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Abstract. In this paper, we explore the Input/Ouiput HMM (IOHMM) architecture for a substantial
problem, that of text-dependent speaker identification. For subnetworks modeled with generalized
linear models, we extend the IRLS algorithm to the M-step of the corresponding EM algorithm.
Experimental results show that the improved EM algorithm yields significantly faster training than
the original one. In comparison with the multilayer perceptron, the dynamic programming technique
and hidden Markov models, we empirically demonstrate that the IOHMM architecture is a promising
way to text-dependent speaker identification.

1. Introduction

Speaker identification task is to classify an unlabeled voice token as belonging to
one of a set of N reference speakers [1]. It is a very hard problem since a speak-
er’s voice changes in time. There have been extensive studies in this field based
upon conventional techniques of speech signal processing [2]. Recently, the neural
computing techniques have been investigated to improve the classification perfor-
mance [3]. It is well known that the temporal information or sequence effect plays a
crucial role in speech processing. In previous researches, a dynamic programming
technique called Dynamic Time Warping (DTW) [4] was proposed to handle the
sequence effects with a template matching method in speech processing. But the
performance of the DTW is unsatisfactory in speaker identification since a speak-
er’s voice greatly changes in different time and environments so that the testing data
may be rather different from the templates. In neural network community, some
temporal processing techniques have been developed such as recurrent networks
and time-delay techniques etc. Unfortunately, most of those techniques either can-
not capture long-term temporal information [5] or suffer from high computational
burdens [6].

In the recent research of neural computing, Bengio et al. proposed a recurrent
architecture having a modular structure based upon the Mixtures of Experts (ME)
architecture and Hidden Markov Model (HMM). Expectation-Maximization (EM)
algorithm with the supervised learning paradigm is also employed in the model for
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training. Unlike standard HMMs which only learn the output sequence distribution
and trained by an unsupervised EM algorithm, the model can be used to learn map
input sequences to output sequences using the same processing style as recurrent
neural networks. So it is called Input/Output HMM (IOHMM) [7]. An utterance of
speaker may be viewed as a time-series. In text-dependent speaker identification, the
textin both training and testing is the same or is known. Thus, the utterance of a fixed
text naturally becomes a sequence consisting of successive feature vectors after
preprocessing and feature extraction, which results in that text-dependent speaker
identification becomes a problem of sequence recognition. In previous researches,
indeed, this idea has already been used to attack problems of text-dependent speaker
recognition [2, 8] based upon different temporal processing techniques, such as
HMMs and the DTW. In this paper, based upon the idea, we explore the application
of an alternative technique, IOHMM, to text-dependent speaker identification. In
comparison with HMMs and the DTW, the IOHMM allows to take into account
inter-speaker information for classification. Different structures of IOHMMs have
been empirically investigated and experimental results indicate that the IOHMM is
a promising technique to attack the text-dependent speaker identification problem
in comparison with other techniques such as HMMs, the DTW and the Multi-Layer
Perceptron (MLP). On the other hand, we also show that the M-step of the EM
algorithm in the IOHMM is still an Iterative Reweighted Least Square (IRLS)
problem [9, 10] when the statistical structure of its subnetworks can be modeled by
Generalized Linear Model (GLIM) theory [10]. Accordingly, we extend the IRLS
algorithm in [9] to the M-step of the EM algorithm for the IOHMM instead of the
original gradient ascent method in [7]. Experiments demonstrate that the improved
EM algorithm yields significantly faster training than the original one.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
IOHMM architecture and introduces the IRLS algorithm to the EM algorithm in
the IOHMM for training. Section 3 presents experimental results and conclusions
are drawn in the final section.

2. IOHMM Architecture and the Improved EM Algorithm
2.1. THE IOHMM ARCHITECTURE

The IOHMM can be modeled by a discrete state dynamical system based upon the
state space description: y; = g(z¢, w), ¢ = f(x¢—1,us) where u; € R™ is the
input vector at time ¢, y; € RY is the output vector, and z; € {1,2,---,n} is a
discrete state. Moreover, admissible state transitions will be specified by a directed
graph G whose vertices correspond to the model’s states and the set of successors
of state j in S,. Bengio et al. model such a system as the recurrent architecture
[7] illustrated in Figure 1. The architecture consists of a set of state networks
N,;, 5 = 1,---,n and a set of output networks O,, j = 1,---,n. Each one of
the state and output networks is uniquely associated to one of the states, and all
networks share the same input u;. Each state network N, has the task of predicting
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Figure 1. The input/output HMM architecture.

