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Human action recognition is one of the most challenging tasks in computer vision. Most of the existing
works in human action recognition are limited to single-label classification. A real-world video stream,
however, often contains multiple human actions. Such a video stream is usually annotated collectively
with a set of relevant human action labels, which leads to a multi-label learning problem. Furthermore,
there are a great number of meaningful human actions in reality but it would be extremely difficult, if
not impossible, to collect/annotate sufficient video clips regarding all these human actions for training
a supervised learning model. In this paper, we formulate a real-world human action recognition
task as a multi-label zero-shot learning problem. To address this problem, a joint latent ranking
embedding framework is proposed. Our framework holistically tackles the issue of unknown temporal
boundaries between different actions within a video clip for multi-label learning and exploits the
side information regarding the semantic relationship between different human actions for zero-
shot learning. Specifically, our framework consists of two component neural networks for visual
and semantic embedding respectively. Thus, multi-label zero-shot recognition is done by measuring
relatedness scores of concerned action labels to a test video clip in the joint latent visual and semantic
embedding spaces. We evaluate our framework in different settings, including a novel data split
scheme designed especially for evaluating multi-label zero-shot learning. The experimental results
on two weakly annotated multi-label human action datasets (i.e. Breakfast and Charades) demonstrate
the effectiveness of our framework.

Crown Copyright © 2019 Published by Elsevier Ltd. All rights reserved.

Keywords:

Human action recognition
Multi-label learning

Zero-shot learning

Joint latent ranking embedding
Weakly supervised learning

1. Introduction

As one of the most challenging tasks in computer vision,
human action recognition refers to automatic recognizing human
actions conveyed in a video clip. In last two decades, human
action recognition has been extensively studied. As there are
many different human actions in reality, this task is generally
formulated as a multi-class classification problem. To train a
multi-class classifier for human action recognition, a great num-
ber of examples for each single action are required in the current
setting. To collect such training examples, one needs to manually
trim a video stream to ensure that there is only one human action
appearing in a trimmed video episode. This annotation process
is laborious and time-consuming and there is hence no large-
scale dataset with “fine-grained” annotation for human action
recognition. In contrast to ImageNet (Deng et al., 2009) for object
recognition, where it consists of a total of 3.2 million cleanly
labelled images spreading over 5247 categories, there are much
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fewer annotated video clips involving only a small number of
human actions. For instance, HMDB51 and UCF101 are among
the most commonly used benchmark datasets in human action
recognition, where there are 6676 and 13,320 instances of only
51 and 101 different human actions, respectively. The limita-
tion of human action datasets in such a scale has become an
obstacle in developing a large-scale human action recognition
system.

In a real scenario, a video clip often conveys multiple hu-
man actions corresponding to different concepts. Hence, a set of
multiple action labels have to be used to characterize its com-
plete semantics underlying human actions conveyed in this video
clip. For example, video clips on YouTube are usually uploaded
by users along with some descriptive terms that can be used
to infer the human actions conveyed in those video clips. In
this circumstance, descriptive terms may be viewed as a set of
coherent labels that collectively characterize the semantics at
a global level. Recently, a very large multi-label video dataset
YouTube-8M (Abu-El-Haija et al., 2016) has been collected by
Google Research. Although the dataset is not restricted to hu-
man action video clips, it paves a new way for various video
analyses including human action recognition. One of essential
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video analysis problems on such a dataset may be formulated
as multi-label learning that predicts a set of labels associated
to a given instance or a set of relatedness scores corresponding
to the candidate labels that could characterize this instance. In
multi-label learning, a training example often consists of an input
instance and a set of labels associated with this instance at a
global level (no need of explicitly associating each of those labels
to a relevant object within this instance). While multi-label data
are common in many domains and multi-label classification has
been studied under different applications (Zhang & Zhou, 2014),
e.g., semantic image tagging, text categorization and gene func-
tionality prediction, only few works are pertinent to multi-label
human action recognition in literature due to a lack of human
action datasets annotated with multiple class labels. To fill in
this gap, a dataset dubbed Charades (Sigurdsson et al., 2016) was
collected especially for multi-label human action recognition and
made publicly available very recently. In addition, other datasets
collected for different tasks were also considered to be used in
multi-label human action recognition. Thus, such datasets pro-
vide a proper test bed for multi-label human action recognition
studies.

Multi-label human action recognition often has to work on
weakly labelled video data, i.e., the training data are annotated
at the video level without exhaustively trimming and annotating
multiple action episodes. While it is easier to collect such video
clips associated with a set of labels at a global level than those
with “fine-grained” annotation, it would be still very challenging
to collect all the training examples due to the existence of many
different human actions. Zero-shot learning (ZSL) provides an
alternative solution to alleviate this problem. ZSL aims to recog-
nize the instances belonging to novel classes which are not seen
during training. It has been formally shown that under certain
conditions, a ZSL system trained on a dataset of finite classes
could be used to predict infinite number of classes unseen during
the learning (Zhang, Acharyya, Liu, and Gong, 2016). Under the
ZSL framework, we merely need to collect and annotate training
examples for a moderate set of training classes and expect that a
large number of novel classes can be recognized via exploiting the
semantic relationship between different human actions. To this
end, a ZSL algorithm needs to transfer the knowledge regarding
the relations between visual features and class label semantics
learned from known or training classes to unseen or test classes.
The knowledge transfer is enabled by modelling the semantic
representations of different classes, which can be easily obtained
from side information, e.g., descriptive texts, with a much less
effort than collecting and annotating visual data. Nevertheless,
most of the existing ZSL methods were proposed to tackle single-
label ZSL problems but multi-label ZSL problems are much more
complicated, leading to additional challenge that do not exist
in single-label ZSL. Although some of single-label ZSL methods
might be extensible to multi-label scenarios, their effectiveness of
different ZSL algorithms have not been extensively investigated
in the multi-label learning scenarios. To the best of our knowl-
edge, there exists no work in multi-label zero-shot human action
recognition.

In this paper, we address the multi-label ZSL issues in the
context of human action recognition. In our problem, the train-
ing video data are weakly labelled so that the exact temporal-
spatial locations of multiple human actions in a video clip remain
unknown. In addition, training examples consisting of visual in-
stances and their corresponding label sets of multiple labels are
only available for those associated with training/known labels,
a subset of the action label collection considered in the recog-
nition stage. Thus, the nature of multi-label zero-shot human
action recognition poses several challenges that do not exist in
static data and single-label ZSL. To tackle all the challenges in a

holistic way, we propose a novel joint latent ranking embedding
framework. The framework aims to learn a joint latent rank-
ing embedding from visual and semantic domains. By using the
learned joint latent ranking embedding, any visual instances and
any action labels can be mapped into the joint latent visual and
semantic embedding spaces where positive connections between
visual instances and action labels rank ahead of negative ones.
Thus, any human actions can be recognized regardless of known
or unseen actions during learning. Our framework consists of two
component models: visual and semantic models. The visual model
learns mapping a visual instance into the latent visual embedding
space, while the semantic model learns mapping action labels
into the latent semantic embedding space. The visual and the
semantic models are tightly coupled to learn a proper ranking
that works in the joint latent visual and semantic embedding
spaces with an alternate learning algorithm on training examples
annotated with only known action labels. In the test, multi-label
zero-shot recognition is done by measuring relatedness scores of
action labels to a test visual clip in the joint latent visual and
semantic embedding spaces.

Our main contributions in this paper are summarized as fol-
lows:

e By considering real scenarios, we formulate general human
action recognition as a multi-label zero-shot learning prob-
lem . To the best of our knowledge, our work presented
in this paper is among the first attempts in studying hu-
man action recognition from a multi-label zero-shot learn-
ing perspective, which tackles several technical challenges
pertaining to this problem in a holistic way.

e To address the multi-label zero-shot issues arising from
weakly annotated data for human action recognition, we
propose a novel joint latent ranking embedding framework
consisting of visual and semantic embedding models. To
train two embedding models effectively, we come up with
a learning algorithm that alternately optimizes the param-
eters in two embedding models via minimizing the proper
rank loss functions.

e To test the performance of our proposed framework, we
conduct a thorough evaluation via a comparative study on
two benchmark multi-label human action datasets, Breakfast
and Charades, with various evaluation metrics and differ-
ent settings including a novel data split protocol simulat-
ing a real scenario of multi-label zero-shot human action
recognition.

The rest of this paper is organized as follows. Section 2 re-
views related works. Section 3 presents our framework for multi-
label zero-shot human action recognition. Section 4 describes our
experimental settings, and Section 5 reports the experimental
results. The last section draws conclusions.

2. Related work

In this section, we review the existing works relating to multi-
label human action recognition, especially for those applicable to
multi-label zero-shot learning scenarios, and point out the limita-
tions of the existing works. We first overview existing multi-label
classification methods and then focus on the existing works in
multi-label ZSL learning despite the fact that none of such multi-
label ZSL methods has been applied to human action recognition.
Finally, semantic representations required by any ZSL methods
are briefly reviewed.
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2.1. Multi-label learning

In a real scenario, semantics underlying real-world data is of-
ten complex and has to be characterized with multiple
labels, e.g., web videos. In a video clip pertaining to human
actions, multiple actions could happen simultaneously, e.g., sit-
ting, eating and listening. In this scenario, no episode in such
a video clip can be characterized by a single action label and a
set of labels hence have to be used collectively to describe this
video clip. Even though a video clip can be divided into several
episodes corresponding to different human actions, the segmen-
tation and annotation process could be difficult, tedious, laborious
and time-consuming. In particular, semantic image segmentation
and human action detection in video streams remain unsolved in
general. As a result, multi-label learning is often formulated as a
weakly supervised learning task that predicts a set of labels asso-
ciated with an instance but does not address the issue in assigning
each label in the set to a specific object within this instance.
To tackle a weakly supervised multi-label learning problem, two
different representation methods are used to characterize input
data: instance-level and object-level representations. An instance-
level representation is a global representation of an instance,
e.g., a video clip or an image, without considering objects appear-
ing in this instance, while an object-level representation is a local
representation that describes individual objects extracted from
an instance, e.g., semantically meaningful episodes/patches in
the video/image. Depending on the representation of input data,
multi-label learning methods can be divided into two categories.

In multi-label learning, most of the existing methods (Guil-
laumin, Mensink, Verbeek, & Schmid, 2009; Nam, Kim, Mencia,
Gurevych, & Fiirnkranz, 2014; Wang, Jia, and Breckon, 2019;
Wang et al.,, 2016; Zhang, Gong, and Shah, 2016) work on an
instance-based representation, a single feature vector of an in-
stance. Recently, FastOTag (Zhang, Gong, and Shah, 2016) was
proposed for multi-label image tagging by learning a mapping
from visual to label space. An image containing multiple objects
is represented by one aggregated visual representation. Alterna-
tively, TagProp (Guillaumin et al., 2009) uses an adapted nearest
neighbour model for multi-label learning in visual space where
each image of multiple objects is also represented by one feature
vector at the instance level. Wang et al. (2016) use a convolu-
tional neural network (CNN) directly working on raw images of
multiple objects to learn image-level deep visual representations
for multi-label classification. Nam et al. (2014) use a deep neural
network with a rank loss in learning for large-scale multi-label
text classification where an input document is represented with
a single feature vector. Although representing one instance at the
global level is straightforward and convenient, it might neglect
the intrinsic relationship between multiple objects within an
instance. Thus, an instance-level representation might result in a
catastrophic information loss, especially for long-term dependent
and complex video data.

To overcome the weakness in neglecting the information re-
garding the intrinsic relationship between objects within an in-
stance, efforts have been made to exploit such information in
previous works. Despite being difficult, the segmentation of mul-
tiple objects within an instance turns out to be beneficial to
multi-label learning. One framework named multi-instance multi-
label learning (MIML) (Zhou & Zhang, 2007) demonstrates that
multi-label learning can be fulfilled effectively if multiple objects
within an instance have been explicitly separated or segmented
even if no label is explicitly assigned to each of multiple objects
within an instance during learning. In real applications, however,
automatic semantic segmentation of objects in an instance is
also challenging, and a manual segmentation process is labori-
ous and time-consuming. Moreover, some recent works tend to

explore object-based representations without using any explicit
semantic object segmentation techniques, which seeks a synergy
between the MIML and object-level representations. Gu et al.
(2016) address this weakly supervised issue in multi-label human
action detection with a two-stage solution. First, a set of potential
objects or spatial-temporal volumes are generated and selected
from a video instance with a set of handcrafted rules. Then
the problem is transformed into a MIML problem which can be
solved by those traditional multi-label learning algorithms under
the MIML framework. Similar ideas were also explored by Tang,
Wang, Huang, Bai, and Liu (2017) and Wei et al. (2016) for multi-
label image classification. However, the extraction of true positive
objects from the original visual instance is a very challenging yet
non-trivial task, which critically determines the multi-label learn-
ing performance. To extract all the meaningful objects within an
instance, a lot of candidate proposals have to be considered so
that it might suffer from a high computational burden. Instead
of using the MIML, Cabral, De la Torre, Costeira, and Bernardino
(2015) attempt to explore the information regarding multiple ob-
jects in instances via a matrix completion method. Their method
works on the assumption that an instance representation may be
expressed by a linear combination of hidden representations of
objects appearing in this instance. Experimental results reported
by Cabral et al. (2015) demonstrate the effectiveness of this
method via an instance-level bag-of-words image representation.
However, this idea does not seem applicable to other kinds of
visual representations, such as those popular yet powerful deep
representations.

2.2. Multi-label zero-shot learning

Zero-shot learning (ZSL) has attracted much attention in re-
cent years and provides a promising technique for recognizing
a large number of classes without the need of the training data
concerning all the classes. Very recently, Zhang, Acharyya, Liu,
and Gong (2016) have formally shown that it is feasible to predict
a collection of infinite unseen labels with a classifier learned on
training data concerning only a number of labels in this collec-
tion or a subset of this collection, where multi-label ZSL is a
special case in this so-called “infinite-label learning” paradigm.
According to a ZSL taxonomy (Wang & Chen, 2017b), existing
ZSL approaches are divided into three categories, namely, direct
mapping (Akata, Reed, Walter, Lee, & Schiele, 2015; Fu & Huang,
2010; Lampert, Nickisch, & Harmeling, 2014; Xian et al., 2016;
Yu, Ji, Guo, and Pang, 2018), model parameter transfer (Chang-
pinyo, Chao, Gong, & Sha, 2016; Mensink, Gavves, & Snoek, 2014)
and joint latent space learning (Changpinyo, Chao, & Sha, 2017;
Frome et al., 2013; Lei Ba, Swersky, Fidler, et al.,, 2015; Wang &
Chen, 2017b; Yu, Ji, Guo, and Zhang, 2018; Zhang & Saligrama,
2015, 2016; Zhang, Xiang, & Gong, 2017). More recently, syn-
thetic feature generation methods based on general adversarial
networks (GANs) (Goodfellow et al., 2014) have become prevalent
and achieved state-of-the-art performance in zero-shot learn-
ing (Huang, Wang, Yu, & Wang, 2019; Xian, Lorenz, Schiele, &
Akata, 2018). Although most existing works focus on single-label
ZSL, efforts have been made to address more complex multi-label
ZSL issues (Fu, Yang, Hospedales, Xiang, & Gong, 2014; Lee, Fang,
Yeh, & Frank Wang, 2018; Mensink et al., 2014; Nam, Mencia,
Kim, & Fiirnkranz, 2015; Ren, Jin, Lin, Fang, & Yuille, 2017; Zhang,
Gong, and Shah, 2016).

