our minimization problem. These points are the intersection
points between the unit hyper-sphere and the axes of RL, having a
single component set to one, while all the others are set to zero. By
definition, these 1-sparse vectors are the orthonormal basis vectors
{ei}Li=1. ■

A.8. Proposition 3

Proposition 3. Let us consider the sparse filtering algorithm im-
plemented using a sigmoid non-linearity σ (x) =

1
1+e−x . Let{

X(i)
∈ RO

}N
i=1 be a set of points in the original space RO. Then, the

transformations A1, A2*, A3 and A4, where A2* is the sigmoid non-
linearity, do not preserve the structure of the data described neither
by the Euclidean metric nor by the cosing metric.

Proof. We divide this proposition in two parts and we prove each
one by counterexample.

Let us focus first on the non-preservation of the Euclidean
metric. Let us consider the case in which X(1) is a vector such that
X(1)

j = 1, ∀j, 1 ≤ j ≤ O, X(2) is another vector such that X(2)
= 2, ∀j,

1 ≤ j ≤ O, L = O, and W = I, where I is the identity matrix.
The Euclidean distance between the vectors X(1) and X(2) is:

DE
(
X(1),X(2))

=

√ O∑
j=1

(1 − 2)2 =
√
L.

Let us nowapply the transformation fA1:A4 to the vectorsX(1) and
X(2). Then we get the equations in Box III.

Thus, fA1:A4
(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(1). Now, the

Euclidean distance between the vectors fA1:A4
(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DE
(
Z(1), Z(1))

= 0.

Therefore the transformations from A1 to A4 do not preserve the
structure of the data described by the Euclideanmetric. This proves
the first part of the proposition.

Let us focus now on the non-preservation of the cosine metric.
Let us consider the case inwhichX(1) is a vector such thatX(1)

j = 2j,
∀j, 1 ≤ j ≤ O, X(2) is another vector such that X(2)

= −X(1),
L = O = 2, andW = I, where I is the identity matrix.

The cosine distance between the vectors X(1) and X(2) is:

DC
(
X(1),X(2))

= 1 −

⏐⏐⏐⏐⏐⏐⏐⏐
∑O

j=1 X
(1)
j X(2)

j√∑O
j=1

(
X(1)

j

)2√∑O
j=1

(
X(2)

j

)2
⏐⏐⏐⏐⏐⏐⏐⏐ = 0.

Let us now apply the transformation fA1:A4 to the vectors X(1) and
X(2):

fA1
(
X(1))

= IX(1)
= X(1) fA1

(
X(2))

= IX(2)
= X(2)

fA2∗

(
X(1))

= σ
(
X(1))

= Σ(1) fA2∗

(
X(2))

= σ
(
X(2))

= Σ(2)

fA3
(
Σ(1))

=

⎡⎣ Σ
(1)
j√∑N

i=1 Σ
(i)
j

⎤⎦ fA3
(
Σ(2))

=

⎡⎣ Σ
(2)
j√∑N

i=1 Σ
(i)
j

⎤⎦
fA4

⎛⎝⎡⎣ Σ
(1)
j√∑L

j=1 Σ
(i)
j

⎤⎦⎞⎠ = Z(1) fA4

⎛⎝⎡⎣ Σ
(2)
j√∑L

j=1 Σ
(i)
j

⎤⎦⎞⎠ = Z(2).

Thus, fA1:A4
(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(2), where Z(1)

=[
0.99 0.14

]
and Z(2)

=
[
0.70 0.71

]
. Now, the cosine distance

between the vectors fA1:A4
(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DC
(
Z(1), Z(2))

̸= 0.

Therefore the transformations from A1 to A4 do not preserve the
structure of the data described by the cosine metric. This proves
the second part of the proposition. ■

A.9. Proposition 4

Proposition 4. Let us consider the sparse filtering algorithm im-
plemented using a soft ReLU non-linearity ReLU(x) = max (ϵ, x),
where ϵ is a small negligible value (for instance, ϵ = 10−8). Let{
X(i)

∈ RO
}N
i=1 be a set of points in the original space RO. Then, the
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fA1
(
X(1))

= IX(1)
= X(1) fA1

(
X(2))

= IX(2)
= X(2)

fA2∗

(
X(1))

= ReLU
(
X(1))

= [ϵ] fA2∗

(
X(2))

= ReLU
(
X(2))

= [ϵ]

fA3 ([ϵ]) =

[
ϵ

√
Nϵ

]
=

[
1

√
N

]
fA3 ([ϵ]) =

[
ϵ

√
Nϵ

]
=

[
1

√
N

]
fA4

([
1

√
N

])
=

[ √
N

√
N

√
L

]
=

[
1

√
L

]
= Z(1) fA4

([
1

√
N

])
=

[ √
N

√
N

√
L

]
=

[
1

√
L

]
= Z(1).