the next state distribution, based on the current input and given that z;_; = 7.
Similarly, each output network O, predicts the output of the system, given the
current state and input. All the subnetworks are assumed to be static. At time ¢,
each output ¢,, ; of the state subnetwork IV, on the input u; is associated with one
of the successor i of state j as ;1 = et/ Y gcg €%, j = 1,---,n,1 € §;
where a,,; are intermediate variables that can be thought of as the activations of
the output units of subnetwork NV,. In addition, the condition ¢;,; = 0 is also
imposed for each ¢ ¢ S;. In this way, >i" | ¢;;: = 1V, 1. Let vector C_; € R
denote the internal state of the model and it can be interpreted as the current
state distribution. It is computed through the previously computed internal state
as (¢ = Z?:l Cji-195,0 where @ = [p1j4,- - ,cpn],t]T when the wy is input.
Output networks compete to predict the global output of the system 7j; € R? on the
input ug: 7y = 37, 7, where 77, € R? is the output of subnetwork O, . This
connectionist architecture can be also interpreted as a probability model. Let us
assume a multinomial distribution for the z; and initialize the vector (g to positive
numbers summing to one. The probabilistic interpretation of IV, is as follows:

Pz, = zlu'i) = ?:1 Pz =ilzy = jyu) Pz = j|ut1;1)v (1)

@ijit = Pl =iz 1 = jyw)
Accordingly, the output 7j; of this architecture can be interpreted as a ‘position
parameter’ for the probability distribution of the output y;. However, in additional
to being conditional on an input u,, this expectation is also conditional on the state
zi: i = Elyi|z: = i,u]. The actual form of the output distribution, denoted
fv (ye: 1), will be chosen according to the given task.
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2.2. THE IMPROVED EM ALGORITHM

For the recurrent architecture, Bengio et al. have proposed an EM algorithm using a
supervised paradigm for parameter estimation [7]. Consider the training data are a

set of P pairs of input/output sequences of length T},: D = {(urir” (p), y?” P);p=
1,---, P}. Let © denote the set of all parameters in the architecture. The likelihood
function is

P
L(©:D) = [ P(y{"(»)Ju;? (p); ©) )
p=1

To derive the learning equations with EM algorithm, let us define the complete data

through introducing hidden state paths X' = {mr}r” (p); p=1,---, P} (describing
a path in state space for each sequence) as D, = {(u?” (p), y?” (p), m?” () p=

1, .-, P}. The corresponding complete data log-likelihood is

P
1(8:;Dc) = Y log Py (p), z1” (p)[u}” (p); ©) (3)
p=1

To simplify the presentation, we omit p below from Equation (3) such that we have
F T  Tp,. T
1.(©;D,) = Z log P(y,”, 2,7 |u,”; ©)
p=1

As aresult, EM algorithm is given by introducing the auxiliary function Q(©, ©())
and iterating the following two steps for k = 1,2, -:

E-step: Compute Q(©,0*)) = Ex[l.(©; D.)|D,6®)
M-step: Update the parameters as ©+1) « arg maxgQ(0, ©*)

In the E-step, for a sequence consisting of 7' components, computing (6, @)
is the equivalent to computing a posteriori probabilities h;,; as

Bi 40 1~ 1Qij ¢

YT

hyt = Pz = i,00-1 = jlyt,uf) =

where

ayi =Py ooy = jul ™) = A (e e-1) D ok e-10r-2,
%

and

Big =Pyl me =ifu]) = fy(¥6:77i0) D Phatr1 Brpel-
k
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In the M-step, in general, it can be completed by the gradient ascent method
[7]. Unfortunately, it suffers from rather slow training. In practice, distributions
in the exponential family can cover most of problems. The IRLS algorithm is
an iterative algorithm for computing the maximum likelihood estimates of the
parameters of a GLIM [9, 10]. Therefore, we can adopt the IRLS algorithm in the

M-step if the statistical structure of all output subnetworks is modeled as the GLIM
(s)

[9, 10], i.e. fy (yt;ﬁi,t) is a distribution in the exponential family. Let ©,” and
@f ), i = 1,---,ndenote the parameters of state and output networks, respectively.
Thus, the M -step becomes two separate maximization problems
P Tp n
= argmaxZ DD Giglog fy (yei i) @)
o, p..lt 1i=1
(._)(3) — P Tp s~ " hi, ] i
i arg max@(‘?) Zp:l zt:l Zl-l E] 17v19,8 og SDZ];t (5)
T, :
= arg max@(S) Zf:l Ztil lOg( =1 H] 1 (pzjjtt)
hz] t