For direct mapping, it needs to learn a mapping directly from
visual to semantic space for zero-shot recognition on the se-
mantic space, which poses a challenge to multi-label ZSL. In
single-label ZSL, a training example provides a visual-semantic
representation pair used to learn a one-to-one direct mapping.
In multi-label ZSL, however, one instance has to be associated
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with a set of multiple labels and the number of labels associated
with different instances are various. As a label is represented with
a semantic feature vector, e.g., a vector of attributes or a word
vector, in a semantic space, it is no longer straightforward to learn
a direct mapping from visual to semantic space in the context of
multi-label ZSL. How to model complex semantics underlying a
set of labels associated with an instance becomes a central issue
in multi-label ZSL. To tackle this issue, most of existing works (Fu
et al.,, 2014; Sandouk & Chen, 2016b) make use of the composition
properties of semantic representations such as word vectors by
using the average of semantic representations of multiple labels
to a collective semantic representation for a set of labels as-
sociated with the instance. Thus, a training example is formed
with a pair of an instance-level visual representation and its
corresponding collective semantic representation, which enables
one to learning a direct mapping for multi-label ZSL. Appar-
ently, such a collective representation cannot avoid information
loss even though a contextualized semantic representation (San-
douk & Chen, 2016b) was used. In particular, the multi-label ZSL
method proposed by Fu et al. (2014) is subject to a fundamental
limitation; their method has to take into account all the possible
combinations of different unseen labels in a pre-fixed unseen
label collection. Thus, the computational complexity of their algo-
rithm grows exponentially with respect to the number of unseen
labels and hence can cope with only a very small number of
pre-fixed unseen labels (e.g., up to eight in their experiments).
To alleviate the information loss problem in generating a collec-
tive semantic representation, FastOTag (Zhang, Gong, and Shah,
2016) introduces an alternative solution to collective semantic
representations. In their method, each visual instance is mapped
into a “principal direction” in the semantic space based on an
assumption that there is always such a direction for any multi-
labelled instances in a semantic space, e.g., word vector space,
and all the labels associated with this instance always rank ahead
of irrelevant labels. In other words, a hyperplane perpendicular
to this direction can always be found to separate the relevant
labels from the irrelevant ones for any multi-labelled instance.
While this assumption holds for those datasets used in their
zero-shot image tagging experiments (Zhang, Gong, and Shah,
2016), it remains unclear for other image datasets and different
domains, e.g., human action recognition. From an alternative per-
spective, Ren et al. (2017) suggest using an object-level visual
presentation under the direct mapping framework for multi-label
zero-shot object recognition. Before multi-label learning takes
place, an image thus has to be semantically segmented into
meaningful subregions and each subregion can be characterized
by one label. As a result, their solution is actually a special
case of the MIML (Zhou & Zhang, 2007) but heavily relies on
sophisticated semantic segmentation techniques that remain un-
available up to date. Furthermore, this method is not extensible
to sequential data such as video clips.

Like the works in extending direct mapping to multi-label ZSL,
the model parameter transfer idea is also adapted for multi-label
ZSL, leading to COSTA (Mensink et al., 2014). COSTA aims to
establish a model for each unseen label via a linear weighted
combination of known-label models. The known-label models are
trained independently by means of a one-vs-rest binary classifier,
e.g., support vector machines (SVMs). The combination coeffi-
cients are determined by the co-occurrence of multiple labels
derived from either annotation of datasets in hand or external
web sources. In COSTA, however, the known-label models are
trained independently without considering the relationship and
coherence among those labels that together describe an instance.
Then, COSTA only uses label co-occurrences to model the relat-
edness between a pair of labels but neglects the semantics of
an individual label itself. So far, this idea has been tested only

on static images in the context of multi-label zero-shot object
recognition.

The joint latent space learning methodology was proposed for
multimedia information retrieval and multi-label related learning
and led to favourable results in real-world applications (Gong,
Ke, Isard, & Lazebnik, 2014; Karpathy & Fei-Fei, 2015; Weston,
Bengio, & Usunier, 2010). The core idea underlying this method-
ology is learning a joint latent embedding from both visual and
semantic domains to narrow the semantic gap so that a task
can be done effectively in the latent embedding space(s). More
recently, this general idea has also been explored in single-label
ZSL (Changpinyo et al., 2017; Frome et al., 2013; Lei Ba et al,,
2015; Wang & Chen, 2017b; Yu, Ji, Guo, and Zhang, 2018; Zhang
& Saligrama, 2015, 2016; Zhang et al.,, 2017). Empirical studies
suggest that those joint latent space learning methods often out-
perform most of existing direct mapping and model parameter
transfer methods on several benchmark datasets designed for
single-label ZSL (Changpinyo et al.,, 2017; Frome et al., 2013;
Lei Ba et al., 2015; Wang & Chen, 2017b; Xian, Schiele, & Akata,
2017; Zhang & Saligrama, 2015, 2016; Zhang et al., 2017). In
this paper, we propose a novel approach to multi-label zero-
shot human action recognition by exploring the joint latent space
learning idea to holistically tackle those challenges described in
Section 1.

2.3. Semantic representation

Regardless of different ZSL scenarios, modelling semantics un-
derlying a collection of labels and their relatedness plays a critical
role in knowledge transfer required by ZSL. Miscellaneous meth-
ods in semantics modelling and representations have been de-
veloped from different perspectives including attributes of labels,
label embedding, co-occurrence of labels and concept embedding.

Attributes of labels are a generic semantic representation
where a label is characterized by a list of attributes common
to all the labels (Lampert et al., 2014). Label embedding refers
to embedding labels onto a semantic space where the semantic
relatedness of labels are modelled (Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013). Label embedding is often carried out via
learning on external textural resources. For example, the famous
Word2Vec semantic embedding is obtained by training a skip-
gram neural network on the large-scale corpora, e.g., Google
News dataset (Mikolov et al., 2013). Such semantic representa-
tions are widely used in ZSL (Fu et al., 2014; Ren et al., 2017,
Wang & Chen, 2017b; Zhang, Gong, and Shah, 2016). Unlike label
embedding obtained with external resources , co-occurrence of
labels is yet another way to capture the relatedness between
different labels (e.g., Nam et al, 2015). Alternatively, the co-
occurrence information on different class labels can also be ex-
tracted from external resources for ZSL (Mensink et al,, 2014).
In particular, co-occurrence of labels allows for capturing the
relatedness between labels jointly used to describe an instance.
The label co-occurrence information may be incorporated into
learning semantic embedding for a given dataset (e.g., Nam
et al., 2015). In concept embedding, the semantic meaning of a
label is assumed to be polysemous depending on different labels
(together treated its context of this target label) jointly used to
describe an instance. Hence, the semantic meaning of a label
under a specific context frames a concept. As a result, concept
embedding (Sandouk & Chen, 2016a) can be viewed as contextu-
alized label embedding where a label may have multiple semantic
representations in different contexts. The concept embedding
seems specific and is only applicable to direct mapping for multi-
label ZSL (Sandouk & Chen, 2016b). Our proposed framework
for multi-label zero-shot human action is generic so that all the
semantic representations apart from the concept embedding may
be used directly in our framework.
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Fig. 1. Our multi-label zero-shot human action recognition framework. This framework shown in the left box is composed of two component models: visual and
semantic model highlighted with grey and red colours, and both models are trained jointly with an alternative learning algorithm for the joint latent ranking
embedding learning (c.f. Section 3.2). After the learning is completed, the trained visual and semantic models work together for multi-label zero-shot recognition via
ranking the relatedness of known and unseen action labels to a test video clip (c.f. Section 3.3), as shown in the right box. Action labels marked with brown colour
are training classes or known labels during learning, while action labels marked with blue colour are test classes or unseen labels during learning. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Model description

In this section, we present a novel framework for multi-
label zero-shot human action recognition. First, we present an
overview of the proposed framework along with our motiva-
tion and justification. Next, we present the joint latent ranking
embedding learning method including the rank loss functions
and an alternate learning algorithm especially developed for our
proposed architecture. Finally, we specify a procedure on how
to apply a trained joint latent ranking embedding model to
multi-label zero-shot human action recognition in test.

3.1. Overview

Our proposed framework aims at multi-label zero-shot hu-
man action recognition. We formulate this problem as learning
a mapping ¢ : X — Y, where x is a visual input, e.g., a set
of segment-level visual feature vectors extracted from a video
clip, and y € RI°! is a list of label-relatedness scores for x with
respect to a action label collection, C = {1,...,|C|}, where C
is further divided into two mutually exclusive label subsets, CT"
and CY, corresponding to known (training) and unseen actions;
ie,C"uUCY =Cand C" NCY = ¢. During learning the mapping
¢, only training examples of labels in C™ are available. However,
the learned mapping ¢ is used to predict any actions appearing
in a video clip no matter whether they are known actions in C™
or unseen actions in CY,

To tackle the problem formulated above, we propose a joint
latent ranking embedding framework. Motivated by the joint
latent space learning idea used in ZSL (Frome et al., 2013; Lei Ba
et al., 2015; Wang & Chen, 2017b; Zhang & Saligrama, 2015, 2016;
Zhang et al., 2017), we would tackle the knowledge transfer issue

in the joint latent embedding spaces where the original visual
and semantic representations are mapped into. By embedding
visual and semantic representations into the joint latent em-
bedding spaces, we expect that semantic gap can be narrowed
considerably and the semantic relatedness of known and unseen
labels may be effectively explored and exploited in zero-shot
recognition. Thus, our framework consists of two component
models: visual and semantic models used to learn latent visual
and semantic embedding, respectively. Two component models
are tightly coupled to learn a joint latent ranking embedding for
knowledge transfer, as illustrated in the left box of Fig. 1.

For visual embedding, we encounter two major technical is-
sues due to the nature of weakly annotated data: (a) for a visual
input, it remains unknown where an episode conveying an action,
and (b) it remains unclear which of those action labels describing
a video clip is associated with a specific video episode. Never-
theless, a video clip is an ordered sequence of frames and we
could explore the temporal coherence underlying a video clip to
tackle two aforementioned technical issues. Motivated by recent
works in video classification and activity recognition (Donahue
et al,, 2015; Ma, Chen, Kira, & AlRegib, 2019; Yue-Hei Ng et al.,
2015), we employ a long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997) recurrent neural network layer to capture
temporal coherence underlying an action episode. Thus, the LSTM
layer is first used to process a sequence of visual representations
extracted from video segments. With the memorizing and forget-
ting mechanism of LSTM units, we expect that the LSTM layer
explores the temporal structure of human actions conveyed in a
video sequence (Wang, Yuan, and Wang, 2019); the LSTM units
would memorize the input segments until parsing an episode
regarding a human action is completed and then forget all the
previous input segments when an episode conveying another
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Table 1
Nomenclature.

Notation Description

D, Dr Training, test datasets

Il 11111 Cardinality of a set, L; norm of a vector

C, CT, cY  Label collection, training and unseen class label subsets

EY, ES Visual and semantic embedding space

Xit Visual representation for the tth segment of the ith example

Xi Collection of all the segment-level visual representations of
the ith example

Sc Semantic representation for the cth label

Y Binary target label matrix of training dataset

yi Binary target label set of the ith example, i.e., the ith column
of matrix Y

y© Binary indicator vector of the cth label appearing examples,
i.e., the cth row of matrix Y

EY, e/ Visual embedding matrix and the column vector for ith video
clip

E’, e} Semantic embedding matrix and the column vector for the cth
label

dy, ds, d. Dimensions of visual, semantic, latent embedding space

0; Relatedness scores between the ith example and all the
candidate labels in visual model

o¢ Relatedness scores between the cth label and all the training
examples in semantic model

b, O, Visual embedding function and parameters

@5, O Semantic embedding function and parameters

¢ ¢ = {¢,. ¢}, mapping function for multi-label zero-shot
recognition

C(X), L(X) The ground-truth label set of test instance X, the ranking list of

all the labels predicted for X in terms of the relatedness scores

D¢, L€ Set of test instances of which ground-truth label sets include
the cth label, the ranking list of all the test instances in terms
of the relatedness scores for the cth label

action starts. Thus, an implicit saliency detection is carried out
where no action episode boundaries are explicitly specified. For
visual embedding, we further employ two fully-connected layers,
dense layer of rectified linear (ReLu) units (Nair & Hinton, 2010)
and visual embedding layer of linear units, to capture salient
features on the temporal coherence representations yielded by
the LSTM layer. While this specific visual model shown in the
left box of Fig. 1 is used in our experiments, its capacity can be
increased by adding more hidden units and/or layers if necessary.
The score and average pooling layers above the visual embedding
layer are used for joint latent ranking embedding learning as
presented in Section 3.2. Thus, the visual model is carried out by
a deep network of heterogeneous layers.

For semantic embedding, we employ a three-layer fully-
connected neural network, the input layer, the hidden layer of
ReLu units and the semantic embedding layer of linear units, to
carry out the semantic model, as shown in the left box of Fig. 1.
This learning model is capable of capturing the intricate semantic
relatedness between different actions in a label collection of a
moderate size, e.g. those datasets used in our experiments. If nec-
essary, its capacity can be increased by adding more hidden units
and/or layers. As a result, the neural network is fed with a specific
semantic representation of action labels, e.g., word vectors and
subsequently map them into the semantic embedding layer via
a hidden layer. Likewise, the score and average pooling layers
above the semantic embedding layer are used for joint latent
ranking embedding learning. To explore the semantic relatedness
between different labels in bridging the semantic gap between
visual and semantic space, semantic embedding learning needs
to automatically exploit the information carried in training data,
e.g., frequency of label co-occurrence in a training dataset.

During the joint latent ranking embedding learning, the visual
and semantic models are tightly coupled to learn a ranking cri-
terion for the joint latent visual and semantic embedding spaces.
This ranking criterion ensures that the relatedness scores of those

labels associated with a visual instance are higher than those for
other labels irrelevant to this instance, and the relatedness scores
of those visual instances relevant to an action label are higher
than those of other visual instances irrelevant to this label. For
learning, we propose an algorithm working alternately on two
models for parameter estimation by promoting the correct rank-
ing based on training examples in known classes. During training,
the visual model learns the visual embedding of a video instance
such that those labels relevant to this instance rank ahead of
other irrelevant ones in terms of the relatedness scores estimated
on the semantic latent space, E°. Reciprocally, the semantic model
learns the semantic embedding of action labels such that the
relevant visual instances rank higher than the irrelevant ones
in terms of relatedness scores calculated in the visual latent
space, EV. Once the learning is completed, the trained joint latent
ranking embedding model can be applied to a test video clip
for human action recognition. As a result, the relatedness scores
corresponding to all the known and unseen action labels in a label
collection are achieved by using both visual and semantic models
(c.f. Section 3.3), as illustrated in the right box of Fig. 1.

3.2. Joint latent ranking embedding learning

Now we present the joint latent ranking embedding learning
in our proposed framework. To facilitate our presentation, we
summarize the notations used in this paper in Table 1.

3.2.1. General description

Given a training set of weakly annotated video clips, D =
{x,',y,-}l‘.f{, where x; is the visual input and y; € {+1, =1}/ is
its binary target label vector in the ith example: +1/—1 element
indicates the presence/absence of a specific action belonging to
C™ in Xi.

For a video instance x; in D, we divide it evenly into T
segments,! segment-level visual representations are extracted,
which are collectively denoted by {x;i1,Xi>, ..., X;r}. At the tth
time step, the segment representation X;; is fed into a hidden
LSTM layer and processed by this LSTM layer and two subsequent
fully-connected layers of linear activation functions (c.f. Fig. 1).
The latent visual embedding of the tth segment, e}, is obtained
as follows:

e = ¢u(Xi; O,). (M

Here, ¢, is the visual embedding function implemented by the
parametric visual model and ©, is a collective notation of all the
parameters in this model, including weights and biases involved
in this deep network.

Likewise, as depicted in Fig. 1, the cth label in a label collection
is first represented by a specific semantic representation, s, that
is fed to the semantic embedding function, ¢, implemented by
the parametric semantic model of which all the parameters are
denoted by ©; collectively. Thus, the semantic embedding, e}, of
the cth label is

ei = ¢s(sc; Os). (2)

A score layer is employed in each of the visual and the se-
mantic models. In the visual model, the score layer takes the
outputs of the visual embedding layer at all the time steps to yield
the relatedness scores regarding all the labels for x; with a dot
product between the visual embedding of each segment in x; and
the semantic embedding of all the labels in a label collection:

0y = (e:’)t? $>’ (3)

Ta segment refers to a volume of multiple consecutive frames.
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where E5 € R%xIC"I js a collective notation of the semantic
embedding of all the labels. Here, @,B = a'B is a vectorial
notation of the dot product between a vector, a, and each column
of a matrix, B. Then the relatedness scores between this video
instance and different labels are achieved by averaging over the
scores on all the segments of this video instance:

1
0;i = ?;oit- (4)

Likewise, the relatedness scores between different video instances
and the cth label in the label collection, o€ € RIP!*1 is estimated
in the same manner as done in the visual model based on the
visual embedding of those video instances and the semantic
embedding of the cth label. Thus, the ith element of o, the
relatedness score regarding the ith visual instance is

T

1
of = T Z(e};,ei). (5)
t=1
For the joint latent ranking embedding learning, we need to
optimize the parameters in the visual and the semantic models
with training data and proper rank loss functions (the technical
details are presented in Section 3.2.2). Assume that [,(-,-) and
Is(-, -) are two loss functions with respect to the visual and the
semantic model, the joint latent ranking embedding learning is
boiled down to simultaneously solving the following optimization
problems:

|D|

O = argming, Z l,(0, i), (6)
i=1

O} = argminy, Z Is(0%, y°). )
cecTr

Here, the binary indicator vector y¢ € I'/P! is a row vector in
the target label matrix Y e II€"IXIP of a training dataset, D,
and elements of +1 in y¢ indicate that the cth label appears in
the target label sets of the corresponding training examples in D.
The binary indicator vector y; € I'"1*1 is a column vector in Y,
and elements of +1 in y; refer to those labels in the target label
set associated with the ith training example in D. The value of
elements corresponding to irrelevant visual input in y¢ or labels
in y; is always set to —1.

