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Abstract

A novel connectionist method is proposed to simultaneously use diverse features in an optimal way for pattern
classification. Unlike methods of combining multiple classifiers, a modular neural network architecture is proposed through
use of soft competition among diverse features. Parameter estimation in the proposed architecture is treated as a maximum
likelihood problem, and an Expectation-Maximization (EM) learning algorithm is developed for adjusting the parameters of
the architecture. Comparative simulation results are presented for the real world problem of speaker identification. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

A general pattern classification process is usually composed of three stages, i.e., preprocessing, feature
extraction, and classification. In the stage of feature extraction, in particular, there may be numerous different
methods so that several diverse features can be extracted from the same raw data. To alarge extent, each feature
can independently represent the original data, but none of them is totally perfect for practical applications.
Moreover, there seems to be no simple way to measure which kind of feature is optimal for a pattern
classification task. For this kind of pattern classification tasks, diverse features often need to be jointly used in
order to achieve robust performance. In this paper, we call this kind of pattern classification tasks it
classification with diverse features.

To our knowledge, so far there exist two distinct methods for classification with diverse features. One is the
use of a composite feature formed by lumping diverse features together somehow, and the other is combination
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of multiple classifiers that have been aready trained on diverse feature sets respectively. For the use of a
composite feature, however, there are at least three problems as follows:

- curse of dimensionality; its dimensionality is higher than that of any component feature.

- difficulty in formation; it is difficult to lump several features together due to their diversified forms.

- redundancy; those component features are usually not independent.

In general, therefore, the use of a composite feature does not lead to a significantly improved performance. On
the other hand, combination of multiple classifiers has been studied in the pattern recognition community and
yields improved performance (Xu et a., 1992; Suen et a., 1993; Ho et al., 1994; Huang and Suen, 1995).
Furthermore, more recent studies show that better performance can be achieved by combining multiple
classifiers with diverse features (Xu et a., 1992; Perrone, 1993; Chen et al., 1997) in contrast to the
combination of multiple classifiers with the same feature. For most of the combination methods, however, a
large amount of data is usually required to train both individual classifiers and a combination scheme. In
addition, the combination methods are also viewed as a kind of sub-optimal sequential learning procedure
(Fogelman-Soulie et al., 1993).

In this paper, we propose a novel method for classification with diverse features. The idea underlying the
proposed method is to use diverse features for classification in the manner of soft competition. In contrast to the
winner-take-all mechanism, soft competition is a concept that a competitor and its rivals can work for a specific
task together, but the winner plays a more important role than the losers. Recently, Jacobs et al. (1991) proposed
a modular neural network architecture called mixture of experts (ME) for supervised learning. The ME
architecture is based on the divide-and-conquer principle, in which a large, hard to solve problem is broken up
into many smaller, easier to solve problems. The use of the divide-and-conquer principle makes the ME
architecture yield good performance and allows fast training. Although the ME architecture has been success-
fully applied to severa supervised learning tasks (Jordan and Jacobs, 1994; Chen et al., 1996a,b), it can only use
a composite feature for classification with diverse features, since both gating and expert networks need to
receive the same input. In this paper, we propose an alternative mixture of experts (AME) architecture by
introducing a soft competition mechanism for the effective use of diverse features. In the AME architecture,
parameter estimation is treated as a maximum likelihood problem and an Expectation-Maximization (EM)
algorithm is devel oped to adjust the parameters. In terms of maximum likelihood learning, the AME architecture
simultaneously uses diverse features in an optimal way. Therefore, it provides a novel connectionist method for
classification with diverse features. To evaluate the performance, we have applied the proposed method to the
real world problem of speaker identification, and simulation results show the effectiveness of the proposed
method.

The rest of the paper is organized as follows. Section 2 describes the AME architecture and the EM
algorithm. Section 3 reports simulation results and conclusions are drawn in Section 4.