Since fy (yt;7:,) is a distribution of the exponential family and [Ti; [T}, v;,%
is the multinomial distribution which is also a member of the exponential family,
the IRLS algorithm can be used to solve those two problems. For the problem in
Equation (4), we have

AW = [UTW Ul Ue) 6)

where @5;’) denotes the parameter vector related to the rth output node of the 4

output network. The ¢th component of e(®) is egf,)t = (Yrt = Nir,t)/ ' (1hrt) and

f(-) is the link function [10] of fy(y¢; 7). U is the matrix consisting of all

training data and its rows are the feature vectors of each utterances. Wl(ro) is a
diagonal matrix whose tth diagonal element is wi; = [f'(mr4)]*/V ar(y,¢) and
Var(-) is the variance function [10] of fy (y:;7i ). In speaker identification, the
classification is a specific multiway classification that the output is the binary vector
with a single non-zero component. Therefore, we use the generalized Bernoulli
distribution proposed in [6] as the probabilistic model of output networks. In
[6], we have shown that the generalized Bernoulli distribution is a member of the
exponential family. Accordingly, we have fy (y+; 7it) = [1}_, nf,:f (1= g) Vet

such that efrt Cit(Yrt — Tir,e) and wz(” = (i ¢Nirt(1 — 1) For the problem in
Equation (5) using the IRLS algorithm, we have

AOY = [UTWP U 'ue® %

(s)

where ©,,” denotes the parameter vector related to the r output node of the ¢ state

network. The tth component of e(*) is eir)t = hirt — Pirt. Wi(f) is also a diagonal
(s)

matrix whose ¢th diagonal element is w;,; = @irt(1 — @urz)-
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Figure 2. Scheme of the speaker identification system based on the IOHMM.

3. Experiments and Results

We have already developed a text-dependent speaker identification system in Sun
Sparc II workstation. Scheme of the system is depicted in Figure 2.

The technical details of the acoustic preprocessing and feature extraction are
briefly as follows: 1) 16-bit A/D-converter with 11.025 KHz sampling rate; 2)
processing the data with a pre-emphasis filter H(z) = 1 — 0.95z7!; 3) 16-order
linear predictive (LP) analysis; 4) 256-point LP based FFT formed every 25.6ms
using a Hamming analysis window without overlapping; 5) dividing channels from
0 Hz to 5.0125 KHz into 24 channels according to the knowledge on critical bands
in [11], subtraction of the average from the components and normalization of the
pattern vectors as follows: In each channel, the energy is accumulated and denoted
as E;, (1 = 1,2,--.,24). Furthermore, an entropy is also defined over each channel
for producing a 24-order feature vector for each frame as follows,

E;

I;=—-PlogP, P,= ———
TR E

D i=1,2,---,24. (8)

In the current system, we choose 10 isolated digits from ‘0’ to ‘9’ as the fixed
text. Depending upon the fixed text, as classifiers, 10 IOHMMs are established so
that those 10 classifiers correspond to 10 digits from ‘0’ to ‘9’, respectively. The
current acoustic database consists of 10 isolated digits from *0’ to ‘9” in Chinese
and 10 male speakers are registered in the database. In the database, the utterances
are recorded in three different sessions; each digit is uttered 10 times in each
session. According to three different recording sessions, we naturally divide all
data into three sets called Set-1, Set-2 and Set-3, respectively. After preprocessing
and feature extraction, accordingly, we achieve three sets consisting of 24-order
feature vectors. For evaluating the performance, we adopt two methods to train the
IOHMM. One is the single-session training which simply uses data in Set-1 as
training samples. The other is the multi-session training which uses 7 utterances
in Set-1 and 3 utterances in Set-2 of each digit, respectively, for each speaker. As
a result, the remainder of data in Set-2 is called Set-2*. During testing, we call
results as Test-1, Test-2 and Test-1* when data in Set-2, Set-3 and Set-2* are used
as testing sets, respectively.

Like the HMMs, it is still an open problem how to select an appropriate structure
of the IOHMM. That is, for a given task, the number of subnetworks and the matrix
of state transition in the IOHMM must be determined in advance. In the current
work, we exhaustively search for an appropriate number of subnetworks from 4
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Figure 3. The results of (a) ergodic model, (b) left-right with jumps, (c) left-right without jump.

Table I. The identifying accuracies (%) of the IOHMM with jumps under single-session
training.