3.2.2. Rank loss function

As described in Section 3.1, multi-label zero-shot learning
needs to establish a mapping that outputs a label-relatedness
score list for a video input where the scores of the relevant labels
should be ranked higher than those of irrelevant ones. In previous
studies, various rank loss functions have been developed for
ranking-based learning (Lapin, Hein, & Schiele, 2017). To demon-
strate the effectiveness of our joint latent ranking embedding
framework, we adopt two simple yet typical rank loss functions,
RankNet loss (Burges et al., 2005) and the margin-based hinge rank
loss (Herbrich, Obermayer, & Graepel, 1999), in our work although
other rank loss functions (Lapin et al., 2017) may be employed
in our framework as well. RankNet loss (Burges et al., 2005)
provides a generic loss function for ranking-based learning from
a probabilistic perspective, while hinge rank loss (Herbrich et al.,
1999) was originally proposed for structural SVMs and has been
widely used in different tasks including single-label zero-shot
learning (e.g., Akata et al., 2015; Frome et al., 2013).

Nevertheless, we observe the following phenomenon in our
experiments when using the original RankNet and hinge rank
losses. By using only a ranking constraint in either of two rank
losses, all the labels are considered independently and treated

equally so that the less frequently used relevant labels might
be overlooked during learning. Moreover, two rank losses gen-
erally make use of pairwise constraints to explore a relationship
between labels associated with an instance explicitly. However,
the relatedness scores in such rank losses are not bounded and
could hence vary across different examples. Thus, some “difficult”
pairs of labels are likely to incur a larger cost that predominates
the overall loss, which could make the learning biased to those
pairs of labels only. Furthermore, relatedness scores may vary in
a large range for different training examples even though proper
ranking relationships among them are established, which results
in the poor performance. Motivated by the above observation, we
introduce a regularization term to RankNet and hinge rank losses
to overcome those problems.

For the target label set expressed with binary indicators, y;,
in the ith training example, (x;,y;), the elements of +1 indicate
all the labels relevant to x; while elements of —1 express all the
remaining labels irrelevant to x; in terms of all the known actions
in CT. Likewise, y°, a binary indicator in {41, —1} regarding
whether the cth action appears in training examples in D, can
be handled in the same manner. Thus, the relatedness scores of
X; to its positive and negative labels, 0;, are achieved with Egs. (2)
and (3), and the relatedness scores of the cth label to all the
training examples, o¢, are calculated with Egs. (1) and (5). Based
on the above quantities, we can define our regularized rank loss
functions, [,(0;, y;) and [;(0¢, y©).

Formally, we define the regularized RankNet loss function for
visual embedding of x; as follows:

l,(0:,y:) = wi( Z Z log(1+ exp(0q — 03p)) +

peCiT'Jr quiT"

) log(1+ exp(—y,-jo,»j))), 8)

jECTr

where w; = (|C/™"|- || +|C™|)~" normalizes this per-instance
regularized rank loss. Corresponding to the elements of +1 and -1
iny;, CI,T’Jr and C,.T" denote two subsets of relevant and irrelevant
labels to x;, respectively. Intuitively, minimizing the first term in
Eq. (8) ensures that all the labels relevant to x; are ranked ahead
of those irrelevant to x;. The second term in Eq. (8) plays a reg-
ularization role; minimizing this term during learning promotes
the relatedness scores by enlarging the relatedness scores to the
relevant labels as well as diminishing those to the irrelevant
ones simultaneously, which tackles the problems observed in our
experiments.

Likewise, we define the regularized RankNet loss function for
semantic embedding of label c as follows:

Ii(0°,y°) = Cl)c( Z Z log(l + exp(of, - OIC,)) +

peDt qe D~
(1 + exp(-yiof) ). ©)
JjeD
where w. = (|DF| - |D°"| + |D|)”"' normalizes the per-class

regularized rank loss. D" and D~ are the positive and the
negative training example subsets, respectively, regarding the cth
label. With the same treatment as used in Eq. (8), minimizing
Eq. (9) ensures that the video instances conveying the action
of the cth label are ranked above all those without this action.
Moreover, those video instances conveying the action of the cth
label, indicated by y¢ = +1, tend to have as high relatedness
scores as possible while all other video instances without this
action, indicated by yjC = —1, tend to have as low relatedness
scores as possible.
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Similarly, we define a regularized hinge rank loss function for
visual embedding of x; as follows:

(01, yi) = w,-( Z Z max (0, m — oy + 0ig) +

peCiTNr quiTr—

Z max (0, m — yijoij)), (10)

jECTr

where w; = (/"] - |c"7| +1C™|)~! and m is a pre-specified
margin. Thus, minimizing the first term in Eq. (10) ensures that
all the labels relevant to x; are ranked ahead of those irrelevant
to x; with a pre-specified margin, m. The second term in Eq. (10)
plays a regularization role; minimizing this term during learning
promotes the margin-based relatedness scores by enlarging the
relatedness scores to the relevant labels as well as diminishing
those to the irrelevant ones simultaneously.

Likewise, we define a regularized hinge rank loss function for
semantic embedding of label c as follows:

10, y°) = wc( Z Z max(O, m— 0; + OZ) +

peDEt qe D~

Z max (0, m — yfoj)), (11)

JjeD

where w. = (|D*|-|D°"|4|D|)~! and m is a pre-specified margin.
With the same treatment as used in Eq. (10), minimizing Eq. (11)
ensures that the video instances conveying the action of the cth
label are ranked above all those without this action with a margin,
m. Moreover, those video instances conveying the action of the
cth label, indicated by y¢ = +1, tend to have as high relatedness
scores as possible while all other video instances without this
action, indicated by yj? = —1, tend to have as low relatedness
scores as possible.

As a result, we can employ either our regularized RankNet
loss functions in Egs. (8) and (9) or the regularized hinge rank
loss functions in Egs. (10) and (11) to train visual and semantic
embedding models in our framework.

3.2.3. Learning algorithm

As formulated in Egs. (6) and (7), learning is going to find
the optimal parameters, @) and ©;, by minimizing two loss
functions, ,(0;,y;) and I;(0, y¢), defined in Section 3.2.2. How-
ever, the relatedness scores required in [,(0;,y;) regarding the
visual model involve the output of the semantic model, E°, and
vice versa (c.f. Fig. 1). Moreover, [,(0;, y;) requires the relatedness
scores between all the candidate labels and each of training
examples, while [;(0°, y°) needs the relatedness scores between
all the training examples and each of all the action labels in CT".
Thus, our optimization problems are very complex and unsolv-
able simultaneously with commonly used local search methods,
e.g., gradient-descent based methods.

Motivated by the works dealing with similar optimization
problems (e.g., Jiang, Wu, Wang, Xue, & Chang, 2017;
Kavukcuoglu, Ranzato, & LeCun, 2010), we come up with a learn-
ing algorithm to train the visual and the semantic models al-
ternately during learning. In our alternate learning strategy, our
learning algorithm begins with randomly initializing the parame-
ters in the semantic model and then use the initialized parameter
to generate the initial semantic embedding. By using the initial
semantic embedding in [,(0;, ¥;), the visual model can be trained
with a local search method such as the mini-batch stochastic
gradient decent method. After one epoch, the current parameters
in the visual model are frozen and used to generate the visual
embedding for all the examples. By using the current visual

Algorithm 1 Joint Latent Ranking Embedding Learning

Input: Randomly initialize parameters, @S and @50, in the visual
and the semantic models, respectively; extract the visual rep-
resentations of training example, x;, i = 1,---, N, and the
semantic representations of all the training labels, s, Yc €
C™: input the target label matrix of the training set, Y; pre-set
the dimensionality of joint latent ranking embedding space,
de.

Output: Optimal model parameters: @} and ©),'.

1: Generate the initial semantic embedding @s(sc; @), Vc €
CT. t <o

2: repeat
3: t<—t+1;
4:  Of = argming, Zf’: 1 L,(0;, y;) with the current semantic

embedding for one epoch;

5. Generate the visual embedding with the current visual
model, ¢,(x;; ©)), i=1,---,N;

6 O = argming Y . cr (0%, ¥°) with the current visual
embedding for one epoch;

7:  Generate the semantic embedding with the current seman-
tic model @s(s.; OF), Ve € CT;

8: until Stopping condition is met.

9: @F « Of and OF « O!.

embedding in (0, y°), the semantic model is trained in the
same manner. This alternate learning process carries on until
a stopping condition is satisfied. The details of this alternate
learning algorithm are described in Algorithm 1.

It is worth stating that two rank loss functions defined for
visual and semantic model are related and the optimization of
one model would naturally promote the other towards its optimal
solution. Hence, our alternate learning algorithm may converge
after running finite epochs with the same properties held for
similar methods (Jiang et al., 2017; Kavukcuoglu et al., 2010).

3.3. Multi-label zero-shot recognition

Once the joint latent ranking embedding learning is com-
pleted, we obtain a mapping function: ¢(x,c) = {¢U(x|@;“), ds(c|
(~)s*)} where ¢,(x|©;) and ¢(c|®;) are the visual and the seman-
tic embedding functions implemented by the trained visual and
semantic models, respectively. Then, we can use this mapping
function for multi-label zero-shot human action recognition.

For recognition, we first extract the semantic representations
of all the labels, including both known and unseen labels, in a
considered label collection: s., Yc € C; C = CT U cY and C™ N
CY = ¢. By using the semantic embedding function, we achieve
the semantic embedding of all the labels: éi = @(sc|10]), Vc e C.
For a test video clip, we divide it into T segments and extract
its segment-level representations collectively denoted by X =
{X1,%2, ..., Xr}. Technical details for extracting semantic and vi-
sual representations can be found in Section 4.2. By feeding X to
the visual embedding function, we achieve its visual embedding:
e’ = ¢,(X|®?). Thus, the relatedness scores between this test
video clip, X, and all the actions in the considered label collection
C, including known and unseen labels during learning, is achieved
by
Sk, c)= (€', &), VceC. (12)

Finally, we achieve a ranking action label list, L(X), for this test
video clip by sorting its relatedness scores measured against all
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the labels in C with Eq. (12):
1) = {a} S, (13)
where ¥c;, ¢j € C, Score(x, ¢;) > Score(x, ¢;) if i < j.

In our experiments regarding the use of two different rank
losses in our framework, we observe that the regularized RankNet
and hinge rank losses often behave differently in several evalua-
tion scenarios (c.f. Section 4). Although two rank losses generally
yield the comparable performance overall, a closer look suggests
that those correctly recognized video instances are quite differ-
ent when two different rank losses are used in our framework,
respectively. Hence, we would employ a simple fusion method to
exploit the complementary aspect resulted from the use of two
different rank losses. In order to fuse the results yielded by the
models trained with two different rank losses, we first normalize
the relatedness scores of X to the considered label collection, C,
generated by each of two models as follows:

Sk, ¢) = M’ (14)

Smax - Smin

where Sy« and Sy are the highest and lowest related scores of
video clips, respectively, measured on a test set. Let S(Reg)(%, ¢) and
S(Hinge)% ¢) denote the normalized relatedness scores yielded by
two models trained with our regularized rank and the hinge rank
losses, respectively. Then, the fused relatedness scores, S(Fusion)
(%, c) is simply an average between S(R@kNet)(x ¢} and SHinge)(x, c);
ie,

g(Fusion)(i’ C) _ SRankNet(x’ C) 2+ Snge(X, C) ' (15)
Based on the fused relatedness scores, a ranking action label list,
[(Fusiom(x) is achieved in the same manner as specified in Eq. (13)
for any test video clip, X.

4. Experimental setting

In this section, we describe our experimental design and set-
tings, including datasets, visual and semantic representations,
model learning, evaluation scenarios and criteria used in our
experiments. Moreover, we design a number of comparative ex-
periments to exhibit the gain resulting from different components
in our framework and to demonstrate the effectiveness of our
framework by a comparison to several state-of-the-art multi-
label ZSL methods that could be applied to general human action
recognition.

4.1. Datasets and splits

We first describe datasets and their split settings used in our
experiments for simulation of multi-label ZSL scenarios.

4.1.1. Datasets

To evaluate our framework, we employ two publicly available
video datasets: Breakfast (Kuehne, Arslan, & Serre, 2014) and
Charades (Sigurdsson et al., 2016), in our experiments. In both
datasets, at least two actions are involved in each video clip
and the duration of each video clip is relatively long, which
implies the temporal coherence information may be explored and
exploited in human action recognition. Hence, both datasets are
suitable to evaluate weakly annotated multi-label human action
recognition. Below, we summarize the main aspects of two video
datasets.
Breakfast: In this dataset (Kuehne et al., 2014), there are 1989
video clips totally, where a video clip conveys several cook-
ing actions. Totally, there are 49 cooking actions (excluding the

Instance-First Split Label-First Split

H H
I
E Test 2 Test
! Instances E Instances
I
Validation Unseen Validation
Instances Labels Instances
Labels
Not
Used L 2ini
Training Training
Instances Instances
Unseen Known Known
Labels Labels Labels

Fig. 2. Two different data split settings used in our experiments. In the instance-
first split (left plot), a dataset is simply split into three mutually exclusive
subsets: training, validation and test subsets. Any unseen labels associated with
instances in training and validation subsets (shaded area) are removed from their
target label sets before being used in learning; i.e., only the subset of known
target labels in a training example are used in the learning. In the label-first split
(right plot), a number of labels are first specified as unseen labels. Instances
associated with any of unseen labels form a test subset. The remaining data of
known labels are further divided into training and validation subsets to be used
in learning.

“silence” label), such as ‘stirring”, “pouring_milk” and “open-
ing_the_fridge”. Those actions are performed by 52 people in
different kitchens. Although this dataset is not collected espe-
cially for multi-label human action recognition, we would use it
as a proof-of-concept test bed.

Charades: This dataset (Sigurdsson et al., 2016) is collected from
hundreds of people recording videos in their own home especially
for video-based human activity analysis in daily lives. Hence, it
is very challenging for multi-label human action recognition. In
this dataset, there are 9848 video clips involving 157 different
human actions totally, acting out casual everyday activities. An
average duration of video clips is around 30 s and an average
number of actions involved in a video clip is 6.8. Those actions
are performed by 267 people from three continents, and more
than one person appear in over 15% of all the video clips. The raw
video data (scaled to 480p) are used in our experiments, which
are available from the Charades project page.

4.1.2. Dataset splits

To simulate a zero-shot scenario, we need to split a dataset
into training and test sets where a training set contains examples
associated with only known classes while a test set has test in-
stances involving at least one unseen class. Unlike single-label ZSL
where a dataset is automatically split into training and test sets
once unseen classes are specified, the dataset split issue in multi-
label ZSL becomes much more complicated. In our experiments,
we make two different split settings, instance-first split (IFS) and
label-first split (LFS), as illustrated in Fig. 2.
Instance-First Split

This is a commonly used data split setting in all the existing
multi-label ZSL works (e.g., Mensink et al, 2014; Nam et al,,
2015; Zhang, Gong, and Shah, 2016). In this setting, instances in
a dataset are first split into training, validation and test subsets.
The training and the validation subsets are used for parameter
estimation and hyper-parameter tuning, the dimension of latent
embedding space d, and the number of iterations of Algorithm 1
for our model. The test set that may or may not involve unseen
labels is reserved for performance evaluation. Then, we divide the

2 http://allenai.org/plato/charades/.
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Table 2
Information on two different data split settings.
Dataset Split method # Training inst. # Validation inst. # Test inst. # Known labels # Unseen labels
Breakfast Instance-first 1196 126 667 39 10
Label-first 1019/917/823 200 770/872/966 39 10
Charades Instance-first 6385 1600 1863 117 40
Label-first 4580/4176/3987 1000 4268/4672/4861 137 20

action label collection into mutually exclusive known and unseen
label sets. Before learning, any unseen labels in the target label
set of an instance in the training and the validation subsets are
removed as shown in the left plot of Fig. 2. In other words, only
known labels in the target label sets of an instance in those two
datasets are used in learning. It is worth clarifying that unlike
single-label ZSL, it is often infeasible to simulate a ZSL scenario
by manipulating the validation set due to insufficient data in two
datasets used in our experiments. Hence, the validation for hyper-
parameter tuning in our experiments has to follow the typical
protocol used in multi-label learning (Zhang & Zhou, 2014).

