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Abstract

Speaker verification is a process that accepts or rejects the identity claim of a speaker. How to make a decision is a critical
problem; a threshold for decision-making critically determines performance of a speaker verification system. Traditional
threshold estimation methods take only information conveyed by training data into consideration and, to a great extent, do not
relate it to production data. It turns out that a speaker verification system with such threshold estimation suffers from poor
performance in reality due to mismatches. In this paper, we propose several methods towards better decision-making in a
practical speaker verification system. Our methods include the use of additional reliable statistical information for threshold
estimation, elimination of abnormal data for better estimation of underlying statistics, and on-line incremental threshold
update. To evaluate the performance of our methods, we have done simulations based on a baseline system, Gaussian Mixture
Model, in both text-dependent and text-independent modes. Comparative results show that in contrast to the recent threshold
estimation methods our methods yield considerably better performance, especially on miscellaneous mismatch conditions, in
terms of generalization. Thus our methods provide a promising way for real speaker verification applications. © 2002 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

As one of the most important fields in biometrics, speaker
recognition is a process that automatically authenticates a
personal identity based on his/her voice. Although speaker
recognition includes diverse tasks that discriminate people
in terms of their voices, most of studies focus on speaker
identification and verification. While speaker identification
is to classify an unknown voice token as one of reference
speakers, speaker verification is to accept or reject an iden-
tity claim. Moreover, a speaker recognition system often
works in either of two operating modes: text-dependent and
text-independent. By text-dependent, the same or known text
is used for training and test. In contrast, any text is allowed
to be uttered in the process of either training or test in the
text-independent mode. As argued by Doddington et al. [1],
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it seems that the speaker verification task is of the greatest
application potential though the speaker identification task
appears to attract substantial scientific interests. Recently,
speaker verification has been increasingly demanded for
security in miscellaneous information systems [1-3]. There-
fore, the development of effective speaker verification tech-
nologies for use in reality is of utmost importance, which
recently has been recognized by both academic and indus-
trial communities [1,2,4].

A central issue in speaker verification is how to make
a decision. Essentially, a speaker verification system could
make two types of mistakes during decision-making; one is
the false acceptance (FA) which causes an impostor to be
accepted, and the other is the false rejection (FR) which
causes a genuine speaker’s identity claim to be denied. A
substantial task in decision-making is somehow to minimize
both FA and FR errors during decision-making. Unfortu-
nately, decision-making was regarded as a simple task and
diminished in speaker recognition researches [1]. More re-
cently, however, this problem has been found to be very
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challenging for those who actually have been working for
real operational systems [1,2]. It has been realized that the
actual decision process must be considered to be a part of
any comprehensive speaker verification study and the capa-
bility of a system to make proper decisions should be an
integral part of evaluation [1].

Although the decision-making studies were not high-
lighted in previous speaker verification researches, there
have been a few approaches developed for decision-making.
These approaches could be roughly classified into two
categories: a priori threshold setting [2,5-12,14] and a pos-
teriori threshold setting [2,13,15]. The basic idea of a priori
threshold setting is to find a proper threshold somehow
based on a training set, then the resultant threshold will be
applied to make a decision during test for any claimed voice
token. The a priori threshold setting gives a feasible way to
create real speaker verification systems. On the other hand,
the a posteriori threshold is often set by finding the thresh-
old of equal error rate (EER) that makes the FA rate equal
to the FR rate for a given speaker system. In contrast to the
a priori threshold setting, the a posteriori threshold setting
provides a way to evaluate the discrimination capabilities
of a particular speaker model in terms of a certain data set.
Although such a method allows us to compare objectively
the modeling performance, it is ultimately unrealistic for a
real application.

On the basis of statistical hypothesis-test theory, some
normalization approaches have been proposed to help the
aforementioned threshold setting methods against mis-
matches [2,16—27]. The idea underlying such a sort of
approaches is to create a reference model either associated
with a speaker model or independent of speaker models.
Thus scores produced by a speaker model are somehow
normalized by the reference model. For building a reference
model, there are usually two approaches; i.e. cohort and
world models. The cohort model approach is to find a set
of speakers whose characteristics in speech are similar to a
specific speaker such that a cohort model can be built for
modeling cohort speakers’ ensemble characteristics [16],
while the world model approach is to build a universal
speaker model on a pool of speech utterances produced by
various speakers [17]. It has been widely reported that by
incorporating a reference model the performance of a priori
or a posteriori threshold setting methods may yield the im-
proved performance since the score variability due to mis-
matches is minimized by the reference model. As pointed
out by Doddington et al. [1], however, speaker normaliza-
tion sometimes may lead to worse performance. Therefore,
it is a non-trivial task to build an effective reference model
for the normalization in decision-making [2,4].

From a statistical viewpoint, acoustic characteristics of
a speaker could be modeled with a certain distribution and,
thus, training data for building a system are viewed as sam-
ples drawn from a speaker distribution in some subspace.
All the a priori threshold setting methods work based on a
given training set. Therefore, statistical information acquired

from training data plays a critical role for setting a decision
threshold, which poses a central problem how to take ad-
vantage of available statistical information effectively. As
a matter of fact, there are only some limited data available
for training in the development of a real operational system.
Thus, it is unavoidable that the statistics estimated from the
training data may be unreliable and inconsistent with those
underlying a specific distribution. In the previous a priori
threshold setting studies, most efforts were made in finding
the reliable statistics and utilizing them to estimate a deci-
sion threshold [2,5-9,11,14]. To our knowledge, however,
there is little consideration on the consistency of statistics
between the training and the production data in those meth-
ods. Apparently, the inconsistent statistics could produce an
improper decision threshold, which results in poor gener-
alization for those utterances used beyond training. On the
other hand, a fixed decision threshold is always subject to
limitation in generalization since it is achieved based on only
limited statistical information conveyed by a training set.
Fortunately, new data should be always available as long as
a system is used in reality. The availability of new data pro-
vides possibilities to update a decision threshold and, there-
fore, threshold update is also a basic issue in a real speaker
verification system [9,14].

In this paper, we present several methods to handle the
aforementioned issues in terms of the statistics-based a pri-
ori threshold setting framework. Our efforts include the use
of additional reliable statistical information for threshold es-
timation, elimination of abnormal data to achieve the con-
sistent statistics, and on-line incremental threshold update.
As a consequence, our methods provide several simple yet
effective technologies towards better making a decision in
an operational system. For performance evaluation, we have
done simulations based on a GMM-based speaker verifica-
tion system [28,29] in terms of different databases includ-
ing a benchmark corpus KING [30]. In particular, different
mismatch conditions have been considered in simulations to
thoroughly evaluate the performance of our methods. Com-
parative results in different operating modes show the effec-
tiveness and robustness of our methods in contrast to some
sophisticated a priori methods. In particular, the results of
our autonomous on-line threshold update indicate that our
work provides promising decision-making technologies in
the development of a real speaker verification system.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews several sophisticated threshold estimation
methods. Section 3 presents our methodologies towards bet-
ter making a decision in speaker verification. Section 4
reports simulation results. Further discussions are given in
Section 5, and conclusions are drawn in Section 6.

2. Review of threshold estimation

To make this paper self-contained, we briefly review
threshold estimation methods with an emphasis on the a
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priori speaker-dependent threshold setting. We first de-
scribe the theoretical background of threshold setting and
then present the statistics-based a priori threshold estima-
tion methods where most of them will be applied in our
simulations for comparison.

2.1. Background

On the basis of statistics, we model acoustic charac-
teristics by probabilistic models. Let S and S denote a
speaker and non-speaker. ' Therefore, both speaker S and
non-speaker S can be described by probabilistic models.
Since speaker verification is a process of making a decision
accepting or rejecting a claimed identity by a system, we
denote the acceptance decision as $ and rejection decision
as S, respectively. According to Bayesian decision the-
ory, an optimal decision can be made by minimizing the
following cost function [31]:

C = P(S)P(SIS)Cys +P(S)P(S°\S)CS=‘S. (1)

Here, P(S) and P(S) are the a priori probabilities of the
claimed speaker to be the speaker S and to be non-speaker
S. P(S |S) and P(S|S) are, respectively, the probabilities of
an FA and of an FR, while Cﬁ‘ s and C§| s denote the cor-
responding costs of a null hypothesis for a true acceptance
and a true rejection.