2. Architecture and learning algorithm
2.1. Motivation

For an input sample D in the data set 27 ={D", y"}]_,, we assume that K feature vectors, x{",...,x{9,
can be achieved from the sample D using K (K > 1) different feature extraction methods. A question can be
raised: which one is the optimal feature of the sample D" among its K feature vectors? Prior to addressing an
answer to the question, we first introduce a set of binary indicator variables to represent the optimal feature. An
indicator 1V for x{" is defined as

o= |1 if x{V isthe optimal feature of D,
“ 0 otherwise,

(1)
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where ©K_, IV = 1. If we always use the optimal feature to represent the original data and ignore the other
features, there will exist a probabilistic relation between the original sample and its optimal feature via the
indicator as follows:

P(x() =P(DV| 1M =1). (2)

Obvioudly, the answer to the aforementioned question would always be available if such indicators were
known. In practice, however, the indicators are unknown so that we cannot achieve the optimal performance in
this manner. More likely, there is no unique feature highly superior to others for representing al the input
samples in 2. Therefore, we suggest that all the achieved features are simultaneously used to represent the
original samples via indicator variables. For doing so, we specify a finite mixture model as

K
P(DV)= Y P(DV1"=1)P(1{V =1). (3)
k=1
For this idea, an open problem is how to implement the finite mixture model in Eqg. (3) for classification. In the
sequel, we shall propose an alternative mixture of experts architecture to solve the problem.

2.2. Alternative mixture of experts architecture

As illustrated in Fig. 1, the alternative mixture of experts (AME) architecture is composed of N expert
networks and a gate-bank. The ensemble of expert networks is divided into K groups in terms of K diverse
features, and there are N expert networks in the ith group subject to ¥ ; N, = N. Expert networks in the same
group receive the same feature vector, while any two expert networks in different groups receive different
feature vectors. For an input sample, each expert network produces an output vector in terms of a specific
feature. In the gate-bank, there are K gating networks and K different feature vectors are input to these
networks, respectively. Each gating network produces an output vector in terms of a specific input feature. The
output vector consists of N components, where each component corresponds to an expert network. The overall

convex weighted sum

gate-bank

X, X«

Fig. 1. The alternative mixture of experts architecture. Assume that there are K diverse feature sets extracted from a raw data set. The
gate-bank is in the solid-line box, where K gating networks are employed to work on diverse feature sets. Accordingly, the ensemble of
expert networks is also divided into K groups. Each group of expert networks in a dash-line box receive the same input.
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output of the gate-bank is a convex weighted sum of outputs produced by all the gating networks and can be
interpreted as a partition of unity at each point in the input space based on diverse features. As a result, the
overall output of the AME architecture is a linear combination of outputs of all N expert networks weighted by
the output of the gate-bank.

We stipulate that all the expert networks in the ith group receive the ith feature vector x{" for a sample D".
Let expert (i,j) denote the jth expert in the ith group. The output of expert (i,j) is

Oij(xi(t)) =f(VVini(t))' (4)

where W; is a weight matrix and f(-) is a fixed continuous nonlinear function determined by the statistical
model of an expert network. Accordingly, the scalar output of the kth gating network for expert (i,j), a
component of the gating network’s output vector, is

eflﬁll)j

. 5
K ZN etk )

where v, ;; is a weight vector in the kth gating network and &%, = vy ;; x{”. Furthermore, the corresponding
scalar output of the gate-bank for expert network (i,j) is
K

)\(itj)= ) akg(xﬁt),vk,ij)! (6)

k=1

g(xf(t)!vk,ij)

where a, isalinear coefficient and satisfies ©f\_; @, = 1 and «, > 0. Therefore, the overall output of the AME
architecture for the mput DV is

o(DW) = Z Z Aoy (x(). (7)

=1j=1

To explain the proposed architecture, it is useful to provide a probabilistic perspective for the gate-bank and
expert networks. The gate-bank is an implementation of the finite mixture model in Eq. (3). g(x{" ,vk,]) is
interpreted as the probability that an output yV is generated by expert network (i, j) based on the feature vector
x{. e, is interpreted as the probability that x{" is the optimal feature of D). Therefore, A{) can be
mterpreted as the probability that an output yV is generated by expert network (i,j) according to al the
achieved features. Note that the task of the gate-bank is to select an appropriate expert network to generate y©®
for DV, Once the selection is performed, resulting in a choice of expert network (i,j), y* is assumed to be
generated according to its statistical model P(y"| x{",W,), where W,; is the set of all the parameters in the
statistical model (the weight matrix of expert network (i,j) as stated before). Since such a deterministic
selection is usually impossible, once again, a soft competition mechanism is adopted for the optimal use of all
the expert networks as suggested by Jordan and Jacobs (1994). Therefore, the statistical model of the AME
architecture can be described by a generalized finite mixture model, where the total probability of generating
y from D can be specified as

