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Abstract. In this paper, we explore the Input/Output HMh4 (IOHMM) architecture for a substantial 
problem, that of text-dependent speaker identification, For subnetworks modeled with generalized 
linear models, we extend the IRLS algorithm to the M-step of the corresponding EM algorithm. 
Experimental results show that the improved EM algorithm yields significantly faster training than 
the original one. In comparison with the multilayer perceptron, the dynamic programming technique 
and hidden Markov models, we empirically demonstrate that the IOHMM architecture is a promising 
way to text-dependent speaker identification. 

1. Introduction 

Speaker identification task is to classify an unlabeled voice token as belonging to 
one of a set of N reference speakers [ 11. It is a very hard problem since a speak- 
er’s voice changes in time. There have been extensive studies in this field based 
upon conventional techniques of speech signal processing [2]. Recently, the neural 
computing techniques have been investigated to improve the classification perfor- 
mance [3]. It is well known that the temporal information or sequence effect plays a 
crucial role in speech processing. In previous researches, a dynamic programming 
technique called Dynamic Time W&-ping (DTW) [4] was proposed to handle the 
sequence effects with a template matching method in speech processing. But the 
performance of the DTW is unsatisfactory in speaker identification since a speak- 
er’s voice greatly changes in different time and environments so that the testing data 
may be rather different from the templates. In neural network community, some 
temporal processing techniques have been developed such as recurrent networks 
and time-delay techniques etc. Unfortunately, most of those techniques either can- 
not capture long-term temporal information [5] or suffer from high computational 
burdens [6]. 

In the recent research of neural computing, Bengio et al. proposed a recurrent 
architecture having a modular structure based upon the Mixtures of Experts (ME) 
architecture and Hidden Markov Model (HMM). Expectation-Maximization (EM) 
algorithm with the supervised learning paradigm is also employed in the model for 
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training. Unlike standard HMMs which only learn the output sequence distribution 
and trained by an unsupervised EM algorithm, the model can be used to learn map 
input sequences to output sequences using the same processing style as recurrent 
neural networks. So it is called Input/Output HMM (IOHMM) [7]. An utterance of 
speaker may be viewed as a time-series. In text-dependent speaker identification, the 
text in both training and testing is the same or is known. Thus, the utterance of a fixed 
text naturally becomes a sequence consisting of successive feature vectors after 
preprocessing and feature extraction, which results in that text-dependent speaker 
identification becomes a problem of sequence recognition. In previous researches, 
indeed, this idea has already been used to attack problems of text-dependent speaker 
recognition [2, 81 based upon different temporal processing techniques, such as 
HMMs and the DTW. In this paper, based upon the idea, we explore the application 
of an alternative technique, IOHMM, to text-dependent speaker identification. In 
comparison with HMMs and the DTW, the IOHMM allows to take into account 
inter-speaker information for classification. Different structures of IOHMMs have 
been empirically investigated and experimental results indicate that the IOHMM is 
a promising technique to attack the text-dependent speaker identification problem 
in comparison with other techniques such as HMMs, the DTW and the Multi-Layer 
Perceptron (MLP). On the other hand, we also show that the M-step of the EM 
algorithm in the IOHMM is still an Iterative Reweighted Least Square (IRLS) 
problem [9, lo] when the statistical structure of its subnetworks can be modeled by 
Generalized Linear Model (GLIM) theory [lo]. Accordingly, we extend the IRLS 
algorithm in [9] to the M-step of the EM algorithm for the IOHMM instead of the 
original gradient ascent method in [7]. Experiments demonstrate that the improved 
EM algorithm yields significantly faster training than the original one. 

The remainder of the paper is organized as follows. Section 2 briefly reviews the 
IOHMM architecture and introduces the IRLS algorithm to the EM algorithm in 
the IOHMM for training. Section 3 presents experimental results and conclusions 
are drawn in the final section. 

2. IOHMM Architecture and the Improved EM Algorithm 

2.1. THE IOHMM ARCHITECTURE 

The IOHMM can be modeled by a discrete state dynamical system based upon the 
state space description: yt = g(zt, ut), xt = f (xt-1, ut) where ut E Rm is the 
input vector at time t, yt E RQ is the output vector, and xt E { 1,2,. . . , n} is a 
discrete state. Moreover, admissible state transitions will be specified by a directed 
graph S whose vertices correspond to the model’s states and the set of successors 
of state j in S,. Bengio et al. model such a system as the recurrent architecture 
[7] illustrated in Figure 1. The architecture consists of a set of state networks 
N,,j = l,..., n and a set of output networks O,, j = I, e . . , n. Each one of 
the state and output networks is uniquely associated to one of the states, and all 
networks share the same input ut . Each state network N, has the task of predicting 
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Figure 1. The input/output HMM architecture 