We denote a speech utterance claimed as belonging to
speaker, S, as %. Thus, the minimization of the cost function
in Eq. (1) leads to the Bayesian optimal decision rule [32]:

7
Ll Zl|€) > T3, then accept the claimed identity. (2a)
p(u|S)
p(‘ll|~5:) < Ts, then reject the claimed identity.  (2b)
p(|S)

Here, p(%|S) stands for the value of the claimed speaker’s
probability density function (PDF) and p(%|S) denotes the
PDF of the non-speaker distribution. 7 is the Bayesian
threshold:

Cs15 P(S)

Tp = —— . 3
w5 (3)

From Eq. (3), it is apparent that the optimal Bayesian
threshold depends upon only the cost ratio of FA to FR
as well as the a priori probability ratio of impostors to
the speaker. When a real application domain is fixed, the
costs, Cg)s and Cs:\ 5> could be estimated based on the prior
knowledge and desires from a real application domain. In
the circumstance of no prior knowledge, two costs are of-
ten assumed to be equal. Thus, the optimal threshold relies

! Given a specific speaker, it often refers to the rest of registration
speakers (pseudo-impostor) in an operational system.
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Fig. 1. The relationship among different error measures in speaker
verification.

on only the a priori probability ratio. When speaker and im-
postors are further assumed to be a priori equal-probable, the
value of the corresponding decision threshold is one, which
results in a minimum of the half total error rate (HTER) as

PSIS) + PSIS)

HTER =
2

“)

Intuitively, the HTER in Eq. (4) can be viewed as the aver-
age of the normalized FA and FR rates, which forms a use-
ful measure to evaluate the overall performance of a speaker
verification system. To understand different measures better,
Fig. 1 illustrates the relationship among the FA, FR, HTER,
and EER. Based on the definition in Eq. (4), the HTER will
be equal to the EER of a system only if the threshold is set as
an equal error threshold (e.e.t.). Since the change of FA and
FR is not continuous as a threshold varies in reality, there
may be no exact case that FA equals FR. Fortunately, the
above fact provides a practical way to approximate the EER
of a system. In this circumstance, the EER is approximated
through use of the corresponding HTER on the condition
that the absolute value of difference between FA and FR is
minimal. As a result, we will take advantage of the HTER
to approximate the EER and evaluate the performance of an
operational system in our simulations.

Although an optimal decision threshold is theoretically
available by Eq. (3), it is hardly applicable in practice since
the PDFs in Eq. (2) cannot be achieved directly and often
need to be estimated based on the likelihood functions of sta-
tistical models. Due to limited data available during enroll-
ment, the estimation from the likelihood functions does not
exactly match true speaker and non-speaker distributions.
Thus, we have to adjust the threshold for decision-making
in order to compensate for mismatch between the model
and the data. As a consequence, a proper speaker-dependent
threshold T, which can be modeled as a function of the
optimal threshold T3, is demanded based on a registration
population.
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2.2. Statistics-based a priori threshold estimation

If sufficient data are achieved during enrollment, a classi-
cal method for threshold setting is to find an e.e.t. Then the
e.e.t. would be used for decision-making in a system. From
the viewpoint of statistics, sufficient data could resist mis-
match and lead to robust decision-making. Unfortunately,
the enrollment materials in reality are limited so as to hinder
the estimation of a speaker-dependent threshold reflecting
the variability in modeling accuracy. In this circumstance,
some statistics underlying those data convey reliable infor-
mation indeed for threshold setting. As a consequence, a
sort of the statistics-based a priori threshold setting meth-
ods have been proposed based on the statistics underlying
speaker’s and non-speaker’s scores. In the sequel, we shall
review some sophisticated statistics-based a priori threshold
setting methods.

Given a set of data associated with speaker and
non-speaker, intra-speaker’s and inter-speaker’s scores are
achieved, as illustrated in Fig. 2. The simplest way is to as-
sume that these score distributions are subject to Gaussian
distributions. A Gaussian density is in the following form:

ey
G(x|i, 6) = \/21715 exp(—(x2&2H) > (5)

where [ and ¢ are mean and variance parameters. Thus
intra-speaker and inter-speaker distributions can be deter-
mined by the first- and the second-order moments estimated
from observed data. If we denote as x; (respectively x;) the
score of a speaker (respectively non-speaker) for the ith
speech segment, > then the statistics can be estimated as fol-
lows:

1 N
ot =y 2= ), (60)
i=1

1 N
§ = v ;j(x - ). (6b)

Here, u and o (respectively ji and ) denote the estimate
of mean and the variance on intra-speaker’s scores (respec-
tively inter-speaker’s), and N (respectively N) is the total
number of speech segments belonging to speaker (respec-
tively non-speaker) available for threshold setting. Thus,
the speaker-dependent decision threshold (c.f. Fig. 2) is
achieved [11] by setting

Ts = arg(G(x|, 0) = G(x| 1, 7). (7)

To simplify the presentation, hereinafter, this threshold set-
ting method is called Gauss method.

In addition, there is a statistical principle especially for
a Gaussian distribution G(x|f, 6); that is, 99.7% out of all

2 Here a speech segment refers to as an acoustic unit, e.g. frame,
that produces a score by a speaker model.
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Fig. 2. Gaussian distributions of speaker’s and non-speaker’s
scores.

the samples drawn from this distribution should be located
within only the interval [d — 36, i + 36] [33]. Thus, appli-
cation of this principle leads to a so-called 3¢ method for
threshold setting in the following form:

Ju=-30 if u—30>f+34, )
| (46 + fio)/(o + &) otherwise.

The above threshold setting methods are often used for
decision-making. However, the resultant decision threshold
highly relies on the assumption of Gaussian distribution as
well as training data. In general, the scores do not follow a
Gaussian distribution and, furthermore, insufficient data may
lead to a bias even though they follow a Gaussian distribu-
tion indeed. Thus, the Gaussian-distribution based methods
often yield poor generalization. For better generalization,
some statistics-based a priori threshold setting methods have
been proposed without the assumption of Gaussian distribu-
tion.

To our knowledge, Furui first propose a statistics-based
a priori threshold setting method regardless of the Gaussian
distribution assumption [5]. The method uses the statistics
of distances between utterances and templates in the frame-
work of dynamic time warping (DTW), and the threshold
setting becomes the determination of parameters in a linear
combination of the estimate of mean and variance on the
distances between different speakers in the non-speaker set.
As a consequence, the threshold is set as

Ts =o(up — op) + f, )

where up and op are the estimate of mean and variance
on the distances between different speakers, and o and f
are the speaker-independent parameters estimated based on
inter-speaker’s scores.

A procedure of parameter estimation is as follows. An
exhausted search for the parameters, o and f3, is performed
within an interval given initially. For each value of « and f,
the threshold is estimated by Eq. (9) and then used to achieve
an HTER. The optimal parameters, o and 5, are obtained
only if they yield the minimal HTER. As argued by Furui [5],
the motivation underlying this method is of two-fold. On the
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one hand, intra-speaker’s scores for different speakers are lo-
cated within a narrow interval in contrast to inter-speaker’s.
On the other hand, the number of intra-speaker’s scores is
much fewer in comparison with that of inter-speaker’s where
they can be achieved by cross-comparison between differ-
ent speakers. In terms of the text-dependent mode, there-
fore, only inter-speaker’s scores are reliable, and thus, able
to be used in threshold setting. Note that Eq. (9) was de-
signed especially for the distance measure like that used in
the DTW template matching. When Eq. (9) is incorporated
with a probabilistic speaker model, e.g. GMM, it should be
adapted to the following form:

Ts = a(ji + &)+ B. (10)

Hereinafter, threshold setting in Eq. (10) is named Furui
method.