Text o2 3 4 'y e T '8 9" Averaging

Test-1 83.0 82.0 83.0 77.0 83.0 87.0 §9.0 89.0 84.0 84.0 84.1
Test-2 92.0 94.0 91.0 850 84.0 89.0 82.0 81.0 80.0 850 86.3

to 10 and investigate three typical models often used in speech processing [12],
i.e. ergodic model, left-right models including one without jump and one that no
jumps of more than two states are allowed. For instance, we show all identifying
accuracies on the digit ‘0’ at different models and different states in Fig. 3 under
the single-session training. According to averaging identifying accuracies, we find
that the optimal numbers of the ergodic model, left-right with jumps and left-right
without jumps are 6, 5 and 10, respectively. Using the optimal numbers for each
chosen model, furthermore, we find that the performance of left-right models with
jumps is better than ones of ergodic model and left-right model without jump under
the single-session training. Due to the limited space here, we merely report results
of 5-state [OHMM with jumps in both single-session and multi-session training.
The results are shown in Table I and Table II, respectively.

It is worth pointing out that the use of IRLS algorithm in the M-step of EM
algorithm yields significantly faster training than the gradient ascent method. In
detail, 4 or 5 epoches (about 5 minutes) are merely needed to reach the steady state
using the improved EM algorithm, while more than 800 epoches (about 5 hours)
are usually necessary to reach the steady state using the original EM algorithm in

[7].

Table II. The identifying accuracies (%) of the IOHMM with jumps under multi-session
training.

Text ‘0" ‘' 2 3 4 5 6 T 8 ‘0 Averaging

Test-1* 97.1 97.1 97.1 943 986 872 97.1.0 98.6 929 943 95.4
Test-2 92.0 98.0 96.0 88.0 90.0 91.0 850 89.0 77.0 89.0 89.5
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Table III. The identifying accuracies (%) of the HMM without jump under multi-session
training.

Text ‘o 2 3 4 ' e T '8 ‘9" Averaging

Test-1* 97.2 951 873 865 862 894 873 99.1 77.1 884 91.4
Test-2 87.0 94.0 87.0 81.0 91.0 88.0 85.0 89.0 67.0 71.0 83.6

Table IV. The identifying accuracies (%) of the DTW under multi-session training.

Text o2 3 % ' e ‘T ‘8 ‘9 Averaging

Test-1¥ 922 90.1 883 835 828 87.7 864 947 759 892 87.1
Test-2 88.0 90.0 850 80.0 83.0 86.0 87.0 87.0 71.0 74.0 83.1

For the purpose of comparison, we also investigate some classic techniques in
text-dependent speaker identification, i.e. HMMs [8], the DTW [4] and the MLP
[3], on the same training and testing sets. For HMMs, we adopt the discrete HMM
technique and the codebook consists of 256 codewords. We also investigated three
kinds of HMM, i.e. ergodic, left-right without jump and left-right with jumps [12].
As aresult, the 6-state left-right HMM without jump achieved the best identifying
accuracies which are shown in Table III. For the DTW technique, multiple feature
vectors of utterances recorded in different sessions were employed as multiple
templates of a speaker. Accordingly, for unknown utterance, the averaging score
of results produced by comparing with multiple templates was used to identify
the unknown speaker and the identifying accuracies are shown in Table IV. For
MLPs, we used the 2-fold cross-validation technique to derive an optimal four-
layer architecture with 24-20-20-40 for the given task. The identifying accuracies
using such MLPs as classifiers are shown in Table V.

Based upon all aforementioned results, we could claim empirically that the
IOHMM is better than those classic techniques in text-dependent speaker identifi-
cation.

4. Conclusions

We have described an application of the Input/Output HMM to text-dependent
speaker identification. We have also extended the IRLS algorithm [9] to the M-
step of the EM algorithm in the IOHMM when the statistical structure of subsets

Table V. The identifying accuracies(%) of MLPs under multi-session training.

Text o 2 3 %y e T '8 9 Averaging

Test-1* 925 89.3 89.8 821 87.6 854 889 919 79.6 89.5 87.7
Test-2 88.0 90.0 87.0 850 820 830 84.0 83.0 77.0 89.0 84.8
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could be modeled by the GLIM. Experimental results show that the IOHMM is a
promising architecture which can deal with temporal information in text-dependent
speaker identification. In comparison with the classic techniques, the system based
on the IOHMM could achieve better performance. In our ongoing research, we shall
explore the improved IOHMM architecture for capturing the long-term contextual
information carried in a speaker’s utterance in text-dependent speaker identification.
In addition, we shall also apply the [OHMM to text-dependent speaker verification
in our future work.
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