To split the Breakfast dataset with this setting, we adopt the
pre-split by data collectors (Kuehne et al., 2014), where the video
clips of 13 people are reserved for test. We further divide the rest
video clips for training and validation: video clips of 32 people
for training and the remaining video clips of seven people for
validation. As a result, the numbers of video clips for training,
validation and test are 1196, 126 and 667, respectively. Then we
randomly split the 49 labels into known and unseen labels: 10
labels reserved as unseen labels and the rest 39 as known labels.

For the Charades dataset, we also adopt its pre-split provided
by data collectors (Sigurdsson et al., 2016), where 7985 and 1863
video clips are used for training and test, respectively. We further
divide training data into two subsets: 6385 for training and 1600
for validation in our experiments. Then we randomly choose 40
out of 157 human actions as unseen classes and the rest 117
human actions are hence known actions.

Label-First Split

Although the instance-first data split setting is widely used
in multi-label ZSL, it suffers from a fundamental limitation. It is
well known that multiple labels together could frame a specific
concept and removing any label from this label cohort may lead
to a less accurate semantic meaning and biases in learning. Fur-
thermore, the instance-first split allows for accessing to visual
features of instances involved in unseen actions. To overcome
this limitation, we propose a novel data split setting for multi-
label ZSL named label-first split. In this new setting, all the labels
in a label collection used in a dataset is first divided into two
mutually exclusive subsets: known and unseen labels. Then, all
the instances having any unseen labels are reserved for test and
the rest instances of known labels only are further divided into
two subsets for training and validation, as shown in the right
plot of Fig. 2. Due to sparsity of training data, the validation in
the label-first split also adopts the protocol used in multi-label
learning (Zhang & Zhou, 2014).

To split the Breakfast dataset with this setting, we randomly
choose 10 labels for unseen labels and the rest 39 labels are
designated as known labels accordingly. Hence, this dataset is
naturally split into two sets for training and test. The training data
are further divided for training and validation. For validation, we
randomly choose 200 instances from the training data. Likewise,
the Charades dataset is split by using 20 randomly chosen label
for unseen labels. Thus, the remaining 137 labels become known
labels. From the instances of known labels, we randomly choose
1000 instance used for validation. It is worth stating that the
current datasets do not allow for reserving a large number of
classes as unseen classes in either the IFS or the LFS setting.
In the IFS, the more labels reserved as unseen labels, the less

accurate mapping learned from visual to semantic domains due
to the existence of visual features of unseen actions and a lack of
the corresponding action labels in such training examples. In the
LFS, the more labels reserved as unseen labels, the fewer training
examples available. Hence, the training examples do not convey
the essential information required in learning.

For reliability, we repeat our experiments on each dataset
under each split setting for three trials. During a trial, training
data given in the pre-split of each dataset is randomly divided
into training and validation subsets with the instance-first split
setting, and a known/unseen label split on each dataset is cho-
sen randomly with the label-first split setting. For clarity, we
summarize the data split information> on two datasets in Table 2.

4.2. Visual and semantic representations

In our experiments, we use visual representations extracted
with the existing C3D deep network (Tran, Bourdev, Fergus, Tor-
resani, & Paluri, 2015) and word vectors as semantic representa-
tions (Mikolov et al., 2013).

As suggested by Tran et al. (2015), the C3D features are ex-
tracted for a segment of 16 frames with eight frames overlapping
between two adjacent segments. Thus, a training/test video clip is
always divided into T segments with the treatment as follows. To
ensure that each video clip can be divided into T segments, any
video clip must have 8 * (T + 1) frames. To this end, we simply
down-sample those video clips of more frames with a proper
sampling rate so that T C3D feature vectors can be extracted
and collectively form a segment-based visual representation for
this video clip. When a video clip has fewer frames, we first
extract C3D feature vectors from those frames in this video clip
and then pad all-zero vectors to the visual representation until
there are T feature vectors. Also, we can convert T feature vectors
into a holistic instance-level visual representation via averaging
those T feature vectors. By using such an instance-level visual
representation in our comparative study, we would demonstrate
a performance gain benefiting from exploring/exploiting tempo-
ral coherence information underlying segments in a video clip.
In our experiments, the segment-based visual representation is
always used in our model while the instance-level visual repre-
sentation is used in the baseline and the state-or-the-art models
(c.f. Section 4.6) unless a different setting is specified. Based on
a cross-validation experiment, we choose T = 300 for Breakfast
and T = 20 for Charades. Although only C3D features are used
in our experiments, it is worth mentioning that other kinds of
visual representations, e.g., IDT features (Wang & Schmid, 2013)
and deep image features extracted on a frame basis, can also be
used straightforwardly in our framework.

In our experiments, we adopt Word2Vec as our semantic rep-
resentation. Word2Vec was trained with a skip-gram neural net-
work on the Google News dataset of 100 billion words (Mikolov
et al,, 2013). As a result, one action label is represented by a 300-
dimensional word vector. Although only 300-dimensional word
vectors are used in our experiments, word vectors of different

3 All the data splits and source code used in our experiments are available
on our project website: http://staff.cs.manchester.ac.uk/~kechen/MLZSHAR.
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dimensionality may be used, and moreover, other semantic repre-
sentations, e.g., attributes, can be used in our framework without
any difficulty if available.

It is worth emphasizing that the same treatment described
above is applied in both the learning and the recognition phases
to extract visual and semantic representations.

4.3. Model learning

In our experiments, model learning is implemented on Keras
(Chollet, 2015), a high-level neural networks library, running
on top of either TensorFlow or Theano. As we use two neural
networks to carry out the visual and the semantic models (c.f.
the left box in Fig. 1), we need to decide the specific network
architectures and relevant hyper-parameters on two datasets
during the model learning. The optimal hyper-parameters are
found by a grid-based search via a cross-validation procedure. The
Adam (Kingma & Ba, 2014), a stochastic optimization method, is
used for training our model with its default configuration.

The visual model takes a sequence of segment-level C3D rep-
resentations of d, = 4096 features as input to the LSTM layer
where there are Ny LSTM units. To improve the generalization, we
also apply the dropout procedure (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014) to the LSTM layer where a
dropout rate needs specifying. The output of LSTM units are fed
to a fully connected dense layer of N, neurons, and the output of
this dense layer are further fed to the visual embedding layer of d.
neurons. During learning, there are no hyper-parameters involved
in the score and the average pooling layer in the visual model.

As described in Section 3.1, the semantic model is carried out
by a fully-connected three-layer feed-forward neural network.
The word vectors of d;s = 300 dimensions are first input to a
hidden layer of N; ReLu units. Subsequently, the output of this
hidden layer are fed to the semantic embedding layer of d, linear
units. Note that for joint latent ranking embedding learning, the
dimension of the semantic embedding space is set to the same of
the visual embedding space in our experiments. Likewise, there
are no hyper-parameters involved in the score and the average
pooling layer in the semantic model during learning.

4.4. Evaluation scenarios

Multi-label zero-shot recognition is complex given the fact
that a test instance may be associated with a label set including
both known and unseen class labels. Thus, there are different
evaluation scenarios in previous works (Sandouk & Chen, 2016b;
Zhang, Gong, and Shah, 2016); each focuses on a specific aspect.
Following their settings (Sandouk & Chen, 2016b; Zhang, Gong,
and Shah, 2016), we evaluate our framework along with other
learning models used in our comparative study described later
on in this section in three different scenarios:

Known-action only: In this setting, the performance is evalu-
ated regarding only known (training) actions. This scenario boils
down to the conventional supervised multi-label learning. In this
circumstance, we no longer take any unseen action labels into
account during test; for a test instance, its relatedness score
ranking list contains only those regarding known action labels in
C™ and any unseen action label in CY in its ground-truth label set,
if there is, will be removed such that the modified ground-truth
set includes only known action labels in C™.

Unseen-action only: In this setting, the performance is evaluated
regarding only unseen (test) actions. This scenario boils down to
a standard ZSL setting. In this situation, we no longer consider
any known action labels; for a test instance, its relatedness score
ranking list contains only those regarding unseen action labels in
CY and any known action label in C™ in its ground-truth label set,

if there is, will be removed such that the modified ground-truth
set includes only unseen action labels in CU.

Generalized ZSL: In this setting, the performance is evaluated
regarding all the actions of which labels appearing in a label
collection C without considering if an action label is known or
unseen during learning. This scenario has been named generalized
ZSL in the machine learning community. In this situation, both
known and unseen action labels are treated equally; for a test
instance, its relatedness score ranking list contains those regard-
ing all the action labels in C and the evaluation is made against
its ground-truth label set that could be a mixture of known
and unseen labels. It is worth highlighting that the generalized
ZSL setting is required by multi-label zero-shot human action
recognition in a real application.

4.5. Evaluation metrics

There are a variety of evaluation metrics for multi-label learn-
ing. Depending on the output of a multi-label learning system, the
evaluation metrics are generally divided into two types: ranking-
based and bipartition-based metrics (Nam et al., 2015; Sorower,
2010). Ranking-based metrics work for the situation that a learn-
ing system yields a ranking list of continuous-valued relatedness
scores on all the candidate labels. In contrast, bipartition-based
metrics are used when a learning system produces only a bi-
nary indicator vector for all the candidate labels, where 1/0 el-
ement expresses the presence/absence. Since our model yields
a ranking list of continuous-valued relatedness scores, we em-
ploy two commonly used ranking-based metrics for performance
evaluation (Li et al., 2016; Mensink et al., 2014; Nam et al,,
2015; Sorower, 2010; Zhang, Gong, and Shah, 2016), Instance-
centric Mean Average Precision (I-MAP) and Label-centric Mean
Average Precision (L-MAP). In addition, we employ other metrics,
precision, recall and F; score, which have also been used in the
performance evaluation of multi-label learning (Gong, Jia, Leung,
Toshev, & loffe, 2013; Zhang & Zhou, 2014).

To facilitate our presentation, we first define the precision-at-
k (Manning, Raghavan, & Schiitze, 2009) in a generic form:

1
P@k(A, B) = E|,cmB[1,...,k], (16)

where A is a ground-truth set, B is a set of all the retrieved
entities ranked in terms of relevance, and B[1, ..., k] indicates

top k entities in B. Given a test dataset, Dy = {fci}mﬂ a learning

=1"
model yields a label-based ranking list for a test insltance, X; € Dy,
in terms of its relatednesscscores to all the labels in C (c.f. Egs. (12)
and (13)): L(x;) = {cj}]!l, where Vc¢,, ¢, € C, Score(®;, ¢,) >
Score(X;, ¢q) if p < ¢. Let C(%;) denote the ground-truth label set

of X;. I-MAP over a test dataset Dy is defined by

pr1 3 pac (C(fq), L(fq))S(c, C&:))
IC()

) (17)

where §(c, C(%;)) = 1if ¢ € C(%;) and §(c, C(X;)) = O otherwise.
While I-MAP measures the accuracy in terms of test instances,
L-MAP is used to evaluate the performance from a different
perspective in light of candidate labels. Given a specific label
¢ € C, a model predicts the relatedness scores against the action
specified by the cth label for all the test instances in Dr. Hence,
we can achieve an instance-based ranking list for the cth label,
L = {fc,-j }jlzr]‘ in terms of their relatedness scores against the cth
label where VX; ,X; € Dr, Score(X;,, c) > Score(%;,,c)if p < q.
Let D¢ denote the collection of those test instances of which their
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ground-truth label sets indeed include the cth label. Thus, the
L-MAP over a test dataset, Dr, is defined by

<, 32! pei(Dr, 1) 5 (8, D)

L-MAP = —
IC] 2 1D

: (18)

c=1

where §(%;, D°) = 1 if X; € D¢ and §(;, D°) = 0 otherwise.

Those widely used evaluation metrics in information retrieval
have also been used in evaluating multi-label learning systems
(e.g., Gong et al,, 2013; Zhang & Zhou, 2014). In our experiments,
we adopt overall top-k precision, recall and F; score measured
over a test dataset, Dr, which are defined as follows:

Y2t p@k(C (&), L&)

precision(k) = Kx IDr] , (19)
S P@k(C), L&)
recall(k) = ZI-DT‘ &)l , (20)
i=1 1
Fi(k) = 2 * precision(k) * recall(k). 21)

precision(k) + recall(k)
4.6. Comparative study

In our experiments, we systematically conduct a comparative
study from two different perspectives: ablation study and state-
of-the-art models. As a result, a number of baseline systems
are designed to demonstrate roles played by the main compo-
nents in our framework while several state-of-the-art multi-label
ZSL algorithms are adapted for human action recognition. For
the comparative study, we evaluate each of different models
on three evaluation scenarios with evaluation metrics described
in Sections 4.4 and 4.5 under the exactly same conditions, in-
cluding visual and semantic representations. As there are alter-
native pooling strategies that could be used to implement our
framework, we further investigate those pooling strategies by
comparing them to the average pooling used in our framework.

4.6.1. Baseline models

To investigate the roles played by different component mech-
anisms employed in our framework, we design four baseline
models, random guess of scores, non-recurrent connection, without
semantic embedding and randomized label representation, by ma-
nipulating our framework with different purposes described as
follows:
Random guess of scores (RGS): This is a general baseline that
provides a lowest performance bound used for a reference to
improvement made by a learning model. In our work, we ran-
domly generate relatedness scores of all the candidate labels for
a test instance. Then the performance of this baseline model is
evaluated based on the random guess of scores. For reliability,
we repeat the RGS process 100 times in our experiments and the
statistics of the RGS performance including mean and standard
error of mean (SEM) are reported.
Non-recurrent connection (NRC): In our framework, a LSTM
layer of recurrent connections is employed to capture temporal
coherence underlying sequential video data in the visual embed-
ding learning. To examine the role played by the LSTM layer,
we replace the recurrent connected layer with a fully connected
layer without recurrent connections and keep all other compo-
nents in our framework unchanged. By this setting, our model
is converted into a baseline model named non-recurrent connec-
tion. During learning, obviously, this baseline model no longer
explicitly makes use of the temporal dependency information

underlying sequential segments in a video clip. Algorithm 1 is
used directly for parameter estimation.

Without semantic embedding (WSE): In our framework, there is
a semantic model for semantic embedding with the motivation
that the use of a joint latent ranking embedding space narrows
the semantic gap between visual and semantic domains and the
zero-shot recognition should be done in the joint latent ranking
embedding space. However, some existing works, e.g., FastOTag
(Zhang, Gong, and Shah, 2016), do not learn a semantic embed-
ding and the zero-shot recognition takes place directly in the
semantic space. To examine the effectiveness of our semantic
embedding, we come up with a baseline model named without
semantic embedding by removing the semantic model from our
framework. Thus, the original semantic representations are used
to replace the semantic embedding representations, E*, required
by the score layer in the visual model, which amounts to mapping
the visual space directly onto the original semantic space. As
this baseline model has only the visual model, the learning be-
comes simpler; i.e., solving the optimization problem formulated
in Eq. (6) based on the original semantic representation with
the Adam (Kingma & Ba, 2014). It is worth clarifying that this
baseline model is similar to FastOTag (Zhang, Gong, and Shah,
2016) apart from an LSTM-based visual embedding model and the
segment-level visual representation used in this baseline model
while a feed-forward neural network and instance-level visual
representation are employed by FastOTag for visual embedding.
Randomized label representation (RLR): One of the most im-
portant issues in ZSL is exploring/exploiting the side information
conveyed in the semantic domain. As our framework works for
multi-label zero-shot recognition, we would investigate whether
the semantic relatedness information encoded in the semantic
embedding, inherited from the original semantic representations,
is effectively used in knowledge transfer. To this end, we design
another baseline model named randomized label representation by
replacing the word vector of a label with a vector of the same
dimensionality that is generated randomly and normalized with
the I, norm to ensure that it has the same range as that of the
word vector. Apparently, the semantic relatedness information
no longer exists in such randomized label representations. For
parameter estimation, Algorithm 1 is used directly via replacing
the semantic representations of labels with the randomized label
representations in training data.