CAVE (caller verification in banking and telecommuni-
cation) was a famous European project to develop speaker
verification technologies towards real applications [2]. Re-
searchers in this project have highly realized the importance
of a priori threshold setting for an operational system, and
thus, systematically investigated the statistics-based a pri-
ori threshold setting [2,10—12]. In the sequel, we review a
number of a priori threshold setting methods developed in
CAVE. To simplify the presentation, the three methods de-
veloped in CAVE will be called CAVE-1, CAVE-2, and
CAVE-3.

Motivated by Furui’s idea, Lindberg et al. propose a
threshold setting method [11], and the threshold is set
by a linear combination of the estimates of means on
intra-speaker’s and inter-speaker’s scores. As a result, the
threshold, in CAVE-1, is in the following form:

Ts=yu+ (1 -7 (11)

Like the parameters in Furui’s method, y is a speaker-
independent parameter and optimized on a registration
population.

Bimbot et al. develop a threshold setting method espe-
cially for a Gaussian model of the utterance logarithmic
likelihood-ratio distribution [10]. Based on the optimal
decision threshold in Eq. (3), a speaker-independent cor-
rection, J, is introduced to adjust the estimate of the
mean on intra-speaker’s scores only. Thus, the statistics
of intra-speaker scores are estimated as i = u — 0 and
¢ = 0. Here, 0 is optimized on a registration population as
done in Furui’s method. Thus, the threshold is obtained, in
CAVE-2, by

(GGlié)
7y —arg (W _ TB) . (12)

The speaker-independent threshold setting [2] is a
classical way to achieve a decision threshold by opti-
mizing the cost function in Eq. (1). Unfortunately, the
speaker-independent threshold setting method demands
sufficient data. Otherwise, the use of such a threshold tends

to suffer from the poor generalization. In order to tackle this
problem, Lindberg et al. propose a speaker-dependent ad-
justment [11]. In this method, a speaker-independent thresh-
old, Ty, is adjusted by considering the difference between
the estimates of means on intra-speaker’s and inter-speaker’s
scores. Thus, the improved threshold is obtained as a linear
combination of the previous speaker-independent threshold
and the adjustment, in CAVE-3, as follows:

Ts = Tsr + n(f — p). (13)

Note that both the speaker-independent threshold, Ts;, and
parameter, 7, in Eq. (13) are optimized on a registration
population.

In summary, the basic idea underlying such a sort of meth-
ods is to estimate a speaker-dependent threshold by tak-
ing advantage of reliable statistics (either the first- or the
second-order moments and even both) of intra-speaker’s and
inter-speaker’s scores. Therefore, it should be emphasized
that those statistics used in threshold setting critically de-
termine whether a resultant threshold can generate the good
performance or not.

3. Our methodologies

In this section, we present our methodologies towards bet-
ter making a decision in the statistics-based a priori thresh-
old setting framework. Our methods include an alternative
statistics-based a priori threshold setting method by utiliz-
ing more reliable statistics for threshold setting, a prun-
ing method for data selection in order to achieve better
generalization, and an on-line incremental threshold update
method.

3.1. Alternative a priori threshold setting

The idea underlying the a priori speaker-dependent
threshold setting reviewed in Section 2.2 is to use the re-
liable statistics associated with speaker and non-speaker
(pseudo-impostor) to customize a proper threshold for
a specific speaker. Thus, the statistics of speaker’s and
non-speaker’s scores would play a critical role in such a
decision-making process. For use of statistics, it becomes
a critical issue to investigate which one is reliable; that is,
only reliable statistics are able to convey useful informa-
tion. According to statistical properties, the first- and the
second-order moments of intra-speaker’s and inter-speaker’s
scores, i, g, [, and g, are common candidates for threshold
setting. Empirical studies including ours [2,5,29] indicate
that for most of the speakers in an operational system, the
estimate of variances on intra-speaker’s scores are quite
similar such that they are hardly distinguishable in con-
trast to the estimate of their means. On the other hand, the
variances of intra-speaker’s scores corresponding to a few
speakers may be quite large indeed, which leads to large
EERs. In particular, the estimate of variance is biased, in
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particular, as only limited data are available. Therefore, the
estimate of variance on intra-speaker’s scores is unreliable,
and thus, unable to be used in the a priori threshold setting,
which has been realized by a few of researchers [2,5]. In
contrast, the empirical studies including ours indicate that
the rest three statistics, y, fi, and &, perform reliably, which
provides useful information for threshold setting.

Motivated by the previous work of Furui [5] and Lind-
berg et al. [11], we propose an alternative statistics-based
a priori method for threshold setting. Unlike their meth-
ods, ours attempts to make a proper use of all the re-
liable statistics available. We believe that more reliable
statistics provide more useful information and thus, the
proper use of more reliable statistics may lead to a bet-
ter threshold for decision-making. As a consequence, an
alternative speaker-dependent threshold is estimated by a
linear combination of all there reliable statistics mentioned
above:

Ts =b(i+ad)+ (1 —b)y, (14)

where a and b are two speaker-independent parameters and
optimized on a registration population. Thus, Eq. (14) en-
codes the useful information conveyed by the reliable statis-
tics, and the decision threshold becomes a monotonically
increasing function of u, f, and 4.

3.2. Pruning abnormal data for better generalization

From a statistical viewpoint, different speakers’ voice
could be modeled as different distributions, which makes
them discriminable. In reality, the data for building a
speaker verification system are only some samples drawn
from this distribution corresponding to a speaker in a cer-
tain subspace. For training, only the data recorded in a
couple of sessions are usually available during enrollment.
It implies that such a training data set collected within a
short period carries only some speakers’ characteristics on
a certain condition. It is well known that speakers’ voice
always changes over time, and moreover, may be affected
by many factors, e.g. verbal change, change of vocal tract,
mood, healthy status, and channels as well as other mis-
match conditions. It is highly agreed that a proper threshold
should not only perform well on the data used for estimat-
ing it but also be of good generalization for the other data
drawn from the same distribution on mismatch conditions.
Therefore, it poses a problem how to capture the intrinsic
characteristics underlying a specified speaker from only the
limited data for better generalization. Although it is, more
or less, mentioned in literature [1,2,4], this problem has
not been emphasized yet. Our study has indicated that it is
critical to set a proper threshold for good generalization in
decision-making.

In order to understand the above problem better and fa-
cilitate the presentation of our idea, we figure out some
sketch score maps to give an intuitive explanation in term
of a speaker verification system. Assume that we could col-

(©)

Fig. 3. Sketch score maps to explain the process of pruning ab-
normal data. (a) Global score map; (b) local score map before
pruning; (c) local score map after pruning.

lect all the voice of a speaker, we could have a global sce-
nario of scores, hereinafter called global map, as depicted in
Fig. 3(a). Obviously, it is unrealistic to have such a global
map since there is no way to observe all the data in a short pe-
riod and predict all possible mismatch conditions. In reality,
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the observable scores by a speaker model form only a local
landscape of scores, hereinafter called local map, as depicted
in Fig. 3(b). Although this local map contains some intrinsic
speaker characteristics indeed, it conveys some aforemen-
tioned session-dependent features as well. Moreover, these
session-dependent features may be quite distinct from those
recorded in other sessions beyond those observed currently
(cf. Figs. 3(a) and (b)). Thus, statistics estimated from the
local map are biased to those of the global map, which again
poses the problem in question in another concrete form as
follows. From the local map, how can we obtain the estimate
of statistics relatively consistent with those of the global
map? Here, we emphasize that the problem is unavoidable
in any statistics-based a priori speaker-dependent threshold
setting.

For the problem, the session-dependent features often
make an estimate of statistics biased in order to fit a specific
circumstance, which results in the poor generalization. Our
further observation indicates that in a local map most of the
scores are often concentrated in a certain small region and
the rest of them are scattered from the small region, as de-
picted in Fig. 3(b). Thus, the global map in Fig. 3(a) could
be regarded as the union of all the local maps. From this ob-
servation, we find that the bias of statistics, e.g. an estimate
of mean, from a local map results from those scores far-
thest from the dense portion (a small region around the cen-
ter of the circle in Fig. 3(a)). In this paper, we name those
scores, caused by session-dependent conditions, abnormal
data. Thus, a set of session-dependent data can be divided
into two categories; one is the portion corresponding to the
dense region, hereinafter called normal data, and the other
is the abnormal data. The former likely carries the intrinsic
characteristics of a speaker, and the latter probably indicates
the special session-dependent features. For generalization,
our idea is to prune a proper amount of abnormal data, to a
great extent, for reducing the influence of session-dependent
features.