P(y"|DY,@) = % i 9(xei ) P(YO T XOW), (8)

nMx

where @ is the set of al parameters in the model, including the expert network parameters W,; and the
gate-bank parameters v, ;; and «,. In terms of pattern classification, the statistical model of an expert network,
P(y® | x{",W;,), is assumed to be the Bernoulli distribution (Jordan and Jacobs, 1994) in the case of binary
classﬂcanon and the multinomial distribution (Jordan and Jacobs, 1994) or the generalized Bernoulli
distribution (Chen et al., 1996b,c) in the case of multicategory classification.
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Here, we emphasize that there are two soft competition mechanisms in the AME architecture; on the basis of
the supervised error, expert networks compete for the right to learn the training data, while gating networks
associated with diverse features compete for the right to select an appropriate expert network as the winner for
generating the outpuit.

2.3. EM learning algorithm

Apparently, parameter estimation in the AME architecture is a maximum likelihood learning problem. In this
paper, we adopt an Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to solve the problem. To
develop the EM algorithm, we introduce an additional set of missing data besides the observable datain 2 in
order to simplify the likelihood function. The set of missing data is denoted as .7 ={I\{’,1{"}"_,, where
i=1,...,K,j=1,...,N,and k=1,...,K. The indicator variable I is defined as
1O _ {1 if y is generated from expert (i,j), (9)
' 0 otherwise,

where I ) satisfies £, XN ;1" = 1. The indicator variable I (" is the same as defined in Eq. (1) and, here,
mterpreted as that the selection can be merely performed by the kth gating network when its input x{" is
viewed as the optimal feature of D{. As a result, the set of complete data is achieved as % = {;2’ )

Accordingly, the complete-data Iikelihood function is achieved as

l)w!)

l.(P;7) =log ]I[ ﬁ ]:[ ]f[{akg(xk i) ) (y<x)| x(O W )}

t=1i=1j=1k

Z

K
Y Iﬁ-”lé”{log ay +log g( X",y ;) +log Py xi(‘),V\/ij)>. (10)
1k=1

-¥

t=1i

||M;<

1]

Consequently, given the observed data and the current model, the E-step of the EM algorithm is defined by
taking the expectation of the complete-data likelihood:

T K N K
E['c(‘k?) |5’3ﬂ] = Z Z Z (‘)h(‘)h(k‘)”<log o + log g(xﬁt)al’k,ij) + log P(y(t)| Xi(t),Wij)},
t=1i=1j=
(11)
where h(?, hi’ and h{}; are the posterior probabilities (for details see Appendix A) and evaluated by
TK L a®g(xP,0 ) P(yO] xO W
Bt AL ML (12)
T LT a0 (xei,) P (V| X0 W)
aOYK v N (0 ,(s) (0| O WS
h(kt) K s 12- (X 'lt)k’Sij)P(y |tXi ,\:VijS) (13)
DU UARPI) 1ak5)g( ﬁ),vﬁ]si)j)P(y()lxi(),V\/i}s))
and
ag(xQ,p) P(yO | xO W

Z|K MRS 10‘ks)g(x(t) U(S)) (y(t)l Xi(t)vvvi(js)) '
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Here, @ = {a®,0(3;, W%} is the value of the parameters at the sth iteration. Thus, the M-step reduces the

problem of maximizing E[l(®;%)| 2] with respect to the expert network parameters and the gate-bank
parameters to the following separate maximization problems:

N
W=D —argmax Y i} log Py O W), )
iot=1
T K N
VD = arg max 2 Y 2 hY;log g(Xf(t),Vk,ij)! (16)
k t=1i=1j=1

where V, is the matrix consisting of all the weight vectors v, ;; in the kth gating network, and

T K K
aCt D =agmax Y, Y hPlogea, st. Y a,=1, a, >0, (17)
¢ t=1k=1 k=1
where a =(ay,...,q,)". Consequently, the first two problems in Egs. (15) and (16) can be solved by the
Newton—Raphson method or its approximation, a faster learning algorithm, proposed in our earlier work (Chen
et a., 1996¢), while the last problem in Eq. (17) can be andytically solved by