4.6.2. State-of-the-art methods

Although, to the best of our knowledge, there exists no work
in multi-label zero-shot human action recognition, we notice that
there are a few multi-label ZSL algorithms. In our comparative
study, we adopt and extend those multi-label ZSL algorithms
for human action recognition for a thorough evaluation of our
proposed framework. Below, we briefly describe those multi-label
ZSL algorithms used in our experiments.
Direct Semantic Prediction (DSP): DSP is a well-known baseline
model used in previous works for multi-label ZSL (e.g., Sandouk
& Chen, 2016b). DSP is derived from direct attribute prediction
originally proposed for single-label ZSL (Lampert et al., 2014). The
idea behind DSP is learning a mapping function ¢ : X — S from
visual to semantic space directly for ZSL. In our experiments, we
employ support vector regressor models to learn the mapping
function ¢(-).
Convex combination of Semantic Embedding (ConSE): ConSE
is a ZSL algorithm proposed by Norouzi et al. (2014), which can
be naturally applied to multi-label ZSL. As same as formulated
in DSP, ConSE also learns a mapping to predict a compositional
semantic representation from the visual representation of a given
video clip.
COSTA: COSTA is a method proposed by Mensink et al. (2014)
especially for multi-label zero-shot classification. In this method,
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multi-label classification is converted into a number of binary
classification problems via a one-vs-rest setting. |CT| linear bi-
nary SVMs are trained based on the examples regarding |CT"|
known actions. Then the parameters of the SVM for an unseen
label ¢ e (Y is estimated by a weighted combination of the
parameters of |C™| trained SVMs corresponding to known actions.
Graph Convolutional Network (GCN): GCN has been used in
ZSL by Lee et al. (2018) and Wang, Ye, and Gupta (2018). We
follow the method in Wang et al. (2018) and incorporate GCN
into our multi-label ZSL framework. A graph is constructed for
label representations with k Nearest Neighbour (k = 3 and 6
for Breakfast and Charades datasets respectively). A GCN with
four convolutional layers is trained with classifier parameters for
known classes, then used to learn the classifier parameters for
unseen classes. We use SVMs as the classifiers whose parameters
for known classes are obtained in the same way as in COSTA.
FastOTag: FastOTag is a method for multi-label image tagging and
multi-label ZSL (Zhang, Gong, and Shah, 2016). The main idea
behind FastOTag is learning a mapping function ¢ : X — S from
visual to semantic space for multi-label zero-shot tagging and
recognition. Unlike DSP, a ranking-based loss function, RankNet, is
used to train a deep network to carry out ¢(-) so that for a video
clip, its relevant labels should be ranked ahead of those irrelevant
ones.

FastOTag+: Our work presented in this paper suggests that the
use of learned semantic embedding leads to better performance
than the use of the original semantic representations directly. To
further investigate this idea, we make an extension of FastOTag
by incorporating our semantic model into the FastOTag model
and name our extension FastOTag+. As a result, FastOTag+has an
architecture resembling ours (c.f. the left box of Fig. 1), where the
visual model is carried out by the original FastOTag architecture
while the semantic model is the same as ours presented in
Section 3. The original rank loss functions in FastOTag are used
and our alternate learning algorithm described in Algorithm 1 is
used for parameter estimation. For recognition, the same proce-
dure presented in Section 3.3 is used for a given test instance.
Here, we argue that this extension would provide further ev-
idence in examining the effectiveness of semantic embedding
learning.

4.6.3. Pooling strategy

To investigate the effect of different pooling strategies over
temporal relatedness scores, we conduct a comparative experi-
ment by replacing the average pooling with either the maximum
pooling or the local average global maximum pooling in our
framework. For the maximum pooling, Eq. (4) for the average
pooling is thus altered to

0; = mglxo,-t. (22)
t=

For the local average global maximum pooling, we firstly divide
the T segments into T groups with a 50% overlap between two
consecutive groups. As a result, there are N, = 2 x T /T, consec-
utive segments in each group. We calculate the average score in
each group and find the maximum as follows:

(ts+1)Ng /2
1 : e/

0; = max — Z 0. (23)

ts=1
s 8 t=(ts—1)Ng /2+1

Note that the local average global maximum pooling strategy is
generic, and the average pooling and maximum pooling can be
viewed as its special cases without between-group overlapping:
the average pooling when Ty = 1,N; = T and the maximum
pooling when T; = T, N; = 1, respectively. To make a thorough
investigation, we set Ty = 10, N, = 60 and T, = 20, N, = 30

as two experimental settings for Breakfast dataset. For Charades
dataset, we set Ty = 5,N, = 8 and Ty = 10, N, = 4. All other
experimental settings are kept the same for a fair comparison.
In our comparative study, the optimal hyper-parameters in-
volved in baseline and state-of-the-art learning models are sought
during their learning with the same cross-validation procedure as
described in Section 4.3. Moreover, five state-of-the-art methods
described above and ours are extensible to multi-label recogni-
tion straightforwardly; i.e., all the actions are known in advance
and their training examples are available during learning. Thus,
we also report the multi-label recognition performance, which
not only extends our comparative study in a wider scope but also
provides a benchmark to see how much the performance of each
method is degraded in a zero-shot circumstance. For experiments
in comparison of different pooling strategies, all the components
and setting are kept unchanged except the pooling operations.

5. Experimental results

In this section, we report the detailed experimental results in
different settings and exemplify some typical test instances via
visual inspection.

5.1. Results on learning

We first report the experimental results regarding learning
including optimal hyper-parameters for all the models used in
our experiments and the evolution of the learning process for
our model trained with our proposed alternate learning algorithm
(Algorithm 1) under different data split settings.

As described in Section 4.3, we employ a grid-based search
procedure via cross-validation to find out the optimal hyper-
parameters in terms of both the loss used to train a model and
the I-MAP performance (c.f. Section 4.5) as this metric directly
evaluates the relatedness of a video instance to all the labels in
a considered action label collection. We seek an optimal value
from a set of candidate hyper-parameters involved in all different
learning models used in our experiments with the exactly same
procedure as follows:

Network architecture: The optimal architecture of neural net-
works in a model used in our experiments is investigated by
tuning different number of neurons in each hidden layer. In
our proposed model, there are totally four structural hyper-
parameters. The number of hidden units in the LSTM layer is
selected from the candidate set, N; = 256,512, 1024. In the
visual model, the number of neurons in the hidden layer above
the LSTM layer is investigated with N, = 1024, 2048. In the
semantic model, the number of neurons in the first hidden layer is
selected from N; = 300, 500, 700. As a critical hyper-parameter
in our algorithm, the dimension of latent embedding space d., the
number of neurons in the visual/semantic embedding layers, is
investigated by setting the candidate values, d. = 200, 500, 800.
For the non-recurrent baseline model, the number of neurons in
the first hidden layer replacing the LSTM layer is chosen from
N1 = 1024, 2048, 4096. For FastOTag and Fast0Tag+, the number
of neurons in the first and second hidden layers are selected from
Ny = 2048, 4096, 8092 and N, = 1024, 2048, respectively.
Learning rate: For all the neural networks in the proposed model,
the baseline and the state-of-the-art models, candidate learning
rates are {le—2, 1e—4} and {le—4, 1e—6} for the visual and
the semantic models, respectively.

Number of epochs: Learning is stopped when the I-MAP perfor-
mance on a validation set is no longer improved within the last
10 epochs and the loss reaches a low level on both training and
validation sets. Then, the optimal model chosen is the one that
yields the highest value of I-MAP on the validation set.
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Fig. 3. The evolution of the regularized RankNet losses, L, and L;, on training data and the I-MAP values on validation data during the joint visual and semantic
embedding learning with our alternate learning algorithm described in Algorithm 1. All the results are achieved based on Split 1 on two datasets, Breakfast and

Charades, under the IFS and the LFS settings (c.f. Table 2).

Dropout rate: The dropout rate used in the first layer of a neural
model during learning is selected from {0, 0.5}.

Margin: The margin used in the hinge rank loss is selected for
m=0.1,1, 10.

SVM hyper-parameters: In our comparative study, ConSE
(Norouzi et al., 2014) and COSTA (Mensink et al., 2014) employ
a linear SVM for classification and DSP (Lampert et al.,, 2014)
uses a linear SVR for regression. In our experiments, an optimal
soft-margin value is sought from C = 0.01, 1, 100. For SVR,
the percentage of support vectors is always set to ¢ = 0.1 as
suggested in literature.

As a result, the resultant optimal hyper-parameter values in
different experimental settings are summarized in Table 7.

To train our model described in Section 3, our proposed learn-
ing algorithm optimizes two rank loss functions alternately for
joint visual and semantic embedding learning. With the regu-
larized RankNet loss functions, we would exhibit the learning
behaviour during the training. As illustrated in Fig. 3, the regu-
larized rank losses, L, and L, with respect to the visual and the
semantic models keep decreasing steadily on training data as the
training epochs increase regardless of the data split settings and
datasets. Nevertheless, we adopt the early-stop strategy to avoid
overfitting. However, we observe that the change of two ranking
losses on validation data fluctuates wildly in learning so that we
cannot decide a proper early-stop point easily. Instead we use the
I-MAP measured on validation data to decide the proper early-
stop points, as shown in Fig. 3 where the bars of dash line indicate
the actual point that the learning is stopped for different training
datasets. In general, all our experiments in learning (including
not shown in Fig. 3) suggest that our alternate learning algorithm
always converges regardless of different rank losses and datasets
under different data split settings.

5.2. Results on comparison to baseline models

Tables 3 and 4 summarize all the results yielded by four
baseline models described in Section 4.6.1 and the full model
described in Section 3.2, with the use of regularized RankNet
loss and hinge rank loss described in Section 3.2.2 respectively.
The experimental results are reported based on two different
data split settings described in Section 4.1.2, instance-first split
(IFS) and label-first split (LFS), under three different evaluation
scenarios described in Section 4.4; i.e., generalized ZSL, known-
action only and unseen-action only scenarios. For reliability, we
report the mean and standard error of the mean (SEM) of results
(k = 5 used in evaluation metrics, i.e., Egs. (19)-(21)) over
three randomly generated known/unseen label splits for each
evaluation scenario.

For the IFS setting, it is observed from Tables 3 and 4 that all
the baseline models and the full model perform significantly bet-
ter than the RGS, a random guess model, on two datasets regard-
less of evaluation scenarios apart from the RLR model under the
unseen-action only scenario. Due to a lack of knowledge transfer
in a random label representation, the zero-shot performance of
the RLR is expected. Overall, the full model outperforms all the
baseline models on both datasets in the generalized ZSL and
unseen-action only scenarios regardless of evaluation metrics. A
comparison to the WSE suggests that the performance of the
full model is generally superior to this baseline on both datasets
under different evaluation scenarios, which lends evidence to
support the necessity of the semantic embedding learning in
multi-label learning problems. Also, we observe that the full
model outperforms the RLR on Breakfast but fails to do so on
Charades in the know-action only scenario when using RankNet
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Table 3

Multi-label zero-shot recognition performance (mean+SEM%) of the baseline models and the full model using the RankNet loss in three evaluation scenarios under
different data split settings. Notation: IFS — Instance-First Split; LFS — Label-First Split; GZSL — generalized ZSL scenario; KnownA — Known-action only scenario;
UnseenA — Unseen-action only scenario.

Breakfast Charades
L-MAP I-MAP P R Fy L-MAP I-MAP P R Fi

RGS 109+0.0 154+00 88+00 102+00 94+£00 59+00 85+£00 56+00 32+00 41£00
NRC 279+0.7 49.1+11 3514+09 405+1.1 376+1.0 92+£0.1 209407 207£09 11.94+05 15.1£0.7
GZSL WSE  30.2+04 50.1+04 36.7+06 424407 393+06 93+0.1 206+04 205+05 11.7+03 149+0.3
RLR 296 £03 504405 36.7+£0.7 423+08 393+£08 94+0.1 207+£10 21.1+14 120+£08 153%1.0
Ours 328+07 535+12 386+16 445+19 414+18 97+01 224+04 227+04 13.0+02 165+03

RGS 11.4+02 17.4+£0.1 96+£02 129+00 11.0£0.1 6.1+0.1 94+£01 58+01 43+£00 49+00
NRC 303+1.0 53.6+08 354+0.7 475+£06 406+06 10.0£0.2 254405 23.0£06 17.1+0.2 19.6+04

Data split Evaluation scenario Model

IFS KnownA WSE 321409 554+1.0 37.6+0.3 50.6+05 432402 10.1+0.3 24.6+03 223403 16.6+00 19.0+0.1
RIR  335+1.1 563408 37.4+10 502408 428+09 107+0.1 267+0.7 23.9+09 17.8+04 204+06
Ours 353+13 580404 382+16 51.3+14 438+15 105402 26.1+0.3 235+05 17.54+0.1 20.0=0.2
RGS 85+06 307+06 6.1+06 500+00 109+09 54+00 139+00 51+00 125+00 7.2+00
NRC 17.1+£0.7 47.5+2.4 87+08 708425 154+12 68404 204+1.1 84+07 208+19 11.9+1.0
UnseenA WSE 217417 47.7+3.0 91+19 724+88 16.1+32 69+04 205+16 85+07 212+21 12.1+1.0
RLR 132425 343+7.1 7.0+£16 56.6+97 12.4+27 55+04 134+06 47404 11.6+0.6 6.7+05
Ours 223411 53.1+58 95+15 772484 169+25 71404 224+21 95+10 235+27 135+15
RGS 152+15 17.8+04 113+04 102200 107+02 52401 79+01 51+0.1 32+00 3.9+00
NRC 219422 276412 192410 17.3+1.1 182+1.0 89402 205+05 212+08 13.3+0.5 164+ 0.6
GZSL WSE 252414 31.0+2.7 230420 207+14 217416 91400 203+00 21.0+02 132+02 162402
RLR 226421 29.6+1.9 220+£07 198402 209+03 93+02 19.6+04 198+0.6 12.4+04 152405
Ours 250+14 326+29 236+21 21.2+15 223+17 92+0.1 208+03 21.6+07 13.5+04 166=+05
RGS 147+19 178402 10.1+02 128400 113+01 50401 80+01 48=+0.1 37+00 42+00
NRC 222425 302+15 189+11 242418 212+14 89403 223+06 21.1£07 159+04 18.1£0.5
LFS KnownA WSE 253420 342433 231419 295427 259423 9.0+00 222403 21.1404 159400 18.1+0.1
RLR 248426 343431 217407 27.6+04 243+06 95401 23.0+04 212+05 16.0+04 182+04
Ours 252+16 357+3.6 233+£20 296428 260+23 91+0.1 230+06 21.6+07 163+0.3 18.6+05
RGS 168+16 342+13 162+16 500+00 244+18 69+0.1 194+01 67+01 250£00 105+0.1
NRC 212+14 423454 187432 57.14+7.0 280+4.4 94+0.1 307+22 11.6+07 43.2+28 182+1.1
UnseenA WSE 252404 425+4.6 200+3.1 61.5+6.8 30.1£43 97+01 30.1+£12 11.5+04 43.1+18 18.2+06
RIR 167425 322421 150+19 458420 225+24 77405 193+03 67+0.1 252406 10.6+0.2
Ours 246+15 44.8+47 222+25 686+47 334+33 97401 292+2.1 11.1+£09 41.6+35 175+ 14
Table 4

Multi-label zero-shot recognition performance (mean+SEM%) of the baseline models and our full model using the Hinge rank loss in three evaluation scenarios under
different data split settings. Notations are the same as described in Table 3.