the next state distribution, based on the current input and given that ICE-1 = j. 
Similarly, each output network 0, predicts the output of the system, given the 
current state and input. All the subnetworks are assumed to be static. At time t, 
each output vZJ,t of the state subnetwork NJ on the input ut is associated with one 
of the successor i of state j as pij,t = e’%jJ/ ClcEs eakJJ, j = 1,. . . , n, i E Sj 
where at3,t are intermediate variables that can be thought of as the activations of 
the output units of subnetwork NJ. In addition, the condition piJ,t = 0 is also 
imposed for each i +! Sj. In this way, Cy=, (~i~,t = 1 Vj, t. Let vector <t E R” 
denote the internal state of the model and it can be interpreted as the current 
state distribution. It is computed through the previously computed internal state 
as <t = C,“=, [j,t-tp3,t where $j,t = [(PQ,~, . . . , ynJ,tlT when the ut is input. 
Output networks compete to predict the global output of the system rj’t E Rq on the 
input ut: $ = C,“=, &J$& where <j,~ E Rq is the output of subnetwork 0,. This 
connectionist architecture can be also interpreted as a probability model. Let us 
assume a multinomial distribution for the zf and initialize the vector cc to positive 
numbers summing to one. The probabilistic interpretation of NJ is as follows: 

P(zt = +l;> = & P(zt = ilzt-1 = j, Ut)P(Zt-~ = jlU-I), 
cpij,t = P(zt = ilzt-* = j, Ut) (1) 

Accordingly, the output $ of this architecture can be interpreted as a ‘position 
parameter’ for the probability distribution of the output yt. However, in additional 
to being conditional on an input ut, this expectation is also conditional on the state 
Zt: qt = E[ytl~t = i, ut]. The actual form of the output distribution, denoted 
&(yt; ?&), will be chosen according to the given task. 
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2.2. THEIMPROVEDEMALGORITHM 

For the recurrent architecture, Bengio et al. have proposed an EM algorithm using a 
supervised paradigm for parameter estimation [7]. Consider the training data are a 
set of P pairs of input/output sequences of length TP: D = {(up (p) , y? (p)); p = 
1;s. , P}. Let 0 denote the set of all parameters in the architecture. The likelihood 
function is 

(2) 

To derive the learning equations with EM algorithm, let us define the complete data 
through introducing hidden state paths X = {z?(p); p = 1, e 1. , P} (describing 

a path in state space for each sequence) as D, = { (~7 (p) , y? (p) , ~7 (p)) ; p = 
l,**. , P}. The corresponding complete data log-likelihood is 

(3) 

To simplify the presentation, we omit p below from Equation (3) such that we have 

Z,(O;D,) = ~logP(yTp,xT”,uT”;@) 
p=l 

As a result, EM algorithm is given by introducing the auxiliary function Q(O, @(“I) 
and iterating the following two steps for k = 1,2, . 3 .: 

E-step: Compute Q(O, O(“)) = E~[z,(@; D,)ID, @(“)I 
M-step: Update the parameters as O(“+l) t arg maxeQ(@, @“)) 

In the E-step, for a sequence consisting of T components, computing Q (0, @(“I) 
is the equivalent to computing a posteriori probabilities fiij,t as 

h sj,t = P(xt = i, xt-1 = jjyy, UT) = Pi,tQj,t-wij,t 

c, ‘%,T 

where 

QJ,t-1 = P(Y;-‘,zt-l = jlu;-‘) = ~~~(Yt-l;~~,t-l)C(P3k.,t-lCYk,t-2, 
k 

and 

Pi,t = P(Yh = +:> = fY(Yt;77fi,t) c (Pkz,t+Ibk,t+l- 
k 
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In the M-step, in general, it can be completed by the gradient ascent method 
[7]. Unfortunately, it suffers from rather slow training. In practice, distributions 
in the exponential family can cover most of problems. The IRLS algorithm is 
an iterative algorithm for computing the maximum likelihood estimates of the 
parameters of a GLIM [9, lo]. Therefore, we can adopt the IRLS algorithm in the 
M-step if the statistical structure of all output subnetworks is modeled as the GLIM 
[9, lo], i.e. fl-(yt;&) is a distribution in the exponential family. Let O!“’ and 
($O),i=l . . . , n denote the parameters of state and output networks, respectively. 
Thus, the d-step becomes two separate maximization problems 

@Lo) = arg Ez C XI 7: Ci,t 1% fY (Yt ; fji,t) 
z p=l t=1 i=l 

(4) 

@j”’ = w2 maxp IX,‘=, Cz, CL C,“=, hij,t 1% @j,t 
(5) 

= argmaxo(6) C,‘=I Cfi, @GIL llyd $$) 2 

Since f~r(yt; ci,t) is a distribution of the exponential family and & ny=, cp3it 
is the multinomial distribution which is also a member of the exponential family, 
the IRLS algorithm can be used to solve those two problems. For the problem in 
Equation (4), we have 