1 T
aff =2 T hp. (18)

3. Simulations

Speaker identification isto classify an unlabeled voice token as belonging to one of reference speakers. Itisa
difficult pattern classification task since a person’s voice always changes over time. Extensive studies show that
no unigue robust feature has been found so far and several spectral features are reported to be useful for speaker
identification instead (for reviews of the subject see (Doddington, 1986; Campbell, 1997; Furui, 1997)).
Therefore, speaker identification becomes a typical problem of classification with diverse features. Speaker
identification systems can be either text-dependent or text-independent. Text-dependent means that the same text
is used in training and test. In contrast, any text is allowed to be used in either training or test in a
text-independent speaker identification system. We have applied the proposed method in both text-dependent
and text-independent speaker identification to evaluate its performance. All ssimulations were done in a Sun
sparc-10 workstation.

Speaker identification is of two salient characteristics in contrast to common pattern classification tasks. On
the one hand, a speaker identification system trained on the data recorded in multiple sessions often outperforms
another system trained on the data recorded in a single session because features extracted from the data recorded
in multiple sessions carry more robust information in general. On the other hand, the performance of a speaker
identification system will be often degraded when those data recorded in two different sessions of a long time
interval is used for training and test, respectively. As mentioned in the introduction, most of the combination
methods adopt a two-stage sequential learning procedure so that two data sets are required; one is the training
set used to train individual classifiersin the first stage and the other is the so-called cross-validation set to train
the combination scheme in the second stage. As a result, all the aforementioned characteristics were taken into
consideration in our simulations. For reasonable comparison, simulations with respect to the proposed method
were done in two different ways. One was a comparison between the AME architecture and individual
classifiers based on the same training set, and the other was a comparison between the combination methods and
the AME architecture trained on a data set consisting of data in both the training and the cross-validation sets.
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3.1. Results on text-dependent speaker identification

The acoustic database used in simulations consisted of 10 isolated digits from ‘0"’ to ‘9"’ uttered in
Mandarin. All utterances were recorded in three different sessions, and the time interval between two adjacent
sessions was one month. 20 male speakers were registered in the database, and 200 utterances (10
utterances/ speaker) were recorded for each digit in each session. In simulations, utterances recorded in the first
session were used as the training data, and utterances recorded in two additional sessions were employed as two
testing sets, called TEST-1 and TEST-2, respectively. Moreover, the training data was divided into two sets with
the same amount of utterances. They were used as the training set and the cross-validation set, respectively. In
simulations, we adopted four common speech spectral features widely used in text-dependent speaker identifica
tion (Doddington, 1986; Campbell, 1997; Furui, 1997), i.e,, 17-order delta-cepstrum, 17-order LPC based
cepstrum, 17-order Mel-scale cepstrum, and 13-order LPC coefficients.

Corresponding to 10 isolated digits, 10 AME classifiers were employed in simulations. The generalized
Bernoulli distribution was used as the statistical model of each expert network (Chen et al., 1996b,c). The
structure was chosen from four AME candidates ranging from 12 to 24 expert networks using the two-fold
cross-validation method. Finaly, an AME with 16 expert networks was adopted as the structure of the AME
classifiers and the ensemble of expert networks in this structure was divided into four groups (four expert
networks in each group, see aso Fig. 1). The proposed EM algorithm was used to train each AME classifier. In
simulations, the AME classifiers were trained on the training set and a larger data set consisting of al the
utterances recorded in the first session, respectively. Accordingly, testing results are illustrated in Figs. 2 and 3,
respectively, and the CPU time of training those AME classifiers is shown in Figs. 4 and 5, respectively, in
terms of two different training sets.