Breakfast Charades
L-MAP I-MAP P R Fy L-MAP I-MAP P R Fq

RGS 109+0.0 154+00 88+£00 102+00 94+£00 59+00 85+£00 56+00 32+£00 41£00
NRC 28.1+04 50.1+10 36.7+0.7 423+08 393+0.7 92+0.1 21.74+0.7 222+07 1274+04 16.2+0.5
GZSL WSE  31.1£0.7 504403 36.6+£05 422406 392+06 86+00 20.1+£05 203+0.7 11.6+04 147+05
RLR 303£1.2 51.84+18 374+£14 432+16 40.1£15 95+£0.1 21.4+£09 224408 128+05 163+£0.6
Ours 327+04 534+08 389+05 449+05 41.7+05 100+01 226+04 231+05 13.2+03 168104

RGS 11.4+02 17.4+£0.1 96+£02 129+00 11.0£0.1 6.1+0.1 94+£01 58+01 43+£00 49+00
NRC 305+06 549+09 366+04 493+£04 4204+0.2 10.1£03 254405 232+£06 17.2+0.2 198+04

Data split Evaluation scenario Model

IFS KnownA WSE 33.0+09 554407 37.1+06 499+06 426+05 93+£02 237+£04 215£05 16.0£0.2 183+£0.3
RLR 349+18 59.0+13 386+07 519+1.1 443+08 108+0.2 265+07 237+08 17.7+04 203£05
Ours 356+05 582+10 386+03 520+05 443+00 109+02 264+03 241£03 179+0.2 206+0.1
RGS 85+06 307+06 6.1+06 500400 109+09 54+00 139+00 51£00 125+0.0 7.2+0.0
NRC 176+16 46.7+£32 91+12 734+40 161+20 67+04 218+12 93+04 23.1£14 132406
UnseenA WSE  227+£21 436+60 91+£19 726+83 161£31 66+04 21.3£19 87£07 21.7+£26 124%1.1
RLR 105£2.0 355£2.1 594+03 484+21 105+05 56+03 147+19 50£07 124+20 7.1+£1.1
Ours 203+06 476+16 88+10 71.6+£22 157+16 73+£05 226+15 96+07 239+20 13.7+1.0
RGS 152+15 178+04 11.3+04 102+0.0 107£02 52401 79+£01 51%£01 32+£00 39£00
NRC 226+20 266+17 185+13 16.7+12 175+12 89+0.1 207+0.1 21.2+03 13.3+0.3 16.4+0.3
GZSL WSE  244+£17 31.34+3.0 234+£19 21.1+14 222+16 81£02 194+£02 194+04 122+03 149+0.3
RLR 222+14 316+16 243+£21 21.8+16 23.0£18 9.0£0.1 199+£0.7 207+10 13.0+£05 16.0£0.6
Ours 247+14 329+29 246+25 221+19 233+22 92+01 21.1+04 221+07 139+04 171105
RGS 147+19 178+£0.2 10.1+0.2 128+0.0 11.3£0.1 50%+0.1 8.0+£01 48+0.1 37+£00 42£00
LFS NRC 23.0+2.6 294+27 185+15 23.6+£22 207+18 88+0.1 226+04 21.3+£04 16.1+0.0 18.3+£0.1

KnownA WSE 249+24 351438 234+£20 297420 262+20 79+02 21.1+£05 196+04 148+0.1 16.9+0.2
RLR 23.6£26 36.14+2.7 243+£22 31.0%£32 272+£26 92+01 227+£09 21.0£10 159+05 18.1£0.7
Ours 252+18 371+34 250+20 319+27 281+23 9.1+£00 232+04 221+£05 166+02 19.0+£03

RGS 16.8+1.6 342+13 162+16 50.0+00 244+18 69+0.1 194+0.1 67+0.1 25.0£00 10.5+0.1
NRC 21.6+06 396+28 197+14 614+46 297+18 95+£02 307+23 11.8£0.7 44.0+2.8 186+£1.1
UnseenA WSE 233+£02 412+43 190+£28 584457 286+£38 93+£0.1 299+£16 11.5+£02 429+13 18.1+04
RLR 189+1.1 333+12 164+0.1 51.5+54 247+06 74+05 185+08 64+05 238+14 10.1+0.7
Ours 233+20 402+51 194436 59.0£7.7 29.1+50 10.0£0.1 309+26 120+09 449+38 189+15
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Table 5
Multi-label zero-shot recognition performance (mean+SEM%) of six state-of-the-art methods and ours with the reference to random guess in three evaluation
scenarios under different data split settings. + denotes our adaptation to multi-label ZSL. The notations are the same as used in Table 3.
Data split Evaluation scenario Model Breakfast Charades
L-MAP I-MAP P R Fq L-MAP I-MAP P R Fq
RGS 109+00 154400 88400 102400 94+00 59400 85+00 56400 3.2+00 41400
DSP (Lampert et al., 2014) 213400 254+09 168404 194+04 180404 7.9+00 125+0.1 125+02 72401 9.1+0.1
ConSE (Norouzi et al, 2014) 16.1+02 296403 203+0.1 234401 21.7+01 73+00 13.9+03 146405 83+03 106404
COSTA (Mensink et al,, 2014) 197+02 37.4+03 288+04 332405 308+05 85401 169+07 176409 10.1+05 12.840.6
GZSL +GCN (Wang et al, 2018) 200402 36.6+04 279404 322+05 299404 85+0.1 166+05 17.2+08 98405 125+0.6
FastOTag (Zhang, Gong, and Shah, 2016) 22.3+1.1 38.6+02 275+0.1 31.8+0.1 295+0.1 93400 206+1.0 206+14 11.8+08 15010
FastOTag+ 234403 40.6+07 292403 33.7+03 31.3+03 97+01 217+06 21.9+08 125+05 159+0.6
Ours (RankNet) 321+08 533+10 390409 450+10 41.8+09 97401 224+04 228+04 130402 165+0.3
Ours (Hinge) 327404 534+08 389+05 449405 41.7+05 100+£0.1 226404 23.1+05 132+03 168+04
Ours (Fusion) 339404 547+11 400+11 461+13 428+12 101+01 233+05 237+07 135+04 172+05
RGS 11.4+02 174401 96+02 129400 11.0+01 61401 94+01 58401 43+00 49400
DSP (Lampert et al., 2014) 226405 308+19 191409 257+13 219+11 85+01 13.9+03 124+04 92403 106=+0.3
ConSE (Norouzi et al, 2014) 17.1+£03 330412 21.0+02 282407 241+04 78+02 159+04 146407 108+0.3 124405
COSTA (Mensink et al, 2014) 221407 41.6+07 288404 387+02 33.0+03 93+02 197+06 17.6+09 13.1+05 150+0.6
IFS KnownA +GCN (Wang et al, 2018) 221407 41.6+07 288404 387+02 33.0+03 93+02 197+06 17.6+£09 13.1+05 150+0.6
FastOTag (Zhang, Gong, and Shah, 2016) 23.9+1.3 443+05 29.8+07 400406 34.1+0.6 10.0+£02 246406 22.4+07 166+03 19.1+0.4
FastOTag+ 254+02 450+05 299404 402+11 343+06 105403 257+07 233+09 17.3+04 19.8+0.6
Ours (RankNet) 345+10 578407 385410 51.8+06 442+09 105402 26.1+03 235+05 17.5+0.1 20.0+0.2
Ours (Hinge) 356405 58.2+10 386403 52.0+05 443400 109+02 264+03 241+03 179402 206+0.1
Ours (Fusion) 366+07 594+05 396409 532+05 454+08 11.0+03 27.1+04 246+05 183+02 21.0+03
RGS 85+06 30.7+06 61406 50.0+00 109409 54+00 139400 51+00 125+00 7.2+0.0
DSP (Lampert et al., 2014) 159+ 15 27.0+47 58+16 4764115 104+27 62404 17.3+14 74408 184+19 106+ 1.1
ConSE (Norouzi et al., 2014) 122403 299450 62+09 51.0+69 11.1+15 58+04 17.3+08 7.0+£07 17.2+1.1 99408
COSTA (Mensink et al,, 2014) 92412 374+28 74407 60.1+25 13.1+10 6.0+03 155+10 63+08 154+15 89+1.0
Unseend +GCN (Wang et al, 2018) 1.0+ 14 299446 58+14 473+£103 103+24 59+04 153+13 62+15 150+3.1 87+2.0
FastOTag (Zhang, Gong, and Shah, 2016) 15.3+0.9 36.7+4.1 7.0+14 559467 124+23 7.1+04 202424 83+08 208+27 11.9+12
FastOTag+ 151+12 394413 74+09 601+36 132415 73+04 193+05 81£03 20.0+06 11.5+03
Ours (RankNet) 219403 51.0+45 94412 765+68 167+20 7.1+04 224421 95+10 235+27 135+15
Ours (Hinge) 203406 47.6+16 88410 71.6+22 157+16 73405 226+15 96+07 239+20 13.7+1.0
Ours (Fusion) 223404 529+46 97+16 788+68 173+26 73+05 231+18 99+08 246+25 141+12
RGS 152+15 178404 11.3+04 102400 107+02 52401 7.9+01 51401 32+00 39+0.0
DSP (Lampert et al,, 2014) 207+17 186+19 110415 99+10 104+12 7.4+01 121+03 124+06 77403 95+04
ConSE (Norouzi et al., 2014) 185+2.1 202+18 127+11 114+06 12.0+08 7.0+0.1 13.8+0.1 148401 93+01 11.4+0.1
COSTA (Mensink et al, 2014) 193421 227421 168+10 151+£07 159408 89+0.1 17.3+0.1 186+0.1 11.7+0.2 144+0.1
GzsL +GCN (Wang et al, 2018) 19.6+£22 231422 169+09 152+06 160407 89+0.1 17.1+£0.1 180403 11.3+0.3 13.9+03
FastOTag (Zhang, Gong, and Shah, 2016) 22.5+1.5 243+17 162+06 146+0.1 154403 86+0.1 20.1£04 20.1+09 126406 155+0.7
FastOTag+ 219411 233411 153402 13.8+06 145404 9.0+0.1 209403 214+06 135+04 165+05
Ours (RankNet) 250+ 1.4 326429 236+21 212415 2234+17 92+01 208+03 21.6+07 135+04 166+05
Ours (Hinge) 247+14 329429 246425 221+19 233+22 92401 211404 221+07 13.9+04 17.1£05
Ours (Fusion) 255+14 333+25 246423 221+16 232+19 96+01 215+04 226+06 142+04 17.4+04
RGS 147+19 178402 10.1+£02 128400 11.3+01 50+£01 80+01 48+01 37+00 42400
DSP (Lampert et al, 2014) 141+12 181+£27 85+18 103+£21 94+19 73+£01 129+04 123407 93+03 106405
ConSE (Norouzi et al., 2014) 122408 221406 13.1+£06 146+12 138409 6.8+0.1 150+0.1 147402 11.1+0.1 12.6+0.1
COSTA (Mensink et al, 2014) 198429 251427 168+10 213+08 187409 9.0+0.1 195+0.1 186401 141+02 16.0+0.1
LFS KnownA +GCN (Wang et al, 2018) 198+29 251427 168+10 213408 187409 90401 195+0.1 186401 141402 16.040.1
FastOTag (Zhang, Gong, and Shah, 2016) 23.14+2.0 26.5+1.9 159404 202+08 178405 84+0.1 224407 208+07 157+02 17.9+04
FastOTag+ 222417 249+15 151406 193+1.1 170408 9.0+0.1 228405 21.3+05 161+0.1 183+0.3
Ours (RankNet) 252416 357+36 233420 296+28 260423 91+01 230+06 21.6+07 163+03 186=+05
Ours (Hinge) 252418 37.1+34 250420 31.9+27 281+23 91+00 232+04 221+05 166+02 19.0£0.3
Ours (Fusion) 258+18 374+27 246420 31.3+28 276423 95+01 238+06 227+07 17.1+03 195+04
RGS 168+16 342413 162+16 500400 244+18 69+01 194+0.1 67+01 250+00 105+0.1
DSP (Lampert et al, 2014) 16.6+08 288414 147+06 428+13 219407 85+02 228+09 81+04 303+13 128+06
ConSE (Norouzi et al., 2014) 137417 33.0407 147+05 509+46 227402 7.9+04 232+04 85+00 31.9+03 135+0.1
COSTA (Mensink et al,, 2014) 182+ 11 358412 169+17 522420 254+20 76402 249+10 92404 344+18 145407
Unseena +GCN (Wang et al, 2018) 195+ 11 326426 153+26 467449 23.0+35 79402 184+09 58404 217415 92406
FastOTag (Zhang, Gong, and Shah, 2016) 21.14+1.1 39.1+4.0 185+3.6 56.0+6.5 27.84+49 95+0.1 284425 11.0+£05 41.1+22 17.4+08
FastOTag+ 212408 455+34 199418 61.7+24 300421 93+01 302+29 11.6+07 432+3.1 182+12
Ours (RankNet) 246+15 448+47 222425 686+47 334+33 97+01 292421 11.1+£09 416+35 17.5+14
Ours (Hinge) 233420 402+51 194436 59.0+77 291450 10.0+0.1 309+26 120+£09 449+38 189+15
Ours (Fusion) 2474+15 426+6.1 196439 59.7+86 295454 102+01 31.1+27 122+09 456+37 192+14

loss (Table 3). This result suggests that a semantic representa-
tion of labels is not critically important for known actions in
multi-label learning when the semantic embedding learning has
been employed to explore the between-action relations from
label co-occurrences. This observation further implies that the
semantic embedding learning cannot explore the semantic rela-
tions between labels properly unless there are sufficient training
examples for different actions. Nevertheless, the performance in
the unseen-action only and the generalized ZSL scenarios clearly
indicates the importance of the semantic representation of an
action label for knowledge transfer required by ZSL. It is also
evident from Tables 3 and 4 that the full model always outper-
forms the NRC where there are no recurrent connections. Thus,
the comparison to the baseline models clearly suggest that the
performance gain is brought by the use of an LSTM layer in the
visual model and the semantic embedding learning fulfilled in the
semantic model.

For the LFS setting, results shown in Tables 3 and 4 suggest
that all the baseline models perform significantly better than
a random guess. Overall, the full model generally outperforms
those baseline models on both datasets. In few circumstances,
however, the full model slightly under-performs the WSE on
Breakfast in terms of L-MAP with a tiny margin (Table 3). Besides,
it is observed from Table 3 that in the unseen-action only sce-
nario, our model slightly under-performs the WSE and the NRC

on Charades although it yields the best performance on Breakfast.
While from Table 4 we can observe that our full model performs
the best on Charades but not on Breakfast. These results reveal
that the two employed rank losses are complementary when
learning the joint embedding space.

In summary, the comparison to the elaborated baseline mod-
els facilitates the understanding of different components and
ranking loss functions employed in our proposed framework for
multi-label zero-shot human action recognition. Two different
ranking losses used in our framework yield the similar perfor-
mance overall. By comparison to four baseline models, the full
model generally leads to better results on two datasets measured
with different evaluation metrics in all three evaluation scenarios,
although the experimental results also reveal the limitation of
components used in the full model to be investigated in our
future studies.

5.3. Results on comparison to state-of-the-art methods

Table 5 summarizes the experimental results of the compara-
tive study described in Section 4.6.2. Multi-label ZSL performance
of five different methods including FastOTag+(our extension for
FastOTag) with the reference to a random guess is reported to
be compared with our proposed framework where two different
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Table 6

Multi-label recognition performance (mean#std%) of five state-of-the-art methods and ours.
Model Breakfast Charades

L-MAP [-MAP P R F1 L-MAP I-MAP P R F1

DSP (Lampert et al., 2014) 21.6+£00 252+00 16.6+0.0 19.1+0.0 17.7+0.0 8.0+0.0 126+0.0 13.0+0.0 74+0.0 9.5+0.0
ConSE (Norouzi et al., 2014) 16.7+£0.0 30.8+0.0 21.14+0.0 2444+00 22.7+00 74+00 146+£0.0 158+0.0 9.0+00 11.5+0.0
COSTA (Mensink et al., 2014) 21.54+0.0 393+0.0 29.54+0.0 34.0+0.0 31.6+0.0 9.1+£0.0 18.6+0.0 195+0.0 11.2+0.0 14.2+0.0
FastOTag (Zhang, Gong, and Shah, 2016) 21.6+1.5 40.7+0.6 28.7+0.6 33.1+0.7 30.7+0.6 95+00 234+£0.0 23.7+0.1 13.6+0.1 17.3+0.1
FastOTag+ 232403 42.14+05 304+£03 351£03 326+£03 10.0+£0.0 243+0.2 246+0.3 14.1+0.2 17.94+0.2
Ours (RankNet) 32.7+04 54.0+0.5 39.1+05 45.1+05 41.9+05 102+0.1 249+04 255+04 146+0.3 185+0.3
Ours (Hinge) 338+0.2 55.0+0.3 39.7+02 458+02 425+02 105+0.1 25.2+0.1 255+03 14.6+0.2 18.6+0.2
Ours (Fusion) 3414+02 552+02 39.7+03 458+04 425+04 108+0.1 258+0.1 26.3+02 150+0.1 19.1+0.1

rank losses and their fusion are employed, respectively. Again,
all the experiments are conducted with two different data split
settings and evaluated under three evaluation scenarios, as de-
scribed in Section 5.2. For reliability, we report the mean and
the SEM of results (k = 5 used in evaluation metrics, i.e., Egs.
(19)-(21)) over three randomly generated known/unseen label
splits under each evaluation scenario.