A@(‘) = [uT~&J-QJ~(~ 
ZT 2T (6) 

where 0~~’ denotes the parameter vector related to the rth output node of the i 
output network. The tth component of e co) is eiP)t = (yr,t - v~T,t)/f'(rlzT,t) and 
4(.) is the link function [lo] of fy (yt; 6,~). U ‘is the matrix consisting of all 

training data and its rows are the feature vectors of each utterances. WJr” is a 
diagonal matrix whose tth diagonal element is wir,t = [f’(rlzT,t)]*/Vur(y,,,) and 
Var(-) is the variance function [lo] of flr(yt; fi,t). In speaker identification, the 
classification is a specific multiway classification that the output is the binary vector 
with a single non-zero component. Therefore, we use the generaEked Bernoulli 
distribution proposed in [6] as the probabilistic model of output networks. In 
[6], we have shown that the generalized Bernoulli distribution is a member of the 
exponential family. Accordingly, we have &(yt; $$) = flE=, $,$ (1 -~zk,t)i-Y~3t 

such that et:\ = &,t(yr,t - qir,t) and w,‘:‘, = ci,tqir,t( 1 - nzT,t). For the problem in 
Equation (5$, using the IRLS algorithm, ‘we have 

A@(‘) = [U’~JS)U]-‘Ue(s) 

where C3:; 

2T (7) 

denotes the parameter vector related to the r output node of the i state 
network. The tth component of e(“) is ei, t ‘“! = hir,t - (~ir,t. W/r’) is also a diagonal 

matrix whose tth diagonal element is wir t - pzr,t ‘“.I - (1 - (Pzr,t). 
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Figure 2. Scheme of the speaker identification system based on the IOHMM. 

3. Experiments and Results 

We have already developed a text-dependent speaker identification system in Sun 
Spare II workstation. Scheme of the system is depicted in Figure 2. 

The technical details of the acoustic preprocessing and feature extraction are 
briefly as follows: 1) 16-bit A/D-converter with 11.025 KHz sampling rate; 2) 
processing the data with a pre-emphasis filter H(z) = 1 - 0.95~~‘; 3) 16-order 
linear predictive (LP) analysis; 4) 256-point LP based FFT formed every 25.6ms 
using a Hamming analysis window without overlapping; 5) dividing channels from 
0 Hz to 5.0 125 KHz into 24 channels according to the knowledge on critic& bands 
in [I 11, subtraction of the average from the components and normalization of the 
pattern vectors as follows: In each channel, the energy is accumulated and denoted 
as&, (i = 1,2;.. ,24). Furthermore, an entropy is also defined over each channel 
for producing a 24-order feature vector for each frame as follows, 

Ii = -Pi log Pi, P, = Ei 
C~“=I Ej 

; i = 1,2,...,24. 

In the current system, we choose 10 isolated digits from ‘0’ to ‘9’ as the fixed 
text. Depending upon the fixed text, as classifiers, 10 IOHMMs are established so 
that those 10 classifiers correspond to 10 digits from ‘0’ to ‘9’) respectively. The 
current acoustic database consists of 10 isolated digits from ‘0’ to ‘9’ in Chinese 
and 10 male speakers are registered in the database. In the database, the utterances 
are recorded in three different sessions; each digit is uttered 10 times in each 
session. According to three different recording sessions, we naturally divide all 
data into three sets called Set-l, Set-2 and Set-3, respectively. After preprocessing 
and feature extraction, accordingly, we achieve three sets consisting of 24-order 
feature vectors. For evaluating the performance, we adopt two methods to train the 
IOHMM. One is the single-session training which simply uses data in Set-l as 
training samples. The other is the multi-session training which uses 7 utterances 
in Set-l and 3 utterances in Set-2 of each digit, respectively, for each speaker. As 
a result, the remainder of data in Set-2 is called Set-2”. During testing, we call 
results as Test-l, Test-2 and Test- 1 * when data in Set-2, Set-3 and Set-2* are used 
as testing sets, respectively. 

Like the HMMs, it is still an open problem how to select an appropriate structure 
of the IOHMM. That is, for a given task, the number of subnetworks and the matrix 
of state transition in the IOHMM must be determined in advance. In the current 
work, we exhaustively search for an appropriate number of subnetworks from 4 
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Figure 3. The results of (a) ergodic model, (b) left-right with jumps, (c) left-right without jump. 

Table I. The identifying accuracies (%) of the IOHMM with jumps under single-session 
training. 