In order to prune the abnormal data, we specify the fol-
lowing criteria based on our observation: (i) most of the
scores on a training set should belong to normal data, (ii)
the remaining portion after pruning should be densely dis-
tributed, thus the previous centroid should move towards
that of all the data, as illustrated in Fig. 3(a), and (iii) prun-
ing should be performed in a sequential way starting from
the furthest away from the centroid of the global map (cf.
Fig. 3(a)). According to the above criteria, Fig. 3(c) depicts
an example of a desired outcome by pruning the local map
in Fig. 3(b). Note that here we take only the estimate of
the mean on intra-speaker’s scores into consideration dur-
ing pruning, thus the estimate of mean in the local map, as
illustrated in Fig. 3(c), is more consistent with that of the
global map in Fig. 3(a) in contrast to that of the local map
in Fig. 3(b). It is also worth mentioning that the estimate
of variance on intra-speaker’s scores after pruning changes
accordingly but does not affect threshold setting since it is
never used in the a priori methods.

Following the proposed criteria, we develop an algorithm
to prune abnormal data as follows:

1. For a specific speaker, estimate the mean and the variance
from a given data set, {x;}Y,, say uy and o%.

2. For a sample x; (i = 1,...,n + 1), let d; = |x; — uy|.
Find the sample, x;«, which satisfies the condition
i* = argmax,_,, di, from the current data set of
n+1 (n < N) samples. Hereinafter, this sample is called
the most abnormal datum in the current data set.

3. Eliminate the most abnormal data found in Step 2 from
the current data set of n + 1 samples.

4. Re-estimate the mean of the resulting data set of n sam-
ples.

5. Repeat Steps 2—4 until all the remaining samples satisfy
the condition of d; < kay (x > 0).

In this algorithm, x is a parameter to control termination.
Note that a termination condition in Step 5 of our algorithm
plays an important role for better generalization. In our sim-
ulations, we use the same parameter value of k = 2.0 for all
the speakers. How to tune the parameter x for maximal gen-
eralization is a non-trivial issue that will be discussed later.
In our algorithm, the direct estimation of statistics suf-
fers from expensive computational costs, in particular, as the
number of training data is large. In order to speed up cal-
culation, we propose an incremental algorithm to efficiently
estimate the mean of the remaining data set after pruning.
Suppose that 1,41 is the estimate of the mean on the data set
of n+1 samples. After a pruning operation, the new estimate
of mean y, is as follows (for details, see Appendix A):
o = D (1)
n
where i* = argmax, ., [% — tv| refers to the most ab-
normal datum in the data set containing n+ 1 samples before
pruning. The incremental estimation in Eq. (15) is applied
in Step 4 of our algorithm. After one of abnormal data is
eliminated, apparently, our algorithm causes the estimate of
the mean on the remaining data to be closer to the centroid
in the global map (cf. Fig. 3).

3.3. On-line incremental threshold update

As pointed out previously, a session-dependent data set
always contains only the limited useful information no mat-
ter how we manipulate these observable data. Thus, a fixed
threshold based on the limited data does not always fit to
a new landscape for most of speakers. On the other hand,
an operational system should be accessed frequently. There-
fore, new data for claimed speakers are available during
running time, which provides a new information source to
improve decision-making. Taking Fig. 3, we can give an
intuitive explanation to the fact. When new data are avail-
able, they might change the local map in Fig. 3(b), and
the estimate of statistics from the new local map tends to
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vary. Thus, the re-estimation of statistics is required for a
statistics-based a priori method, which leads to a problem
how to update a threshold in terms of new data.

There have been some methods developed for threshold
update [4,9,14]. The basic idea underlying those methods
are to re-estimate statistics for threshold setting based on
all the history data and the new data, which is equivalent
to threshold setting based on a new training set consisting
of both historical and appended data. Although they lead to
the improved performance, such methods need to pool all
the historical data, and hence, suffer from high spatial and
computational costs as the number of speakers increases.
For the statistics-based a priori threshold setting, a thresh-
old update implies the need of the re-estimation of statis-
tics used for threshold setting. Unlike the previous methods,
we propose an on-line incremental threshold update method
that needs only the estimate of statistics of historical data
prior to threshold update and a coming datum. As a conse-
quence, the statistics are re-estimated on-line as (for details,
see Appendix A)

~ nﬂn + -frH—l

oy == 7 (16)
and

&2 Y
Gy — n(n+1)6" + n(Xpp1 — A,) . a7

(n41y

Here, fi, and 6, are the estimates of the first- and the
second-order moments used to set the old threshold. f,,,
and 6, are the estimates of the statistics after a new datum
Xu+1 1s added.

In contrast to other threshold update methods [4,9,14],
ours is of the following salient features: (i) instead of histor-
ical data themselves the estimate of their statistics is merely
needed, (ii) the threshold is incrementally re-estimated
on-line, and (iii) our on-line update illustrates an evolution-
ary process how the change of speakers’ voice is captured
for decision-making.

In summary, we have presented our efforts towards better
making a decision in speaker verification. Note that the last
two methods are also applicable to other statistics-based a
priori speaker-dependent threshold setting methods to im-
prove their performance. Here, we emphasize that all of our
methodologies presented in this section merely work on the
output space of a speaker model, and thus, are applicable
to miscellaneous speaker models. In other words, parame-
ters in a speaker model are unchanged and our pruning and
update methods merely take effect on its output space.

4. Simulations

In this section, we present simulation results by applying
our methods to both text-dependent and text-independent
speaker verification tasks. In order to demonstrate the effec-
tiveness of our methods, we also apply some sophisticated

decision-making methods in literature to the same problems
for comparison. For simulations, we use a GMM to model
speaker’s characteristics from the viewpoint of statistics. In
the sequel, we first present a brief description on our simu-
lations, including databases, preprocessing, and feature ex-
traction in different operating modes. It follows by a brief
review on the GMM-based speaker verification baseline sys-
tem and a related standard performance evaluation method
used in simulations. Finally, simulation results on different
methods are reported.

4.1. Brief description

4.1.1. Databases

For different operating modes, we adopt two different
databases in our simulations. We use the PKU-TD database
in the text-dependent mode and the KING speech corpus
[30] in the text-independent mode.

The PKU-TD database is composed of 35 speakers (30
male and 5 female) uttering ten isolated digits from zero
to nine in Chinese (Mandarin). These data were collected
in five separate sessions, labeled as Si,...,Ss, by speech
information processing laboratory at Peking University. The
interval between sessions varies from 1 week to 3 months.
In each session, a speaker was asked to utter 10 times for
any of 10 digits. All the digit utterances were recorded with
an ordinary microphone.

The KING is an English speech corpus collected at ITT
around 1987 and re-sampled in 1992 [30], in particular, for
text-independent speaker recognition. It contains utterances
from 51 male speakers in two versions; i.e. wide-band and
narrow-band sets. The speakers are further divided into two
groups, consisting of 25 and 26 people, in terms of differ-
ent locations. There are 10 sessions, labeled by Soq, ..., Sio,
and the interval between sessions varies from 1 week to
1 month. Typically, an utterance of each speaker is within
a duration from 30 to 60s. It is worth pointing out that
some speech segments were missing in the wide-band set
and only 49 speakers’ utterances in all the 10 sessions are
available. To facilitate comparison, therefore, we use the
wide-band set of only those 49 speakers’ utterances in our
simulations. In the narrow-band set, the limited bandwidth
and distorted transmission channel cause speech quality to
be degraded severely. In particular, there are differences in
spectral characteristics between sessions So1—Sps and ses-
sions Sps—S10 since speech is passed through different local
telephone channels [30], which leads to miscellaneous mis-
matches. Signal-to-noise ratio for sessions Sos—S10 is about
10 dB worse than that for sessions So1—Sos.

4.1.2. Acoustic analysis

For different databases, we use similar methods for acous-
tic analysis; i.e. preprocessing and feature extraction.