For the IFS setting, it is seen from Table 5 that all the models
perform better than random guess in most of evaluation scenar-
ios. However, DSP and ConSE result in the poorer performance
than random guess in the unseen-action only scenario on Break-
fast in terms of some specific metric, e.g., -MAP. Overall, DSP
and ConSE under-perform other methods considerably in terms
of all five evaluation metrics under all three evaluation scenar-
ios. Such results demonstrate that simply combining semantic
representations of co-occurred multiple labels into one collective
representation leads to catastrophic loss of semantic information,
which is mainly responsible for the poor performance of DSP
and ConSE in multi-label recognition. COSTA and GCN perform
comparably consistently in varying scenarios which shows the
limitation of GCN when a moderate number of labels are involved
and no extra label relationship is available. Note that the results
of COSTA and GCN for known actions (i.e. KnownA) are the same
since both of them employ the same SVM classifiers for known
actions. FastOTag generally outperforms COSTA and GCN on two
datasets in terms of most of evaluation metrics. While COSTA
learns a classifier for each label separately without considering a
relationship among co-occurred labels, the consideration of such
a relationship in FastOTag accounts for the better performance.
By incorporating the semantic embedding learning into FastOTag,
FastOTag+, our extension of FastOTag, constantly improves the
performance of its original version in most circumstances on two
datasets. Once again, this result lends us evidence to justify the
necessity of semantic embedding learning used in our framework
for zero-shot multi-label ZSL. In contrast, our model trained with
either RankNet loss or the hinge rank loss generally outper-
forms all five models significantly in terms of five evaluation
metrics under different evaluation scenarios on two datasets, as
highlighted with bold-font in Table 5. By comparing our model
to FastOTag+, we see three main differences between them as
follows: visual representations, network architectures for the vi-
sual model and loss functions. Regarding visual representations,
our model uses the segment-based visual features for an in-
stance while FastOTag+employs an instance-level holistic visual
representation. For network architectures, we employ an LSTM
layer with recurrent connections to capture temporal coherence
among segments of a video clip while FastOTag+simply uses a
feed-forward network. As described in Section 3.2.2, we use an al-
ternative loss function to that in FastOTag. Thus, those differences
together leverage our performance gain over FastOTag+, which
yet again lends us evidence to support our proposed framework.
Finally, it is observed from Table 5 that in the IFS setting, the
RankNet and the hinge rank losses perform differently on two
datasets; the hinge rank loss generally outperforms the RankNet

loss on both datasets with the exceptions of unseen action only
scenarios on Breakfast. Nevertheless, the fusion of two models
trained with different losses leads to the best performance in
most circumstances as highlighted with bold-font in Table 5.
Such results reveal that two losses behave quite differently and
the diversity can be exploited via fusion, which provides useful
information to develop more effective rank loss functions.

For the LFS setting, experimental results suggest that most of
the models in question have similar behaviour to that in the IFS
setting, as shown in Table 5. Once again, DSP and ConSE generally
perform worse than other models and even under-perform ran-
dom guess on Charades in the unseen-action only scenario. While
COSTA and GCN yield better performance than DSP and ConSE
overall, they generally under-perform FastOTag, FastOTag+and
ours in all three evaluation scenarios. It is noteworthy that GCN
performs no better than RGS for unseen actions in terms of all
metrics except L-MAP. These results further validate the lim-
itation of GCN when extra information of relations between
labels is not available. In the LFS setting, our model trained
with different rank losses generally outperforms others in most
circumstances except for the unseen-action only scenario on
Breakfast where FastOTag+performs better than ours marginally
in terms of [-MAP. Regarding two rank losses used in our exper-
iments, the hinge rank loss marginally outperforms the RankNet
loss in most circumstances on two datasets. Once again, the
fusion of results brought by two rank losses further improves the
performance in most circumstances, which provides the further
evidence on the complementary aspect of two different rank
losses. As described in Section 5.2, the LFS setting is more chal-
lenging than the IFS setting and some salient visual features on
test instances corresponding to unseen actions could completely
miss in training examples. In this case, the use of a segment-
level based visual representation and an LSTM layer in the visual
model may not be able to generalize well due to a lack of training
examples. Although such a result does not sufficiently favour the
use of a segment-level based visual representation and an LSTM
layer in the visual model in the presence of limited training data,
it is no doubt that introducing a semantic model to FastOTag
leverages the performance gain. Once again, experimental results
here along with those compared to the baseline models under
our LFS setting reveal a training data sparsity issue that has to
be addressed in any future multi-label zero-shot human action
recognition study.

Furthermore, Table 6 shows the experimental results in con-
ventional multi-label human action recognition, i.e., all the ac-
tions are known in learning. In this circumstance, only the IFS
setting is applicable. Hence, we use the same IFS setting as
described in Section 4.1.2 but, unlike what has been done for
simulating a zero-shot scenario, do not reserve any actions. Also
we use the same procedure as done for zero-shot learning to
search for optimal hyper-parameters for five models and ours and
repeat the experiments on the same data split as the IFS setting
for three trials with different parameter initialization. As a result,
we report the mean and standard deviation (std) of three-trial
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Fig. 4. Performance of different pooling strategies used to aggregate the temporal relatedness scores in the joint ranking embedding learning on two datasets,
Breakfast and Charades, in three evaluation scenarios. Avg: average pooling; Lagm: local average global maximum pooling; Max: maximum pooling; Ts is the number

of groups over which the pooling is done (c.f. Section 4.6.3).

results yielded by different methods. It is worth clarifying that we
do not have any GCN results in Table 6 since GCN is not applicable
for this experimental setting; in fact, all action label classifiers
can be learned from training data and hence no additional GCN is
required to predict unseen action classifiers. It is evident from Ta-
ble 6 that our model trained with either of two rank losses as well
as their fusion outperforms others in conventional multi-label
recognition on both datasets. Without unseen classes, our model
trained with the hinge rank loss generally performs slightly better
than its counterpart trained with the RankNet loss. Once again,
the fusion of results generated by those two models leads to
the best performance. To see the degraded performance in a
zero-shot scenario, we can compare the performance in the gen-
eralized ZSL evaluation scenario under the IFS setting, as shown
in Table 5, to that reported in Table 6. By such a comparison, it is
seen that the zero-shot performance of our model drops with a
narrow margin (approximately less than 10% overall in terms of
five different evaluation metrics). Given the fact that 10 out of 49
and 40 out of 157 human actions are reserved as unseen labels on
Breakfast and Charades, respectively, this comparison on experi-
mental results suggests that our proposed framework yields the
promising performance for multi-label zero-shot human action
recognition, which is close to the performance in multi-label
human action recognition. Experimental results shown in Table 6
also suggest that other state-of-the-art methods behave simi-
larly to ours in general. However, we also observe an unusual
phenomenon from their performance; i.e., by a comparison to
the generalized ZSL performance reported in Table 5, DSP yields
slightly worse performance in multi-label recognition in terms of
four of five evaluation metrics on Breakfast and so do FastOTag
and FastOTag+in terms of L-MAP. By a closer look at the dataset
and results in two experiments as well as our analysis, we find
that at least two factors account for this unusual phenomenon:
(a) co-occurred labels associated with most of video clips on

Breakfast are redundant in light of semantics, and (b) the single
collective semantic representation of co-occurred multiple labels
used in DSP is insensitive to missing of few co-occurred labels
due to the label information redundancy and the information
loss resulting from the average operation in forming the single
representation. Thus, we reckon that this phenomenon is rather
specific to the nature of this dataset and the ZSL setting where
there are only a small number of unseen labels.

5.4. Results on pooling strategy

We report the performance of three pooling strategies in terms
of five evaluation criteria. It is evident from Fig. 4 the average
pooling always performs the best and the maximum pooling
performs the worst regardless of evaluation criteria. In addi-
tion, the local average global maximum pooling performs better
when T; is set smaller. Such results imply that our framework
interprets the visual information at a global level that tends to
recognize actions appearing in a video clip rather than a local
level that identifies the accurate boundaries between different
actions. From our empirical study, it is observed that the average
pooling takes into account all information in a video to yield the
relatedness scores while the maximum pooling uses only the local
information regarding an abrupt change in visual domain but
likely overlooks a large portion of useful information related to
the nature of actions. Nevertheless, the maximum pooling might
be beneficial for unsupervised action localization in the weak
supervision setting, which is beyond the scope of this paper but
worth studying in future.

In summary, our comparative study suggests that our pro-
posed framework yields the favourable results and outperforms
the existing state-of-the-art methods in general. The average
pooling generally outperforms other alternatives in question.
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Fig. 5. A test video clip in the IFS setting and the top-5 labels predicted by different methods (c.f. Section 4.6.2). Its ground-truth labels are take_bowl, crack_egg,
put_egg2plate, take_plate, stir_egg, pour_egg2pan, stir_fry_egg, add_salt_pepper, butter_pan.
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Fig. 6. A test video clip in the IFS setting and the top-5 labels predicted by different methods (c.f. Section 4.6.2). Its ground-truth labels are cut_orange,
squeeze_orange, pour_juice.
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Fig. 7. A test video clip in the IFS setting and the top-5 labels predicted by different methods (c.f. Section 4.6.2). Its ground-truth labels are crack_egg, fry_egg,

put_egg2plate, take_plate, add_salt_pepper, butter_pan.

Also, our experimental results demonstrate challenges in multi-
label ZSL via our novel LFS setting especially when training
data are less correlated to test instances associated with unseen
classes in both semantic and visual domains.

5.5. Visual inspection

In general, visual inspection provides a manner that helps
us understand the behaviour of a method intuitively. To gain
an intuitive insight into the multi-label zero-shot human action
recognition, we visualize a number of typical test video clips on
Breakfast and the top-5 labels predicted by different state-of-
the-art methods described in Section 4.6.2 and ours in terms of
semantic relatedness scores. Our visual inspection mainly focuses
on understanding of the behaviour of our model and issues aris-
ing from our work. As a result, Figs. 5-8 illustrate several key
frames to human actions in typical test video clips and the top-5
predicted labels by different methods, where a correctly pre-
dicted known label is highlighted with bold font and a correctly
predicted unseen label is marked with bold-italic font.

For the IFS setting, Figs. 5-7 illustrate three typical results
yielded by different methods. Fig. 5 exemplifies the success of our

model, where four out of the top-5 labels predicted by our model
are the ground-truth actions and no other methods can match the
performance of our model. This exemplified test instance suggests
that the use of an LSTM layer in our visual model facilitates the
recognition of distinctive actions in a video clip. Fig. 6 shows
a test instance where all the methods fail to have any ground-
truth labels in their top-5 predicted labels. Our visual inspection
on this test instance reveals that non-trivial objects pertaining to
different actions are concentrated in a small region located in top-
right of frames in this video clip. Thus, it is extremely difficult to
capture the useful information in the visual domain, which poses
a challenge to all the existing human action recognition tech-
niques. Figs. 5-8 reveal that our models trained with two rank
losses yield different results for a test instance. Specially in Fig. 8,
three of the top-5 labels predicted by two models are in common,
however, the fusion method described in Section 3.3 successfully
predicts five ground truth labels. These instances vividly demon-
strate the different aspects of two rank losses and the synergy
achieved by their fusion. Besides, these test instances illustrated
in Figs. 5-8 also provide some insight regarding the behaviour
of other state-of-the-art models used in our comparative study.
For example, ConSE is more likely to yield the labels regarding
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Fig. 8. A test video clip appearing in the IFS and LFS settings and the top-5 labels predicted by different methods (c.f. Section 4.6.2) in two data split settings. Its
ground truth labels are take_bowl, crack_egg, put_egg2plate, take_plate, stir_egg, pour_egg2pan, stir_fry_egg, add_salt_pepper, butter_pan in the IFS setting, and
take_bowl, crack_egg, put_egg2plate, take_plate, stir_egg, pour_egg2pan, stir_fry_egg, add_salt_pepper, butter_pan in the LFS setting, respectively.

frequently used words in a human action domain. For those test
instances shown in Figs. 5-7, at least four out of the top-5 labels
predicted by ConSE are regarding different actions taken on “egg”.
For the instance shown in Fig. 8, all the top-5 labels predicted
by ConSE are completely regarding “pour” actions commonly
taken in kitchen. This limitation is due to the fact that ConSE
uses a single collective semantic representation resulting from
averaging the semantic representations of multiple co-occurred
labels, which favours those frequently used word vectors but
diminishes the opportunity of finding out infrequently used word
vectors in prediction. We can also see that COSTA and GCN always
predict the same top-5 results which are all known actions. These
results suggest that the methods aiming to predict unseen action
classifiers such as COSTA and GCN are more likely to rank known
labels ahead of unseen ones.

Experimental results reported in Tables 3-5 suggest that all
the models including ours generally perform worse under the
LFS setting than under the IFS setting. On the one hand, the
LFS setting results in a training data sparsity issue in contrast to
the IFS setting. To see this issue, let us take the first split on
Breakfast as an example. In this split shown in Table 2, there
are 1196 and 1019 training examples in the IFS and the LFS
setting, respectively. However, the number of training exam-
ples pertaining to specific known actions is significantly differ-
ent in two split settings due to different data split protocols
described in Section 4.1.2. For example, there are 330, 217, 254,
109 and 156 training examples with target labels,“crack_egg”,
“put_egg2plate”, “take_plate”, “stir_fry_egg” and “add_salt_
pepper”, respectively, in the IFS setting. In contrast, there are
only 23, 23, 81, 23 and 20 examples with the same target labels,
respectively, in the LFS setting. On the other hand, there is a
major difference between those models and ours; i.e., our visual
model employs a hidden layer of recurrent connection to capture
temporal coherence underlying intrinsic visual features while
those state-of-the-art models used in our comparative study do
not have such a mechanism. It is well known that a learning
model of a higher complexity or a larger capacity demands more
informative training data. To this end, the training data sparsity
issue affects the performance of our model more severely than
other models; it is evident that the performance gain from the
use of an LSTM layer in our visual model disappears due to a lack
of sufficient training data required in training our visual model
for capture temporal coherence.

To understand the difference between the IFS and the LFS set-
tings and the training data sparsity issue intuitively, we illustrate
the results yielded by the state-of-the-art methods and ours on a
common instance appearing in test sets in two data split settings,
as shown in Fig. 8. It is evident that four out of the top-5 action

labels predicted by our model are the ground truth and all other
models can predict some of ground-truth actions correctly under
the IFS setting. In contrast, however, none of the models correctly
predicts more than one ground-truth action for this exactly same
test instance under the LFS setting. The visual inspection on this
test instance clearly demonstrates the distinction between two
data split settings; i.e., visual features associated with unseen
actions are available in the IFS setting (an unrealistic scenario)
but unavailable in the LFS setting (a realistic scenario), and the
training data sparsity issue in the LFS setting, which poses a big
challenge to all the existing multi-label ZSL methods including
ours.

5.6. Model complexity

The architecture complexity of our learning model depends on
the number of hidden layers, hidden units and their types as well
as their connections used in neural networks to implement the
visual and the semantic models for a dataset.

In our current implementation, the number of parameters in
the visual model varies from 4.9 to 24.7 millions, and the number
of parameters in the semantic model varies from 0.15 to 0.77
millions under different hyper-parameter settings. Obviously, the
semantic model has much fewer parameters compared with the
visual model, suggesting that introducing a semantic model does
not incur a much higher computational burden but leads to
the performance gain. In general, our model often takes longer
training time than other state-of-the-art learning models used in
our comparative study due to the use of a LSTM layer to capture
temporal coherence.

Practically, with a GTX1080Ti GPU, the averaging time spent
for training our learning model is roughly 13 min on Charades
(i.e., 40 s per epoch multiplies approximately 20 epochs) and one
hour on Breakfast due to a larger number of time steps (T =
300). One limitation of our learning model is a large memory
requirement for training. Recall that the visual representations
have to be reserved for use in the training of semantic model, it
is required to load one large matrix with a size of n x d, x T into
memory . In our implementation, the amount of GPU memory
used for training on Charades and Breakfast is 3.5 GB and 10.5 GB,
respectively.