Our earlier work showed that the hierarchical mixtures of experts (HME) architecture (Jordan and Jacobs,
1994), a variant of the mixture of experts model, outperforms the ME architecture in speaker identification
(Chen et d., 1996a,b). For comparison, we aso used 40 HME classifiers to deal with the same problem and
each HME classifier was used to handle the utterances of a digit based on a specific feature set. Model selection
was also performed by the two-fold cross-validation method. In simulations, seven HMEs with different
structures ranging from two to four levels were examined and a three-level HME with 16 expert networks was
finally chosen as the structure of HME classifiers. The generalized Bernoulli distribution was also used as the
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Fig. 2. Identification rates produced by our architecture trained on different feature sets (solid line) and the HME classifiers trained on either
individual feature sets (dash-dot line) or the composite feature set (dashed line) in text-dependent speaker identification. All the architectures
are trained on the training set. (a) Testing results on TEST-1. (b) Testing results on TEST-2.
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Fig. 3. Identification rates produced by our architecture (solid line), the BAYES combination method (dashed line), and the BKS
combination method (dash-dot line) in text-dependent speaker identification. Both our architecture and two combination schemes are trained

on the same data set consisting of both the training and the cross-validation sets. (a) Testing results on TEST-1. (b) Testing results on
TEST-2.

statistical model of each expert network. The EM a gorithm proposed by Jordan and Jacobs (1994) was used for
training those HME classifiers on the training set. Due to the limited space here, we merely report the mean
identification rates produced by those HME classifiers trained on the four individual feature sets and their mean
training time. For the purpose of comparison, mean identification rates produced by those HME classifiers are
shown in Fig. 2 and the mean CPU time of training those HME classifiersis shown in Fig. 4. On the other hand,
composite-feature based methods are often used for classification with diverse features. For comparison, we also
conducted simulations using a composite-feature based method. In simulations, we lumped the aforementioned
four different feature vectors together to form a 64-dimensional composite feature vector. 10 aforementioned
HME classifiers were trained on the composite feature set generated from the training set. Identification rates

produced by those HME classifiers trained on composite feature sets are aso illustrated in Fig. 2, and the CPU
time of training those HME classifiers on the composite feature set is illustrated in Fig. 4.
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Fig. 4. CPU time of training our architecture on different feature sets (solid line) and the HME classifiers on either individua feature sets
(dash-dot line) or the composite feature (dashed line) in text-dependent speaker identification.
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Fig. 5. CPU time of training our architecture (solid line), the BAY ES combination method (dashed line), and the BKS combination method
(dash-dot line) in text-dependent speaker identification.

Combination of multiple classifiers turns out a good way to handle a task of classification with diverse
features. For comparison, we also applied two recent combination methods in the same problem. They are the
Bayesian reasoning (BAYES) method (Xu et a., 1992) and the behavior-knowledge space (BKS) method
(Huang and Suen, 1995), respectively. It has been reported that the BKS method achieves a promising
performance and outperforms several classica combination methods in an unconstrained handwritten numerals
recognition problem (Huang and Suen, 1995), while the BAY ES method also readily yields good performance
in speaker identification (Chen et al., 1997) and the hand-written optical character recognition (Xu et al., 1992;
Perrone, 1993). In simulations, the aforementioned HME classifiers trained on different feature sets were used
as individual classifiers. The cross-validation set was used to calculate the confusion matrix in the BAYES
method (Xu et al., 1992) and to acquire the behavior-knowledge space in the BKS method (Huang and Suen,
1995). Identification rates produced by the two combination methods are illustrated in Fig. 3. For comparison in
training time, we also show CPU time of training the two combination schemes in Fig. 5. Note that the training
time of a combination scheme is the sum of the mean training time taken for training al the individual HMEs
and the time for calculating the confusion matrix or acquiring the behavior-knowledge space.

It is evident from Fig. 2 that the AME classifiers trained on different feature sets produce considerably better
performance than that of the HME classifiers trained on either individual feature sets or the composite feature
set. In particular, the AME architecture yields significantly faster training than the HME architecture trained on
the composite feature set. On the other hand, simulation results illustrated in Fig. 3 also show that our method
performs well; its performance is dlightly better than that of the two combination method in TEST-1, but it
outperforms the two combination method in TEST-2. In addition, the performance of the AME architecture is
only dlightly degraded when less data is used for training, which indicates that the AME architecture is more
robust in text-dependent speaker identification.

3.2. Results on text-independent speaker identification

Text-independent speaker identification is a more difficult learning task. Because the text may be arbitrary at
any time, all the template matching techniques are not applicable. Therefore, speaker’s features play a critical
role in text-independent speaker identification. In order to further evaluate its performance, we have also applied
the AME architecture in a text-independent speaker identification task.