For the PKU-TD database, we use the following acoustic
analysis: (i) pre-emphasis with the filter H(z)=1—0.95z"",
(ii) Hamming windowing speech by a frame size 25.6 ms
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with a frame shift 12.8 ms, and (iii) extracting 16-order
Mel-scaled cepstrum vectors.

For the wide-band set of KING database, the acous-
tic analysis is as follows: (i) pre-emphasis with the filter
H(z)=1—095z"", (ii) Hamming windowing speech by
a frame size 25.6 ms but without any frame shift, (iii) un-
voiced frame removal based on an energy measure, and (iv)
extracting 16-order Mel-scaled cepstrum vectors. In simu-
lations on the narrow-band set, we adopt a preprocessing
procedure similar to that for the wide-band set. Besides, the
mean subtraction technique [28] is applied to preprocessing
and the weighted Mel-scaled cepstrum is further used for
feature extraction, which results in the robustness to noise
and degraded speech [4].

4.2. GMM-based speaker verification

Gaussian Mixture Model (GMM) has been used to char-
acterize speaker’s voice in the form of probabilistic model.
It has been reported that the GMM approach outperforms
other classical methods for text-independent speaker recog-
nition [28]. Our recent work has shown that the GMM also
performs well for text-dependent speaker recognition [29].

For a feature vector denoted as x; belonging to a specific
speaker s, the GMM is a linear combination of K Gaussian
components as follows:

K
P(xi|A) = ouP(x|mg i, T ), (18)
k=1

where P(x;|my, X, ;) is a Gaussian component parameter-
ized by a mean vector my ; and covariance matrix X x. s x 1S
a linear combination coefficient for speaker s (s=1,2,...,S).
Usually, a diagonal covariance matrix is used in Eq. (18).
Given a sequence of feature vectors, {Xi,X2,...,Xs,...},
from a specific speaker’s utterances, parameter estimation
for As = (wsp, M, X5 i) (k=1,...,K, s=1,...,8) is per-
formed by the Expectation-Maximization (EM) algorithm
[34]. Thus, a specific speaker model is built through finding
proper parameters in the GMM based on the speaker’s own
feature vectors.

For text-dependent speaker identification, the log-
likelihood value for each feature vector is used as a score for
decision-making. In contrast, a sequence of feature vectors
in text-independent speaker identification is divided into
overlapping segments of T feature vectors, as suggested by
Reynolds [28]:

segment /

——
X1 X1y oo s X4 T— 1, X[4T5 00 vy

segment /+1

X/ X/ ls oo s XI4T— 1 X147, X[ T4 150 -+ -

For a testing segment X0 = {Xt, Xi415. -5 Xipr—1} of T
frames, the log-likelihood value of a GMM is calculated

as follows:
I4+T—1
2xV. 0= logP(xi|k), s=1,....8. (19)
t=I

Thus, the smoothed likelihood value corresponding to a seg-
ment Z(X, J,) becomes a score for decision-making. Note
that the length of a segment, T', in the above testing method
provides a way to evaluate the performance of a GMM sys-
tem on utterances of different lengths in simulations. In other
words, this parameter may simulate utterances of arbitrary
lengths as its value varies.

In our simulations, we use 16 and 32 Gaussian com-
ponents in GMMs for text-dependent and text-independent
cases, respectively.

4.3. Simulation results

We have done simulations to evaluate the performance of
our methods on the basis of two aforementioned databases,
PKU-TD and KING. For comparison, we also apply other
decision-making methods including those reviewed in Sec-
tion 2 and the e.e.t. method, where an equal error threshold
achieved from a validation set is used for decision-making
on other testing sets, to the same task. Moreover, the over-
all EERs on all testing sets are also reported as a reference.
In simulations, the HTER measure is employed for perfor-
mance evaluation.

To create speaker models, we use the speech data recorded
in session S; of the PKU-TD database and those in ses-
sions So; and Sy of the KING database, respectively, for
parameter estimation of GMMs. Moreover, session S, in
the PKU-TD and session Sg3 in the KING database are
used as validation sets, respectively, for threshold setting
in different operating modes. The remaining sessions in the
PKU-TD and the KING databases are used for test. Thus,
the total number of access in our text-dependent simulations
is 1050 client access and 36,750 impostor access. For the
text-independent case, the number of access depends upon
the length of a testing segment and an utterance tested. For
a segment of 5.12 s, typically, the overall number of client
access is about 480,000 corresponding to utterances span-
ning from 30 to 60 s, while the total number of impostor
access is around 24,500,000 corresponding to utterances of
the same lengths.

4.3.1. Results of a priori threshold setting

First of all, we apply the e.e.t., several a priori threshold
setting methods, and ours to two databases. During thresh-
old setting, the data belonging to a specific speaker are used
to estimate intra-speaker’s statistics while those belonging
to the other speakers in the same validation set are used as
non-speaker or pseudo-imposter data. Thus, threshold set-
ting is performed based on only the aforementioned valida-
tion sets for different operating modes in our simulations.

Table 1 shows the text-dependent performance of several
methods on the PKU-TD database. Note that there are ten
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Table 1
Comparative results on the PKU-TD database for several a priori
threshold setting methods and the e.e.t. method

Method S3 S4 Ss Averaging
e.e.t. 9.34 12.86 10.93 11.04
Gauss 9.38 12.77 11.04 11.06
30 9.41 12.79 11.24 11.15
Furui 9.22 12.73 1091 10.95
CAVE-1 9.12 12.54 10.82 10.83
CAVE-2 9.19 12.69 10.87 10.92
CAVE-3 9.16 12.63 10.84 10.87
Ours 8.47 11.70 10.33 10.17

GMMs, each corresponding to a digit, for each speaker. Here
we report only the averaging HTERs in different sessions
due to limited space. From Table 1, we observe that the
e.e.t. and two Gaussian-distribution based methods (Gauss
and 30) do not lead to good performance. In contrast, the
statistics-based a priori methods yield better performance.
In particular, ours results in the lowest HTERs in all three
testing sessions. For reference, the overall EER of all three
testing sets is 8.01%.

As mentioned in Section 4.2, we adopt a segment-based
testing method for performance evaluation in the text-
independent mode. Thus, testing segments of different

Table 2

lengths may result in different HTERs. For testing seg-
ments of 5.12s on the wide-band set, we show their
detailed HTERs in Table 2. Similarly, we also show the
detailed performance on the narrow-band set in Table 3
by the use of testing segments of 7.68 s. It is evident from
Tables 2 and 3 that the statistics-based a priori methods
yield better performance though Furui’s method, by using
only the estimates of statistics of pseudo-impostor, leads to
the relatively unsatisfactory performance. In contrast, the
e.e.t. and two Gaussian-distribution methods produce poor
performance. In particular, ours, by using the estimates of
more reliable statistics, leads to the best performance on
both the wide-band and the narrow-band sets.

Furthermore, Tables 4 and 5 shows the text-independent
performance of different methods in terms of different testing
segment lengths. In general, it is evident that the averaging
HTERs for different methods decrease as the length of test-
ing segments increases. By comparison, the statistics-based
a priori threshold setting methods including ours yield
much better performance while the other three methods pro-
duce poor performance. Note that the overall EERs on all
seven wide-band testing sets are 17.94%, 7.95%, 5.13%, and
1.98%, respectively, corresponding to testing segments of
2.56,5.12,7.68, and 10.24 s, while the overall EERs on all
seven narrow-band testing sets are 58.43%,49.05%, 32.37%,
and 27.92%, respectively, corresponding to testing segments
of 2.56,5.12,7.68, and 10.24 s.

Comparative results on the wide-band set of the KING database for several a priori threshold setting methods and the e.e.t. method

Method So4 S()5 S06 So7 S()g Sog SIO Averaging
e.et. 13.95 13.64 13.67 14.89 14.68 15.50 14.01 14.33
Gauss 14.18 1391 13.41 14.69 14.23 15.49 14.18 14.30
30 14.54 13.97 13.58 15.15 14.59 15.61 14.27 14.53
Furui 11.82 11.27 12.74 12.18 12.01 12.53 11.18 12.05
CAVE-1 11.34 9.17 10.68 11.87 11.24 12.04 10.25 10.94
CAVE-2 11.66 1091 12.31 11.65 11.39 12.11 11.03 11.58
CAVE-3 11.43 9.63 10.97 11.93 11.33 12.17 11.07 11.22
Ours 11.26 8.86 10.43 11.57 10.91 11.78 10.68 10.78

The testing segment length is 5.12 s.