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Averaging 

Test-l 83.0 82.0 83.0 77.0 83.0 87.0 89.0 89.0 84.0 84.0 84.1 
Test-2 92.0 94.0 91.0 85.0 84.0 89.0 82.0 81.0 80.0 85.0 86.3 

to 10 and investigate three typical models often used in speech processing [ 121, 
i.e. ergo&c model, left-right models including one without jump and one that no 
jumps of more than two states are allowed. For instance, we show all identifying 
accuracies on the digit ‘0’ at different models and different states in Fig. 3 under 
the single-session training. According to averaging identifying accuracies, we find 
that the optimal numbers of the ergodic model, left-right with jumps and left-right 
without jumps are 6, 5 and 10, respectively. Using the optimal numbers for each 
chosen model, furthermore, we find that the performance of left-right models with 
jumps is better than ones of ergodic model and left-right model without jump under 
the single-session training. Due to the limited space here, we merely report results 
of 5-state IOHMM with jumps in both single-session and multi-session training. 
The results are shown in Table I and Table II, respectively. 

It is worth pointing out that the use of IRLS algorithm in the M-step of EM 
algorithm yields significantly faster training than the gradient ascent method. In 
detail, 4 or 5 epoches (about 5 minutes) are merely needed to reach the steady state 
using the improved EM algorithm, while more than 800 epoches (about 5 hours) 
are usually necessary to reach the steady state using the original EM algorithm in 
[71. 

Table II. The identifying accuracies (%) of the IOHMM with jumps under multi-session 
training. 

Text ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ Averaging 

Test- I* 97.1 97.1 97.1 94.3 98.6 87.2 97.1.0 98.6 92.9 94.3 95.4 
Test-2 92.0 98.0 96.0 88.0 90.0 91.0 85.0 89.0 77.0 89.0 89.5 
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Table III. The identifying accuracies (%) of the HMM without jump under multi-session 
training. 

Text '0' ' 1' '2' '3' '4' '5' '6' '7' '8' '9' Averaging 

Test-l* 97.2 95.1 87.3 86.5 86.2 89.4 87.3 99.1 77.1 88.4 91.4 
Test-2 87.0 94.0 87.0 81.0 91.0 88.0 85.0 89.0 67.0 71.0 83.6 

Table IV. The identifying accuracies (%) of the DTW under multi-session training. 

Text '0' '1' '2' '3' '4' '5' '6' '7' '8' '9' Averaging 

Test-l* 92.2 90.1 88.3 83.5 82.8 87.7 86.4 94.7 75.9 89.2 87.1 
Test-2 88.0 90.0 85.0 80.0 83.0 86.0 87.0 87.0 71.0 74.0 83.1 

For the purpose of  comparison, we also investigate some classic techniques in 

text-dependent speaker identification, i.e. HMMs [8], the D T W  [4] and the MLP 
[3], on the same training and testing sets. For HMMs, we adopt the discrete HMM 
technique and the codebook consists of  256 codewords. We also investigated three 
kinds of  HMMs, i.e. ergodic, left-fight without jump and left-fight with jumps [ 12]. 
As a result, the 6-state left-fight HMM without jump achieved the best identifying 
accuracies which are shown in Table III. For the DTW technique, multiple feature 
vectors of  utterances recorded in different sessions were employed as multiple 
templates of  a speaker. Accordingly, for unknown utterance, the averaging score 
of  results produced by comparing with multiple templates was used to identify 
the unknown speaker and the identifying accuracies are shown in Table IV. For 
MLPs, we used the 2-fold cross-validation technique to derive an optimal four- 
layer architecture with 24-20-20-40 for the given task. The identifying accuracies 

using such MLPs as classifiers are shown in Table V. 
Based upon all aforementioned results, we could claim empirically that the 

IOHMM is better than those classic techniques in text-dependent speaker identifi- 

cation. 

4. Conclusions 

We have described an application of  the Input/Output HMM to text-dependent 
speaker identification. We have also extended the IRLS algorithm [9] to the M- 
step of  the EM algorithm in the IOHMM when the statistical structure of  subsets 

Table V. The identifying accuracies(%) of MLPs under multi-session training. 

Text '0' ' 1' '2' '3' '4' '5' '6' '7' '8' '9' Averaging 

Test-l* 92.5 89.3 89.8 82.1 87.6 85.4 88.9 91.9 79.6 89.5 87.7 
Test-2 88.0 90.0 87.0 85.0 82.0 83.0 84.0 83.0 77.0 89.0 84.8 
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could be modeled by the GLIM. Experimental results show that the IOHMM is a 
promising architecture which can deal with temporal information in text-dependent 
speaker identification. In comparison with the classic techniques, the system based 
on the IOHMM could achieve better performance. In our ongoing research, we shall 
explore the improved IOHMM architecture for capturing the long-term contextual 
information carried in a speaker’s utterance in text-dependent speaker identification. 
In addition, we shall also apply the IOHMM to text-dependent speaker verification 
in our future work. 
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