The database used in simulations is a subset of the standard Chinese speech database. This set represents 20
speakers of the same Mandarin dialect. The utterances in the database were recorded during three separate
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Table 1
Testing results (%) on SET-2 produced by our architecture (AME) trained on different feature sets and HMEs trained on either individual
feature sets or the composite feature set in text-independent speaker identification. SET-3 is the training set in simulations

Classifier (feature) Identification Substitution Rejection
AME (diverse features) 89.3 7.6 31
HME (19-LPCCEP) 82.8 13.7 35
HME (19-MELCEP) 83.6 11.8 4.6
HME (19-LPCCOE) 80.3 16.6 3.1
HME (composite feature) 87.2 8.4 4.4

sessions, and the time interval between two consecutive sessions was two weeks. In the first session, 10
different phonetically rich sentences were uttered by each speaker. The average length of the sentences was
about 4.5 seconds. In the two additional sessions, five different sentences were uttered by each speaker,
respectively. The average lengths of the sentences recorded in the two sessions were about 4.4 and 5.0 seconds,
respectively. In simulations, the data recorded in the first session was used as the training set, called SET-1, and
the data recorded in the two additional sessions, called SET-2 and SET-3 respectively, were used as either a
testing set or a cross-validation set. As a result, there were 10057 frames in SET-1, 4270 frames in SET-2, and
4604 frames in SET-3. We adopted three common speech spectral features extensively used for text-independent
speaker identification (Doddington, 1986; Campbell, 1997; Furui, 1997), i.e., 19-order LPC based cepstrum
(19-LPCCEP), 19-order Mel-scale cepstrum (19-MELCEP), and 19-order LPC coefficients (19-LPCCOE).

The evaluation method used is briefly described as follows. The sequence of feature vectors corresponding to
testing data is denoted as {f,, ..., f;}. The sequence can be divided into overlapping segments of S feature
vectors. The first two segments from a sequence

fo,for o foferrfornn o onfr
would be
fi,fy,...,fg and f,,...,fq,fg .

A test segment length of L seconds would correspond to S feature vectors for an L /S msec frame rate. We
used the 6.4 msec frame and S= 100 in simulations. Using a segment, the system produces either an identifying
result or a rejection. In the “* segment test”” method, an unknown speaker can be identified only if at least 50%
input vectors in the segment report the same identifying results; otherwise, the system rejects the unknown
speaker. The above steps are repeated for test utterances from each speaker of the population. The final
performance evaluation is then computed according to identifying, substitution and rejection rates as defined by
Xu et al. (1992).

The two-fold cross-validation method was still used for model selection. As aresult, the AME with 24 expert
networks located in three groups (eight experts in each group, aso see Fig. 1) was finally adopted, and the

Table 2
Testing results (%) on SET-3 produced by our architecture (AME) trained on different feature sets and HMEs trained on either individual
feature sets or the composite feature sets in text-independent speaker identification. SET-2 is the training set in simulations

Classifier (feature) Identification Substitution Rejection
AME (diverse features) 93.4 2.8 3.8
HME (19-LPCCEP) 89.5 5.2 53
HME (19-MELCEP) 91.1 31 5.8
HME (19-LPCCOE) 86.9 57 7.4

HME (composite feature) 92.1 3.3 4.6
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Table 3

Testing results (%) on SET-2 produced by our architecture (AME) trained on SET-13, the Bayesian combination method (BAY ES), and the
behavior-knowledge space (BKS) combination method in text-independent speaker identification. SET-3 is used as the training set of the
two combination methods in simulations

Classification method Identification Substitution Rejection
AME (diverse features) 89.8 71 31
BAYES COMBINATION 88.1 7.2 47
BKS COMBINATION 87.7 6.7 5.6

generalized Bernoulli distribution was used as the statistical model of expert networks. We used the proposed
EM algorithm to train the AME classifier on SET-1. The testing results on SET-2 and SET-3 are shown in
Tables 1 and 2, respectively. For comparison with the combination methods, we also used all the sentences in
SET-1 and two sentences in either SET-2 or SET-3 to established two new training sets, called SET-12 (5894
frames) and SET-13 (5982 frames), respectively. Once the AME classifiers was trained on SET-12, SET-3
would be the test set, while SET-2 would be used as the test set if the AME classifiers was trained on SET-13.
Testing results produced by the AME classifier trained on SET-12 and SET-13 are shown in Tables 3 and 4,
respectively.