Table 3

Comparative results on the narrow-band set of the KING database for several a priori threshold setting methods and the e.e.t. method

Method So4 Sos Sos So7 Sos So9 S10 Averaging
ee.t. 35.16 38.42 55.73 42.28 4436 42.53 39.16 42.52
Gauss 36.44 37.98 54.28 43.96 44.13 44.29 3831 42.77
30 37.25 39.10 57.13 44.54 45.56 45.17 40.48 44.18
Furui 3231 33.64 50.59 40.79 41.18 42.34 38.89 39.96
CAVE-1 30.63 31.59 48.05 38.74 39.45 39.98 37.33 37.97
CAVE-2 3145 33.04 49.93 39.54 40.57 40.53 39.09 39.16
CAVE-3 30.96 30.94 49.31 38.86 39.21 40.19 39.84 38.47
Ours 29.64 29.92 47.32 38.39 38.88 37.91 36.29 36.91

The testing segment length is 7.68 s.
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Table 4
Comparative results on the wide-band set of the KING database for several a priori threshold setting methods at different testing segment
lengths
Length (s) e.e.t. Gauss 30 Furui CAVE-1 CAVE-2 CAVE-3 Ours
2.56 3041 30.82 31.63 25.25 21.17 22.03 21.92 20.15
5.12 1433 14.30 14.54 12.05 10.94 11.54 11.22 10.78
7.68 9.42 9.51 10.21 8.32 7.51 7.83 7.74 6.79
10.24 6.23 6.12 6.81 492 3.95 438 4.15 3.18
Table 5
Comparative results on the narrow-band set of the KING database for several a priori threshold setting methods at different testing segment
lengths
Length (s) e.e.t. Gauss 30 Furui CAVE-1 CAVE-2 CAVE-3 Ours
2.56 68.52 68.21 70.80 65.16 62.83 63.77 63.04 62.19
5.12 59.45 60.21 61.87 56.69 53.28 55.66 54.04 52.42
7.68 42.52 42.77 44.18 39.96 37.97 39.16 3847 36.91
10.24 38.64 38.87 39.22 36.04 33.92 34.84 3435 32.44
Table 6

Comparative results on the PKU-TD database for several a priori
threshold setting methods with pruning abnormal data (cf. Table 1)

Method S3 Sy Ss Averaging
CAVE-1 9.94 13.15 10.91 11.33
(gain) (—0.82) (—0.61) (—0.09) (—0.51)
CAVE-3 9.57 12.75 10.82 11.05
(gain) (—041) (—0.12) (0.01) (—0.17)
Ours 8.99 11.80 10.61 10.47
(gain) (—0.52) (—0.10) (—0.28) (—0.30)

Comparative results show that our method consistently
results in the best performance no matter how long the length
of testing segments is. Thus, it turns out that the introduction
of more reliable statistics in threshold setting yields better
generalization in mismatch environments.

4.3.2. Results of pruning abnormal data

As argued in this paper, pruning abnormal data could
improve the generalization capability of a statistics-based a
priori speaker-dependent threshold setting method. In order
to evaluate its performance, we have applied our pruning
algorithm to three typical speaker-dependent methods; i.e.
CAVE-1, CAVE-3, and ours. Prior to threshold setting, we
apply our pruning algorithm to the validation set in order to
eliminate the abnormal data.

Table 6 show the HTERs of three methods along with
our pruning algorithm on the PKU-TD database. For com-
parison, we also present the error reduction rate (gain) after
pruning in Table 6. It is observed from Table 6 that after
pruning the overall performance of a GMM-based speaker

verification system is degraded to some extent regardless of
methods for threshold setting. This result indicates that our
pruning algorithm seems inapplicable to the text-dependent
mode, which will be discussed in the next section. By a fixed
parameter, ¥ = 2.0, in our pruning algorithm, the averag-
ing percentage of pruned data is 9.2%, and the maximal and
minimal percentages of pruned data are 18.9% and 5.3%,
respectively, for 35 speakers.

Now we report the simulation results through the use of
our pruning algorithm on the KING database. Table 7 shows
the detailed HTERSs of three methods incorporated by our
pruning algorithm on the wide-band set in terms of a test-
ing segment of 5.12 s, and Table 8 presents the performance
of three methods along with our pruning algorithm on the
narrow-band set in terms of a testing segment of 7.68 s. For
comparison, we also show the error reduction rate (gain)
after pruning in Tables 7 and 8. Based on the simulation
results, the application of pruning abnormal data causes the
performance of three speaker-dependent threshold setting
methods including ours to be improved consistently at dif-
ferent sessions. Moreover, it is observed from Table 8 that
the gains on sessions Sos—S1 is larger than those on sessions
So4 and Sps in general. As described in Section 4.1.1, the
narrow-band set contains a large mismatch between So1—Sos
and So6—S10 due to distinctive channels. Thus the simulation
results imply that our pruning algorithm performs better for
data collected on more mismatch conditions.

Based on the averaging HTERs at different sessions, fur-
thermore, Figs. 4 and 5 illustrate the pruning effects for three
methods on the wide-band and narrow-band sets in terms
of different testing segment lengths. It is evident from Figs.
4 and 5 that the HTERs corresponding to different testing
segments are consistently lowered after pruning. By a fixed
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Table 7

Comparative results on the wide-band set of the KING database for several a priori threshold setting methods with pruning abnormal data

Method So4 Sos Sos So7 Sos So9 S10 Averaging
CAVE-1 1033 8.07 9.91 11.49 10.31 11.14 9.42 10.10
(gain) (1.01) (1.10) (0.77) (0.38) (0.93) (0.90) (0.83) (0.84)
CAVE-3 10.85 8.67 10.21 11.66 10.25 11.38 10.15 10.45
(gain) (0.58) (0.96) (0.76) (0.27) (1.08) (0.79) (0.92) (0.77)
Ours 10.31 7.77 9.59 11.09 9.75 10.81 9.23 9.79
(gain) (0.95) (1.09) (0.84) (0.48) (1.16) (0.97) (1.45) (0.99)

The testing segment length is 5.12 s, and here the gain refers to the error reduction rate after pruning (cf. Table 2).

Table 8

Comparative results on the narrow-band set of the KING database for several a priori threshold setting methods with pruning abnormal data

Method S()4 SOS SO6 S()7 Sog 309 S 10 Averaging
CAVE-1 29.17 30.42 44.38 3542 36.84 35.66 35.21 35.30
(gain) (1.46) (1.17) (3.67) (3:32) (2.61) (4.32) (2.12) (2.67)
CAVE-3 29.42 30.01 45.17 36.31 36.12 37.23 36.54 35.82
(gain) (1.54) (0.93) (4.14) (2.55) (3.09) (2.96) (3.40) (2.65)
Ours 28.83 29.14 43.51 35.12 35.97 3545 35.02 34.71
(gain) (0.81) (0.78) (3.81) (3.27) (2.91) (2.46) (1.27) (2.20)

The testing segment length is 7.68 s, and here the gain refers to the error reduction rate after pruning (cf. Table 3).

parameter, k = 2.0, in our pruning algorithm, the averaging
percentage of pruned data is 21.5%, and the maximal and
minimal percentages of pruned data are 24.9% and 19.4%,
respectively, for 49 speakers on the wide-band set. Similarly,
the averaging percentage of pruned data is 27.1%, and the
maximal and minimal percentages of pruned data are 32.2%
and 21.8%, respectively, for 51 speakers on the narrow-band
set.

Given the EERs listed in Section 4.3.1, the simulation
results indicate that our pruning algorithm leads to consid-
erable improvements even though there are miscellaneous
mismatches among different sessions in the narrow-band
set. Thus, simulation results suggest that pruning abnor-
mal data provide an alternative way to further improve
the generalization capability of a statistics-based a priori
speaker-dependent threshold setting method.