Box IV.

fA1
(
X(1))

= IX(1)
= X(1) fA1

(
X(2))

= IX(2)
= X(2)

fA2∗

(
X(1))

= ReLU
(
X(1))

= X(1) fA2∗

(
X(2))

= ReLU
(
X(2))

= [ϵ]

fA3
(
X(1))

=

[
X(1)

j 2j
√
1 + 22jϵ2

]
=

[
1

√
1 + 22jϵ2

]
fA3 ([ϵ]) =

[
ϵ2j

√
1 + 22jϵ2

]

fA4

([
1

√
1 + 22jϵ2

])
=

⎡⎣ 1√
1+22jϵ2√∑L
j=1

1
1+22jϵ2

⎤⎦ = Z(1) fA4

([
ϵ2j

√
1 + 22jϵ2

])
=

⎡⎣ ϵ2j
√

1+22jϵ2√∑L
j=1

22jϵ2
1+22jϵ2

⎤⎦ = Z(2).

Box V.

transformations A1, A2*, A3 and A4, where A2* is the ReLU non-
linearity, do not preserve the structure of the data described neither
by the Euclidean metric nor by the cosing metric.

Proof. We divide this proposition in two parts and we prove each
one by counterexample.

Let us focus first on the non-preservation of the Euclidean
metric. Let us consider the case in which X(1) is a vector such that
X(1)

j = −
3

√
2
, ∀j, 1 ≤ j ≤ O, X(2) is another vector such that

X(2)
= −

1
√
2
, ∀j, 1 ≤ j ≤ O, L = O, and W = I, where I is the

identity matrix.
The Euclidean distance between the vectors X(1) and X(2) is:

DE
(
X(1),X(2))

=

√ O∑
j=1

(
−

3
√
2

+
1

√
2

)2

=
√
2L.

Let us now apply the transformation fA1:A4 to the vectors X(1) and
X(2). Then we get the equations in Box IV.

Thus, fA1:A4
(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(1). Now, the

Euclidean distance between the vectors fA1:A4
(
X(1)

)
and fA1:A4

(
X(2)

)
is:

DE
(
Z(1), Z(1))

= 0.

Therefore the transformations from A1 to A4 do not preserve the
structure of the data described by the Euclideanmetric. This proves
the first part of the proposition.

Let us focus now on the non-preservation of the cosine metric.
Let us consider the case inwhichX(1) is a vector such thatX(1)

j =
1
2j
,

∀j, 1 ≤ j ≤ O, X(2) is another vector such that X(2)
= −X(1),

L = O = 2, and W = I, where I is the identity matrix.
The cosine distance between the vectors X(1) and X(2) is:

DC
(
X(1),X(2))

= 1 −

⏐⏐⏐⏐⏐⏐⏐⏐
∑O

j=1 X
(1)
j X(2)

j√∑O
j=1

(
X(1)

j

)2√∑O
j=1

(
X(2)

j

)2
⏐⏐⏐⏐⏐⏐⏐⏐ = 0.

Let us now apply the transformation fA1:A4 to the vectors X(1) and
X(2). Then we get the equations in Box V.

Thus, fA1:A4
(
X(1)

)
= Z(1) and fA1:A4

(
X(2)

)
= Z(2), where Z(1)

=[√
1 + 16ϵ2

√
2 + 20ϵ2

√
1 + 4ϵ2

√
2 + 20ϵ2

]
andZ(2)

=

[√
1 + 16ϵ2

√
5 + 32ϵ2

2
√
1 + 4ϵ2

√
5 + 32ϵ2

]
.

Now, the cosine distance between the vectors fA1:A4
(
X(1)

)
and

fA1:A4
(
X(2)

)
is:

DC
(
Z(1), Z(2))

̸= 0.