For comparison, a three-level HME structure with 24 expert networks was employed as the structure of
individual classifiers for the same problem. We trained the HME classifiers on three individual feature sets,
respectively, and a composite feature set formed by lumping the three different feature vectors together. The
generalized Bernoulli distribution was also used as the statistical model of each expert network, and the EM
algorithm proposed by Jordan and Jacobs (1994) was employed to train these HME classifiers on SET-1.
Testing results on SET-2 and SET-3 are shown in Tables 1 and 2, respectively. In addition, we also applied the
two combination methods in the text-independent spesker identification problem by combining three HME
classifiers trained on individual feature sets. When SET-3 was used as the test set, SET-2 would be the
cross-validation set, and vice versa. Testing results on SET-2 and SET-3 are also shown in Tables 3 and 4,
respectively. For the purpose of comparison in training time, we also show the training time of all the classifiers
used for the text-independent speaker identification problem in Fig. 6. Note that the training time of a
combination method is still the sum of the mean training time of individua classifiers and the mean time for
either calculating the confusion matrix or acquiring behavior-knowledge space on either SET-2 or SET-3. In
addition, the mean training time of the AME classifier on two different training sets is merely illustrated in Fig.
6.

In summary, simulation results show that the AME classifier outperforms the HME classifiers trained on
either individual feature sets or the composite feature set. In particular, the AME architecture yields significantly
faster training than the HME architecture trained on the composite feature set. On the other hand, the
performance of our method is similar to that of the two combination methods in general. But the combination
methods need to use more data for training, and the simulation results also indicate that their performance seems

Table 4

Testing results (%) on SET-3 produced by our architecture (AME) trained on SET-12, the Bayesian combination method (BAYES), and the
behavior-knowledge space (BKS) combination method in text-independent speaker identification. SET-2 is used as the training set of the
two combination methods in simulations

Classification method Identification Substitution Rejection
AME (diverse features) 94.5 23 3.2
BAYES COMBINATION 94.1 31 28

BKS COMBINATION 94.7 3.6 1.7
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Fig. 6. CPU time of training our architecture (AME), the HME classifier trained on the composite feature set (HME-C), the BKS
combination method (BKS), the Bayesian combination method (BAYES), and the HME classifiers trained on individual feature sets in
text-independent speaker identification. HME-1,2,3 denote the HME classifiers trained on the 19-LPCCEP feature set, the 19-MELCEP
feature set, and the 19-L PCCOE feature set, respectively.

to highly depend upon the cross-validation set used to calculate the confusion matrix and to acquire the
behavior-knowledge space. In contrast, our method is robust and performs better when less data is used for
training.

4, Conclusions

We have described an alternative method to simultaneously use diverse features in an optimal way for pattern
classification. Simulation results have shown that the proposed connectionist method yields the improved
performance and fast training. Comparative results also show that the proposed modular neural network
architecture outperforms the hierarchical mixture of experts architecture trained on either individual feature sets
or a composite feature set and are more robust in comparison with the methods of combining multiple classifiers
in speaker identification. In addition, the proposed architecture can be viewed as an extension of the origina
mixture experts architecture (Jacobs et al., 1991) for classification with diverse features. When a single feature
set is used, our architecture will be equivalent to the mixture experts architecture. As an extension of the
mixture of experts model, the hierarchical mixtures of experts architecture has shown its effectiveness in many
complicated supervised learning tasks. Similarly, the proposed modular neural network architecture can be also
extended to a hierarchical structure for classification with diverse features (Chen and Chi, 1996). We expect that
such a hierarchical structure yields improved performance in complicated pattern classification tasks.