4.3.3. Results of on-line incremental threshold update

As mentioned above, threshold update would be an ef-
fective way to improve the performance as long as new
data are available. For performance evaluation of thresh-
old update, we have applied our on-line algorithm to three
statistics-based a priori methods; i.e. CAVE-1, CAVE-3, and
ours. Note that the performance of our on-line threshold up-
date presented here is on the basis of thresholds resulting
from pruning in the text-independent mode, while this pro-
cedure works without pruning in the text-dependent mode.

In previous studies, threshold update is regarded as a pro-
cess of supervised learning [9]. In this circumstance, both
a coming datum and its owner are known so that such an

update can be an error-free process with external helps.
Unfortunately, such sort of methods are impractical for an
operational system. In reality, more often, a speaker veri-
fication system should work autonomously, thus threshold
update without interference is demanded. In our simulations,
we have conducted two types of experiments, i.e. supervised
and autonomous updates, on the basis of our on-line incre-
mental method. By supervised update, the statistics will be
re-estimated based on the current decision-making on the
datum and its known ownership. In contrast, the coming
datum accepted by a system is always used to re-estimate
the statistics in autonomous update no matter whether the
system has made a wrong decision or not. Moreover, the
coming datum accepted is used to re-estimate not only the
claimed speaker’s statistics for his/her own threshold update
but also the pseudo-impostor’s statistics for other speakers’
threshold update on-line.

Recent studies indicated that the chronological order of
client and impostor tests critically determines the perfor-
mance of an autonomous on-line update [14]. Since we have
no prior knowledge on such a chronological order,® we
adopt the following multi-trial method in our simulations.
First, we label all the speakers in our database. Then, a ran-
dom number generator subject to a uniform distribution is
employed to randomly select a speaker at a moment. As a re-
sult, an utterance belonging to this speaker will be randomly

3 For an operational system, the statistics underlying such a
chronological order could be estimated during real use.
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Fig. 4. Comparative results on the wide-band set of the KING
database for two a priori threshold setting methods and ours at
different testing segment lengths: without pruning (dashed line)
vs. with pruning (solid line). (a) Results of CAVE-1; (b) results
of CAVE-3; (c¢) results of ours.
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Fig. 5. Comparative results on the narrow-band set of the KING
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different testing segment lengths: without pruning (dashed line)
vs. with pruning (solid line). (a) Results of CAVE-1; (b) results
of CAVE-3; (c) results of ours.
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Table 9
Comparative results on the PKU-TD database for two a priori
threshold setting methods and ours by the supervised update

Table 12
Comparative results on the PKU-TD database for two a priori
threshold setting methods and ours by the autonomous update

Method S3 Sy Ss Averaging Method S3 Sy Ss Averaging
CAVE-1 8.21 12.14 10.02 10.12 CAVE-1 8.43 12.35 10.29 10.36
(gain) (1.13) (0.40) (0.80) (0.71) (gain) (0.69) (0.19) (0.53) (0.47)
CAVE-3 8.36 12.34 10.37 10.35 CAVE-3 8.51 12.49 10.41 10.47
(gain) (0.80) (0.29) (0.47) (0.52) (gain) (0.65) (0.14) (0.43) (0.40)
Ours 7.86 11.18 9.82 9.62 Ours 7.98 11.29 10.01 9.76
(gain) (0.61) (0.52) (0.51) (0.55) (gain) (0.49) (0.41) (0.32) (0.41)

Here the gain refers to the error reduction rate after supervised
update (cf. Table 1).

chosen and then used as the current testing data. Once the
current test is done, the chosen utterance is ruled out from
the candidate data. In each trial, this procedure is repeated
until all the testing data are used up. In the above way, our
simulations contain ten trials for reliability and the averaging
results are reported here.

Table 9 shows the text-dependent performance of super-
vised update on the PKU-TD database. From Tables 9, it is
evident that the performance is significantly improved by our
threshold update method for all three threshold setting meth-
ods tested. In particular, the gain for CAVE-1 is up to 0.71%
in average. In Tables 10 and 11, we show the performance
of the supervised update on the KING database. Apparently,
our update method leads to significant improvements in the

Table 10

Here the gain refers to the error reduction rate after the au-
tonomous update (cf. Table 1).

text-independent mode. After update, in particular, an aver-
aging HTER based on our threshold setting method is even
lower than the overall EER of all seven wide-band testing
sets (7.95%), and the gain for CAVE-3 is up to 2.30% in av-
erage on the wide-band set. Similarly, the supervised update
also leads to improvements on the narrow-band set; an av-
eraging HTER produced by our threshold setting method is
very close to the overall EER of all seven narrow-band test-
ing sets (32.37%) and the gain for CAVE-1 is up to 2.24%.
Thus simulation results indicate that our on-line threshold
update method considerably improves the performance in a
supervised learning way.

Furthermore, we show the performance of autonomous
update on the PKU-TD database in Table 12 and those of

Comparative results on the wide-band set of the KING database for two a priori threshold setting methods and ours by the supervised update

Method So4 Sos Sos So7 Sos So9 Sio Averaging
CAVE-1 9.12 7.14 7.93 9.56 9.02 9.24 8.04 8.58
(gain) (1.21) (0.93) (1.98) (1.93) (1.29) (1.90) (1.38) (1.52)
CAVE-3 9.38 7.27 7.88 9.46 9.15 9.42 8.13 8.67
(gain) (1.47) (1.40) (2.33) (2.20) (1.10) (1.86) (2.02) (2.30)
Ours 8.34 6.15 6.76 9.22 8.08 9.04 7.29 7.84
(gain) (1.97) (1.62) (2.83) (1.87) (1.67) (L.77) (1.94) (1.95)

The testing segment length is 5.12 s, and here the gain refers to the error reduction rate after the supervised update (cf. Table 7).

Table 11

Comparative results on the narrow-band set of the KING database for two a priori threshold setting methods and ours by the supervised update

Method S()4 Sos 806 S()7 Sog So9 S 10 Averaging
CAVE-1 27.43 27.92 4125 3391 33.43 34.12 33.38 33.06
(gain) (1.74) (2.50) (3.13) (1.51) (3.41) (1.54) (1.83) (2.24)
CAVE-3 27.89 28.97 42.92 34.42 3421 34.37 34.18 33.85
(gain) (1.53) (1.04) (2.25) (1.89) (1.91) (2.86) (2.36) (1.97)
Ours 26.92 27.29 40.87 33.38 32.86 33.57 32.67 3251
(gain) (1.91) (1.85) (2.64) (1.74) (3.11) (1.88) (2.35) (2.20)

The testing segment length is 7.68 s, and here the gain refers to the error reduction rate after the supervised update (cf. Table 8).
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Table 13

Comparative results on the set of wide-band set of the KING database for two a priori threshold setting methods and ours by the autonomous
update

Method S()4 Sos S()@ So7 Sog Sog Sl() Averaging
CAVE-1 9.34 7.55 8.25 9.97 9.33 9.01 8.41 8.84
(gain) (0.99) (0.52) (1.66) (1.52) (0.98) (1.67) (1.01) (1.26)
CAVE-3 9.88 7.79 8.90 10.27 9.47 10.23 8.94 9.35
(gain) (0.97) (0.88) (1.31) (1.39) (0.78) (1.05) (1.11) (1.10)
Ours 9.04 7.11 7.46 10.08 9.35 9.43 7.18 8.52
(gain) (1.27) (0.66) (2.03) (1.11) (0.40) (1.38) (2.03) (1.27)

The testing segment length is 5.12 s, and here the gain refers to the error reduction rate after the autonomous update (cf. Table 7).