6. Concluding remarks
In this paper, we have formulated human action recognition as

a multi-label zero-shot learning problem and provide an effective
solution by proposing a novel framework via joint latent ranking
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Table 7

Optimal hyper-parameter values of different learning models found by grid search. Notation: IFS — Instance-First Split; LFS — Label-First Split; V — Visual model;
S — Semantic model; Ir — learning rate; C, ¢ — soft-margin and percentage of support vectors in SVM/SVR; m — margin in the hinge ranking loss. Ny — N, — d,
indicates a neural network architecture where N;(dropout rate) is the number of neurons in the first hidden layer and the dropout rate used in learning; N, is the
number of hidden neurons in the second hidden layer; and d, is the number of neurons in the latent embedding layer.

Dataset Data split Model Split
1 2 3
NRC (RankNet) V: Ir = le — 4; 1024(0.5) — 2048 — 500 V: Ir = 1e — 4; 1024(0.5) — 2048 — 500 V: Ir = le — 4; 2048(0.5) — 1024 — 500
S: Ir=1e — 6;500 — 500 S: Ir=1e — 6;500 — 500 S: Ir =1e — 6;500 — 500
NRC (Hinge) V: Ir = le — 4; 1024(0.5) — 2048 — 500 V: Ir = le — 4; 1024(0.5) — 2048 — 500 V: Ir = le — 4; 1024(0.5) — 2048 — 500
S:Ir=1e—6;500 — 500;m=1 S:Ir=1e—6;500 — 500;m=1 S:Ir=1e—6;700 — 500; m =1
WSE(RankNet) V: Ir = le — 4; 512(0) — 2048 V: Ir = le — 4; 512(0) — 1024 V: Ir = le — 4; 1024(0) — 2048
WSE(Hinge) V: Ir = le — 4; 1024(0.5) — 2048; m = 1 V: Ir=le —4;512(0) > 1024;m = 1 V: Ir = le — 4; 1024(0) — 1024;m = 1
RLR (RankNet) V: Ir=1le —4;512(0) — 2048 — 800 V: Ir = le — 4; 256(0.5) — 1024 — 500 V: Ir = 1le — 4; 256(0.5) — 2048 — 200
S: Ir=1e —6;700 — 800 S: Ir=1e —6; 500 — 500 S: Ir = 1e —6; 300 — 200
RLR (Hinge) V: Ir = le — 4; 1024(0) — 2048 — 500 V: Ir=1e—4;512(0.5) — 1024 — 500 V: Ir=1e—4;512(0.5) — 2048 — 200
IFS S: Ir=1e—6;700 — 500; m = 10 S: Ir=1e—6;500 — 500; m = 10 S: Ir=1e—6;500 — 200; m = 10
DSP C =0.1 C=1¢€e=0.1 C=1¢€e=0.1
ConSE C c=1 c=1
COSTA C c=1 Cc=1
FastOTag V: Ir = le — 4; 8192(0) — 1024 V: Ir=1le — 4;8192(0.5) — 2048 V:Ir=1le—2;8192(0.5) — 2048
FastOTag+ V: Ir = le — 4; 4096(0) — 1024 — 800 V: Ir=1le — 4; 8192(0.5) — 2048 — 800 V: Ir = le — 4; 8192(0) — 1024 — 200
S: Ir=1e — 6; 500 — 800 S: Ir=1e—6;700 — 800 S: Ir = 1e — 6; 300 — 200
Ours (RankNet) V: Ir=1le—4;512(0) — 2048 — 800 V: Ir = le — 4; 1024(0) — 2048 — 500 V: Ir = 1e — 4; 1024(0) — 2048 — 500
S: 1le — 6; 700 — 800 S: Ir=1e—6;700 — 500 S: Ir=1e—6;700 — 500
Ours (Hinge) V: Ir = 1le —4;256(0.5) — 2048 — 500 V: Ir = 1e — 4; 256(0.5) — 1024 — 500 V: Ir = 1e — 4; 1024(0) — 1024 — 500
Breakfast 8 S:Ir=1e—6;700 — 500; m=1 S:Ir=1e—6;700 — 500; m=1 S: Ir=1e—6;500 — 500; m=1
NRC (RankNet) V: Ir = le — 4; 2048(0.5) — 2048 — 200 V: Ir = le — 4; 2048(0) — 2048 — 800 V: Ir = le — 4; 2048(0) — 2048 — 500
S: Ir=1le — 6; 500 — 200 S: Ir = 1e — 6; 500 — 800 S: Ir=1e —6;700 — 500
NRC (Hinge) V: Ir = le — 4; 4096(0) — 2048 — 500 V: Ir = le — 4; 4096(0) — 2048 — 500 V: Ir = le — 4; 2048(0.5) — 2048 — 200
S: Ir=1e —6; 300 — 500; m = 10 S: Ir=1e —6; 300 — 500; m = 10 S:Ir=1e—6;500 — 200;m =1
WSE(RankNet) V: Ir = le — 4; 1024(0) — 1024 V: Ir = le — 4; 1024(0) — 1024 V: Ir = le — 4; 1024(0.5) — 1024
WSE(Hinge) V: Ir = le — 4; 1024(0.5) — 2048; m = 10 V: Ir = le — 4; 1024(0.5) — 2048; m = 10 V:Ir=le—4;512(0) — 2048; m = 1
RLR (RankNet) V: Ir = 1le —4;256(0.5) — 1024 — 500 V:Ir=1le—4;512(0.5) — 1024 — 200 V:Ir=1e—4;512(0.5) — 2048 — 200
S:1 le — 6; 500 — 500 S: Ir=1e—6;700 — 200 S: Ir=1e—6; 500 — 200
RIR (Hinge) V: Ir = le — 4; 512(0) — 2048 — 800 V: Ir = le — 4; 256(0) — 1024 — 800 V: Ir = le — 4; 512(0) — 2048 — 800
LFS S: Ir=1e —6;500 — 800; m = 10 S:Ir_]e—G 700 — 800; m = 10 S: Ir=1e—6;700 — 800;m =10
DSP C=100,e =0.1 C 00, =0.1 C=100,e =0.1
ConSE C =100 C C =100
COSTA C =100 C C =100
FastOTag V: Ir = le — 4; 4096(0.5) — 2048 V: — 4; 4096(0) — 1024 V: Ir = le — 2; 8192(0.5) — 2048
FastOTag+ \ = le — 4;8192(0.5) — 1024 — 800 V: —4;8192(0.5) — 1024 — 800 V: Ir = 1e — 4; 4096(0) — 1024 — 200
S: le — 6; 500 — 800 S: —6 500 — 800 S: Ir=1e — 6; 300 — 200
Ours (RankNet) V: Ir = le — 4; 512(0) > 1024 — 800 ' — 4;256(0) — 1024 — 800 V: Ir = le — 4; 512(0.5) — 1024 — 200
S: Ir=1e—6;500 — 800 S:l —6 700 — 800 S: Ir=1e —6;700 — 200
Ours (Hinge) V:Ir=1le—4;512(0.5) - 1024 — 200 V: Ir = le — 4;512(0.5) — 1024 — 800 V: Ir = le — 4; 256(0) — 2048 — 500
S: Ir=1e—6;500 — 200; m = 10 S: Ir=1e—6;500 — 800; m = 10 S:Ir=1e—6;500 — 500; m=1
NRC (RankNet) V: Ir = le — 4; 1024(0) — 1024 — 500 V: Ir = le — 4; 1024(0) — 1024 — 500 V: Ir = le — 4; 2048(0) — 1024 — 200
S: Ir=1e —6; 500 — 500 S: Ir=1e —6; 500 — 500 S: Ir=1e—6;700 — 200
NRC (Hinge) V: Ir = le — 4; 2048(0) — 2048 — 800 V: Ir = le — 4; 2048(0) — 2048 — 800 V: Ir = le — 4; 4096(0.5) — 2048 — 500
S:1 le — 6;700 — 800; m = 10 S: Ir=1e—6;500 — 800; m = 10 S: Ir=1e—6; 300 — 500; m = 10
WSE(RankNet) V: Ir = 1e — 4; 1024(0.5) — 2048 V:Ir=1le—4;512(0.5) — 2048 V: Ir = 1e — 4; 256(0.5) — 2048
WSE(Hinge) V: Ir = le — 4; 1024(0.0) — 2048 V: Ir = le — 4; 1024(0.0) — 1024 V: Ir = le — 4; 1024(0.0) — 2048
RLR (RankNet) V: Ir = le —4;256(0.5) — 1024 — 500 V: Ir = le —4;256(0.5) — 1024 — 500 V: Ir = le —4;256(0.5) — 1024 — 500
S: Ir=1e — 6;500 — 500 S: Ir= 1le — 6; 500 — 500 S: Ir = 1le — 6;500 — 500
RLR (Hinge) V: Ir = le — 4; 1024(0.5) — 2048 — 500 V: Ir = le — 4; 1024(0.5) — 2048 — 500 V: Ir = le — 4; 1024(0.5) — 2048 — 500
IFs S: Ir=1e —6;700 — 500; m = 10 S: Ir=1e —6;700 — 500; m = 10 S: Ir=1e—6;700 — 500; m = 10
DSP C =0.1 C=1e€e=0.1 C=1e€e=0.1
ConSE C =1 =1
COSTA C C=1 C=1
FastOTag V: 4; 4096(0.5) — 2048 V: Ir = le — 4; 8192(0) — 2048 V: Ir = le — 4; 4096(0.5) — 2048
FastOTag-+ V: 4;8192(0.5) — 2048 — 800 V: Ir=1le—4;8192(0.5) — 2048 — 800 V: Ir = le —4;8192(0.5) — 1024 — 800
S: 6; 700 — 800 S:Ir—]e—6700»800 S: Ir = 1e — 6; 500 — 800
Ours (RankNet) \4 — 4;256(0.5) — 2048 — 800 V: Ir = le — 4; 256(0.5) — 2048 — 800 V: Ir = le — 4; 1024(0.5) — 1024 — 800
S: lr_le—G 700 — 800 S: Ir= 1e — 6; 700 — 800 S: Ir = 1e — 6; 500 — 800
Ours (Hinge) V: Ir = le — 4; 256(0.5) — 2048 — 500 V: Ir = le — 4; 256(0.5) — 2048 — 800 V: Ir = le — 4; 1024(0.5) — 1024 — 800
Charades 28 S:Ir=1e—6;700 — 500; m=1 S:Ir=1e—6;700 — 800; m=1 S:Ir=1e—6;500 — 800; m=1
NRC (RankNet) V: Ir = 1le — 4; 1024(0) — 2048 — 800 V: Ir = 1le — 4; 2048(0) — 1024 — 200 V: Ir = 1le — 4; 4096(0) — 2048 — 500
S: Ir=1e — 6;700 — 800 S: Ir=1e—6;700 — 200 S: Ir=1e — 6; 300 — 500
NRC (Hinge) V: Ir = le — 4; 2048(0) — 2048 — 500 V: Ir = le — 4; 2048(0) — 1024 — 800 V: Ir = le — 4; 2048(0) — 2048 — 500
S: Ir=1e—6;500 — 800; m = 10 S:Ir=1e—6;700 — 200; m =1 S: Ir=1e—6;500 — 800; m = 10
WSE(RankNet) V: Ir = le — 4; 1024(0.5) — 2048 V:Ir=1le—4;512(0.5) — 2048 V: Ir=1le —4; 1024(0.5) — 2048
WSE(Hinge) V: Ir = le — 4; 1024(0.0) — 2048; m = 10 V:Ir=1le—4;256(0.0) - 2048; m =1 V: Ir = le — 4; 1024(0.5) — 2048; m = 10
RLR (RankNet) V: Ir = le — 4; 256(0.5) — 1024 — 500 V: Ir = le — 4; 256(0.5) — 2048 — 800 V: Ir = le — 4; 256(0.5) — 2048 — 800
S: Ir=1le — 6; 500 — 500 S: Ir=1e —6;700 — 800 S: Ir=1le —6;700 — 800
RLR (Hinge) V: Ir=1le—4;512(0.5) — 2048 — 800 V: Ir=1le —4;512(0.5) — 2048 — 800 V: Ir=1le —4;512(0.5) — 2048 — 800
LFS S: Ir=1e—6;700 — 800; m = 10 S: Ir=1e—6;700 — 800; m = 10 S: Ir=1e—6;500 — 800; m = 10
DSP C=1,€e=01 C=1,€e=0.1 C=1€e=0.1
ConSE C=1 C=1 C=1
COSTA =1 c=1 c=1
FastOTag V: Ir = le — 4; 4096(0.5) — 1024 V:Ir=1le —4;8192(0.5) — 2048 V: Ir = le — 4; 4096(0.5) — 1024
FastOTag+ V: Ir = le — 4; 8192(0.5) — 2048 — 800 V: Ir = le — 4; 8192(0) — 1024 — 500 V: Ir = le — 4; 4096(0.5) — 1024 — 500
S: Ir=1le —6;700 — 800 S: Ir=1e — 6; 500 — 500 S: Ir = 1e — 6;500 — 500
Ours (RankNet) V: Ir=1le —4;512(0.5) — 2048 — 800 V: Ir=1le —4;512(0.5) — 2048 — 800 V: Ir = le — 4; 1024(0.5) — 2048 — 500
S: Ir=1e —6;700 — 800 S: Ir=1e — 6; 500 — 800 S: Ir=1e—6;700 — 500
Ours (Hinge) V: Ir=1le—4;512(0.5) - 1024 — 500 V: Ir = le — 4; 256(0.5) — 2048 — 500 V: Ir = 1e — 4; 1024(0.5) — 1024 — 800
S:Ir=1e—6;700 — 500; m=1 S:Ir=1e—6;700 — 500; m=1 S:Ir=1e—6;500 — 800; m=1

embedding learning. To carry out our framework, we employ
a neural network of the heterogeneous architecture for visual
embedding, where an LSTM layer is used to facilitate captur-
ing temporal coherence information underlying different actions
from weakly annotated video data. Also, we advocate the use of
semantic embedding learning to facilitate bridging the semantic
gap and effective knowledge transfer, which is implemented by
a feed-forward neural network. All the above contributions have
been thoroughly verified via our comparative study with various
well-motivated settings. Experimental results on two benchmark
multi-label human action datasets suggest that our proposed

framework generally outperforms not only the baseline systems
but also several state-of-the-art multi-label ZSL approaches in all
the different test scenarios.

Although we have demonstrated favourable results on two
benchmark datasets in comparison to state-of-the-art approaches,
our observations on the performance of all the approaches used
in our comparative study including ours suggest that the existing
multi-label ZSL techniques are not ready for a real application;
the instance-first split setting fails to simulate real multi-label
zero-shot human action recognition scenarios while the perfor-
mance becomes even worse under the label-first split setting
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that simulates a real scenario. Nevertheless, our experimental
results including visual inspection provide the insightful infor-
mation for improving our proposed framework. In our ongoing
work, we would address issues arising from our experiments
and observations with proper techniques. To address the train-
ing data sparsity issue revealed in our experiments, we would
develop unsupervised learning algorithms to discover salient yet
intrinsic visual features from unlabelled video clips and further
incorporate proper temporal constraints into our rank loss func-
tions to better capture temporal coherence. Also, the GAN-based
synthetic feature generation idea could be further developed
for weakly-supervised multi-label video clips to addressing the
training data sparsity issue. Moreover, we would consider di-
verse pooling strategies and introduce attention mechanisms to
our model for improving implicit salient feature extraction and
accurate localization of different yet complex actions involved
in a video clip during the visual embedding learning. Also, we
would employ alternative semantic representations developed by
ourselves (Wang & Chen, 2017a), which encode the semantic re-
latedness between action labels more accurately, in the semantic
embedding learning to facilitate knowledge transfer.

While our framework is proposed especially for multi-label
zero-shot human action recognition, we would highlight that it
is directly applicable to multi-label human action recognition
without modification as demonstrated in our experiments. Also,
our framework is easy to adapt for tackling various multi-label
ZSL problems in different domains. For example, we can apply our
framework to miscellaneous multi-label zero-shot classification
tasks on temporal or sequential data, e.g., acoustic event classifi-
cation, straightforward as well as multi-label zero-shot learning
tasks on static data, e.g., object recognition, by replacing a neural
network of the heterogeneous architecture only with a neural
network of only feed-forward connections in the visual model.
Thus, we are going to explore such extensions and applications
in our future work.
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Appendix. Hyper-parameters

In this appendix, we report all the optimal hyper-parameter
values of different learning models used in our experiments to
enable one to replicate our experimental results. Table 7 sum-
marizes all the optimal hyper-parameter values obtained with a
grid-based search via cross-validation as described in Section 5.1.
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