As a new method for classification with diverse features, our method adopts a single stage learning process
rather than a two-stage sequential learning procedure used in methods of combining multiple classifiers. For
most of the combination methods, reliable combination schemes need training on a cross-validation data set by
almost exhaustive enumeration. As pointed out by Ho et al. (1994), in general, n* combinations need to be
covered by the training data to sufficient density for n classes and k classifier, and therefore computation in
those methods is expensive. Although some ad hoc methods have been explored to constrain the combinations
based on correlation of classifiers, a systematic approach is still a challenging open problem (Ho et al., 1994). In
contrast, such a cross-validation data set is not necessary to be used in our method, and simulations have shown
that less training data is required in our method to achieve a similar performance. These sdient features
significantly distinguish our method from those methods of combining multiple classifiers.
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However, model selection is still inevitable in our method. In our simulations, we adopted the time-consum-
ing cross-validation method for model selection. Apparently, more efficient model selection techniques are
worth studying for the proposed architecture. The state-of-the-art statistical learning theory provides a feasible
way for model selection in general. In our future work, we are going to utilize Bayesian learning and
regularization techniques to develop an efficient model selection method for the proposed architecture.
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Appendix A

In this appendix, we present the derivation of the E-step in the proposed EM learning algorithm described in
Section 2.3. In the E-step, posterior probabilities h(?, hi’ and h{}; are defined as
WY —e[1P 2], WO =E[IV12] ad K =E[111012].
E[I{’ | 2] is computed using the Bayesian rule as

p( y(l) | |i(jt) =1, D(l),q)(s)) p( |i(jt) =1]| D(t),(p(s))

Q) —P(1® = ) DO PO =
E[Iii |%] _P(Iii =1ly®.D "ps)_ P(y®| D®,p®) (19)
According to the total probability rule, furthermore, P(I> = 1| D©,®®) is computed as
K
P(1{"=11DV,@®) = ¥ P(I{"=1ID®,@®)P(1P = 1] IV = 1,DV, @), (20)

k=1

According to definitions, we have P(I) = 1] 11V = 1,D©, @) = g(x{",v(3,), P(I" = 1| DV, @) = o
and P(y"[1"=1,D0,0®) =P(y" | x",W(). P(y"|DO,@®) is the statistical model of the AME
architecture as defined in Eq. (8). Therefore, inserting Eq. (20) into Eq. (19) yields

T 1alg(X0.(3) Py X W)

E[1V 2] = : (21)
[ ! ] Il leNi= 1Z||<<=1a|(<s)g( X(t)!v(k,si)j) P( yl Xi([)'VViES))
Using the Bayesian rule, we aso have
P y(t)| 1D = 1,D(t),(p(s) P(1® = 1] D(t),(p(s)
E[Iét)b?ﬁ] :P(Iét)=1| y(t),D(t),(p(s))= ( k ) ( k ) (22)

P(y"| DV, @)
According to the total probability rule,

K N
p(y(t)| |ét) — 1,D(t),(p(s)) — Z Z p(y(t)| ||§t) — 1v|i(jt) — l,D(t),(D(S)) p( |i(jt) =1 |l£t) — 1,D(t),q)(s))
=1j=1

I
=
g

P(yl1"=1,D0,@9)P(1{"=1[1{"=1,D0,0®).  (23)
1

1]j
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Note that the indicator variable I = 1 can be ignored from P(y®"| 1" = 1,17 = 1,D®, &) in Eq. (23)
since it is independent of the probability model based on the fact that y¥ is generated from expert network (i, j)
regardless of any gating network in the gate-bank. Therefore, inserting Eq. (23) into Eq. (22) results in

al((S)ZiK:leNhg( x(t),vf(’Si)j) P( yO | x(® ,Wiﬁs))

E[1V 2] = _ : (24)
e 1ZJ'N': 1Z||<<:10‘1£S)g( Xﬁt)w(k?i)j) P( y & Xi(t),Wiﬁs))
Similarly,
E[1P 10 12] =P(1P =110 = 1] y©, DO, )
~ p( y(t)| |i(jt) =1, |l£t) =1, D(t),gp(s)) p( |i(jt) - 1v||£t) =1]| D(t),(p(s))
B P(y°|D®,0®)
~ p( y(t)| |i(jt) =1, D(t),@(s)) p( |i(jt) =1, ||§t) =1 D(t),(p(s)) (25)
N P(y®| DY, d®)
and
P(1"=1,1{" =1 DV,0®) =P(1{P = 1| 11" = 1,DV, @) P(1(’ = 1| DV, @). (26)
Assembling Eq. (25) and Eq. (26), we achieve
Og( x® p(s) DIRVORVVIE)
E[ll(jt),lét)|2ﬂ] _ ak g(xk |Uk’|J)P(y( |X| 1VV|J ) (27)

K N, yK t t t )
T TN R g (X PO T X Wi2)
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