Table 14

Comparative results on the narrow-band set of the KING database for two a priori threshold setting methods and ours by the autonomous
update

Method S04 Sos S()6 So7 Sog Sog S]() Averaging
CAVE-1 28.24 28.67 42.42 34.61 35.41 35.04 34.11 34.07
(gain) (0.93) (1.75) (1.96) (0.81) (1.43) (0.64) (1.10) (1.23)
CAVE-3 28.64 30.01 43.74 35.47 3535 36.04 35.86 35.82
(gain) (0.78) (0.79) (1.43) (0.84) (0.77) (1.19) (0.68) (0.92)
Ours 27.86 28.42 42.11 34.80 33.94 34.55 34.07 33.68
(gain) (0.97) (0.62) (1.40) (0.32) (2.03) (0.90) (0.95) (1.03)

The testing segment length is 7.68 s, and here the gain refers to the error reduction rate after the autonomous update (cf. Table 8).

the KING database in Tables 13 and 14. Although the per-
formance of autonomous update is degraded in comparison
with that of supervised update, our threshold update method
yields fair improvements regardless of operating modes.
From Table 13, it is observed that the gain for any of three
threshold setting methods is not lower than 1.10% in aver-
age on the wide-band set after such an update and the aver-
aging HTER by our threshold setting method is quite close
to the overall EER of all seven wide-band testing sets. Sim-
ilarly, it is evident from Table 14 that the autonomous up-
date leads to improvements on the narrow-band set for all
the three threshold setting methods. For CAVE-1, in par-
ticular, an error reduction gain of 1.23% is achieved on the
narrow-band set. Thus, simulation results in autonomous up-
date demonstrate that our threshold update method provides
a promising way for real use.

5. Discussion

As a novel data selection procedure, pruning abnormal
data provides an alternative way to improve generalization
of a statistics-based a priori speaker-dependent threshold set-
ting method. However, our empirical studies indicate that it
does not work in the text-dependent circumstance (cf. Ta-
ble 6). To a great extent, a statistical model tends to cap-
ture verbal information of a specific text itself while we

try to employ it for modeling a speaker’s characteristics.
Unlike the text-independent mode, no mismatch occurs in
verbal information for the text-dependent mode. In other
words, the same text content used for speaker verification
leads to similar utterances (speech waves) even for different
speakers, which causes the deviation of intra-speaker’s and
inter-speaker’s scores to be small. Thus, the use of our prun-
ing manipulation may introduce a larger bias to the origi-
nal data in contrast to that by the mismatch environments.
For use in the text-dependent mode, our pruning method de-
mands robust speaker features that can differentiate speak-
ers by scatting those scores corresponding to utterances of
different speakers in decision space. On the other hand, the
parameter k was fixed as the termination condition in our
simulations. Although doing so yields improvements in gen-
eralization, we point out that the parameter x is adjustable
for different speakers. Thus, how to give a proper termina-
tion condition is still an open problem to be studied in the fu-
ture. Our empirical studies indicate that the termination con-
dition highly depends upon the deviation of intra-speaker’s
scores. Furthermore, we find that the number of abnormal
data that need eliminating seems to be in proportion to the
value of variance of all the training data prior to pruning;
i.e. the more numbers of abnormal data should be elimi-
nated, the larger the variance is, and vice versa. Based on the
heuristics, we expect that an automatic termination condi-
tion can be achieved by exploring the relationship between
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the number of abnormal data pruned and the deviation of
intra-speaker’s scores.

Now we attempt to relate our methods to other so-
phisticated threshold setting and update methods. First,
as a statistics-based a priori method, our threshold setting
method may be viewed as a direct extension to the Furui’s
and CAVE-1 methods. Furui’s threshold setting is per-
formed by the use of only the first- and the second-order
statistics of inter-speaker’s scores, while the first-order
statistics are merely employed for threshold setting in
CAVE-1. In contrast, ours employs both the first-order
statistics of intra-speaker’s scores and the first- and the
second-order statistics of inter-speaker’s. In terms of the
performance, ours can be viewed as an improved version of
Furui’s and CAVE-1 by introducing more reliable statistics.
Next, a speaker-independent shift is applied to the estimate
of first-order intra-speaker’s statistics in CAVE-2 against
mismatches. Although such a correction is optimized on
a registration population, the same correction is used for
different speakers. As well known, changes of different
speakers’ voice may be involved in different mismatch en-
vironments. This fact incorporated by our empirical studies
shows that a fixed correction could not compensate mis-
match sufficiently for all the speakers. Unlike CAVE-2, our
pruning method provides a way to correct bias of estimates
in a speaker-dependent way. Note that the number of abnor-
mal data eliminated for different speakers is distinct even
though the parameter « is fixed in our algorithm. Although
CAVE-2 is proposed only for the Gaussian model of the
utterance log-likelihood ratio distribution, its correction
method can be viewed as a special case of ours in the sense
of pruning abnormal data.

For most of threshold update methods in speaker verifi-
cation, the new data are pooled to update the parameters
off-line in a speaker model. Then a threshold is indirectly
updated on the basis of the re-trained speaker model. Re-
cently, some researchers [9,14] proposed a method that can
update the parameters of a hidden Markov model (HMM)
on-line, and the threshold update is performed based on
the new HMM accordingly. In contrast, our method gives
an on-line incremental threshold update in output space
of speaker models, and thus, allows a speaker verification
system to perform threshold update regardless of types of
speaker models. This salient feature distinguishes between
other existing threshold update methods and ours.

6. Concluding remarks

In this paper, we have presented our methods towards
better making a decision in speaker verification. The pro-
posed methods include the use of more reliable statistics
for threshold setting, elimination of abnormal data for better
estimation of underlying statistics, and on-line incremental
threshold update in decision space. Comparative results in
different operating modes show that our methods yield sat-

isfactory performance even for data collected on mismatch
conditions and, in particular, the joint use of our methods
leads to considerable improvements in comparison with re-
cent threshold setting methods. In addition, our pruning and
on-line threshold update methods may be directly applied to
some statistics-based a priori threshold setting methods as
done in this paper, which also results in the improved per-
formance. All of our methods tend to give insight into cre-
ating a real high-performance speaker verification system,
although the performance of our methods by incorporating
other effective technologies, e.g. score normalization by a
reference model, still needs to be investigated.

For better making a decision in speaker verification, there
are several open issues to be addressed in our ongoing work.
First, most of a priori methods set a threshold by building a
linear mapping between the estimate of some certain statis-
tics of scores and a threshold in a heuristic way. In terms of
their performance, we highly believe that there might be al-
ternative mapping forms for better threshold setting. There-
fore, the development of such a non-linear mapping will be
one of our ongoing research topics. Second, there should be
a underlying relationship between an estimate of statistics
and a proper threshold that can maximize the generaliza-
tion in terms of a given data set. To our knowledge, such a
relationship still keeps unknown and, therefore, the explo-
ration of such a underlying relations in a systematic way
is another topic in our ongoing studies. Next, for most of
speaker verification systems, the component modules, i.e.
feature extraction, creation of speaker models, and threshold
setting, perform independently in the learning phase. How-
ever, the system performance highly depends upon all the
components. Therefore, we suggest exploring a global op-
timization strategy such that threshold setting is performed
along with the creation of other component modules. Finally,
combination of different threshold setting methods provides
an effective way to utilize complementary information, and
thus, becomes one of our ongoing research topics towards
better making a decision in speaker verification.
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Appendix A

In this appendix, we adopt an incremental way to estimate
the first- and the second-order moments for a given data
set. Suppose that the current data set contains n (n > 1)
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samples. Thus, the instantaneous mean /i, and variance 6,
are estimated as

1 — 1 — )
~:7§ 5, ~”:7§ g — ) Al
i, ni:lx g P (Xi — fi,) (A1)

When a new sample, X1, is appended, we can update
the instantaneous estimate of mean and variance in an in-
cremental way without the direct use of historical data. For
re-estimating the mean and variance, the application of Eq.
(A.1) leads to
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For the last four steps in Eq. (A.3), we apply the following
facts achieved from Egs. (A.1) and (A.2):

> G- ,)=0,
i=1

~ ~ JErHrl - :an

Hypr — By = a1l

and

. . no . .
Xnt1 — Ry = m(xnﬂ — ).

Without loss of generality we can denote X, as the
most abnormal datum in terms of our pruning method. Once
Xnt+1 18 given, Eq. (15) can be immediately achieved from
Eq. (A.2) to incrementally re-estimate the new mean after
pruning.
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