Therefore the transformations from A1 to A4 do not preserve the
structure of the data described by the cosine metric. This proves
the second part of the proposition. ■

A.10. Theorem 5

Theorem 5. Let X(1)
∈ RO be a point in the original space RO and let

Rek
X(1) be a representation filter centered on X(1), that is, Rek

X(1)

(
X(1)

)
=

0. Let us now consider a point X(2)
∈ RO within the same representa-

tion cone, that is, a point such that Rek
X(1)

(
X(2)

)
≤ ϵ for an arbitrarily

small ϵ ∈ R, ϵ > 0.
Let us assume that: (i) points X(i)

∈ RO distribute in a limited
region of space bounded by a hyper-sphere of radiusM; and, (ii) points
X(i)

∈ RO distribute uniformly in this limited region of space.
Then, given that Rek

X(1)

(
X(2)

)
≤ ϵ, it follows:

Oδ(M
m

)O−1 ·
Γ
( O+1

2

)
Γ
( O+2

2

) ≤ P
(
DE
[
Z(1), Z(2)]

≤ δ
)

≤
Oδ

m
·
Γ
( O+1

2

)
Γ
( O+2

2

) ,
where δ ∈ R, δ > 0 defines the neighborhood of X(1), m is the distance
of X(1) from the origin, and Γ (·) is the gamma function.

Proof. Let us consider X(1)
∈ RO and let us consider its neighbor-

hood as the set of pointsX(i) within a hyper-sphere of radius δ, that
is, DE

[
X(1),X(i)

]
≤ δ.

Let us consider now the representation filter Rek
X(1) and let m be

the distance of X(1) from the origin. We first define the minimal
representation filter Rek

X(1) as the hyper-cone of heightm and radius
δ inscribing the neighborhood of X(1). We also define a maximal
representation filter Rek

X(1) as the hyper-cone of height M and, by
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Fig. A.9. Schema of the data point X(1) , the neighborhood of X(1) , and the represen-
tation filter Rek

X(1) in two-dimensional space.

trigonometry, radius ∆ = M ·
δ
m . For illustration, refer to the

schema in Fig. A.9, where we represented this setup in the case
O = 2.

Let us now consider the point X(2) sampled within the rep-
resentation filter Rek

X(1) . Since the sampling probability is uniform
within the representation filter Rek

X(1) , we can evaluate the proba-
bility of X(2) to fall in the neighborhood of X(1) as the volume of
the neighborhood of X(1) normalized by the total volume of the
representation filter Rek

X(1) .
Let us consider the neighborhood of X(1). Its volume can be

computed as:

Vsphere(O, δ) = VOδ
O,

where VO is the following function:

Vn =
π

n
2

Γ
( n
2 + 1

) .
Let us now consider the representation filter Rek

X(1) . We bound
this volume considering the minimal and maximal hyper-cone
described above. The volume of the hyper-cone depends on the
volume of the lower-dimensional hyper-sphere in the base (Ball,
1997) and it can be computed as:

1
O

· m · Vsphere(O − 1, δ) ≤ Vcone(O, δ, l)

≤
1
O

· M · Vsphere(O − 1, ∆)

1
O

· m · VO−1 · δO−1
≤ Vcone(O, δ, l)

≤
1
O

· M · VO−1 ·

(
M ·

δ

m

)O−1

.

Let us now consider the ratio of the volume of the hyper-sphere
and the volume of the hyper-cone:

VOδ
O

1
O · M · VO−1 ·

(
M ·

δ
m

)O−1 ≤
Vsphere(O, δ)
Vcone(O, δ, l)

≤
VOδ

O

1
O · m · VO−1 · δO−1

OδmO−1

MO ·
Γ
( O+1

2

)
Γ
( O+2

2

) ≤
Vsphere(O, δ)
Vcone(O, δ, l)

≤
Oδ

m
·
Γ
( O+1

2

)
Γ
( O+2

2

) .
Thus, since we assumed that Rek

X(1)

(
X(2)

)
≤ ϵ, it follows that

Oδ(
M
m

)O−1 ·
Γ

(
O+1
2

)
Γ

(
O+2
2

) ≤ P
(
DE
[
Z(1), Z(2)

]
≤ δ

)
≤

Oδ
m ·

Γ

(
O+1
2

)
Γ

(
O+2
2

) . ■
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