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Extraction of Hydrographic Regions from Remote
Sensing I mages Using an Oscillator Network with Weight
Adaptation

Xiuwen Liu, Ke Chen, and DelLiang Wang

Abstract—We propose a framework for object extraction with accurate
boundaries. A multilayer perceptron isused toidentify seed pointsthrough
examples, and regions are extracted and localized using a locally coupled
network with weight adaptation. A functional system has been developed
and applied to hydrographic region extraction from Digital Orthophoto
Quarter—Quadrangle images.

Index Terms—Classification, hydrographic region extraction, LEGION,
multilayer perceptron, weight adaptation.

|. INTRODUCTION

With the availability of remotely sensed high resol ution imagery and
advances in computing technologies, cost-effective and efficient ways
to generate accurate geographic information are possible. However, ge-
ographic information is encoded implicitly in images, and a critical
step is to extract geographic information and make it explicit. For re-
mote sensing applications, classification is one of the most commonly
used techniques to extract quantitative information from images, and
multilayer perceptrons have been widely used due to their learning
capability through examples [3], [12], [1], [10]. For classification ap-
proaches, there is an intrinsic tradeoff between regional and boundary
accuracy. When alarge window is used, the classification result within
a homogeneous region tends to be accurate but with a large boundary
uncertainty. For a small window, the boundaries tend to be accurate.
However, the classification result can be very noisy even within a ho-
mogeneous region.

We attempt to devel op aframework for automated feature extraction
that can derive accurate geographic information. In this communica-
tion, we pose the automated feature extraction problem as a binding
problem. Pixels that belong to desired regions should be bound to-
gether to form meaningful objects. We usealocally excitatory globally
inhibitory oscillator networks (LEGION) network [11], [14], [15],
which provides a generic framework for feature binding and image
segmentation. As shown analytically [11], LEGION networks can
achieve both synchronization within an oscillator group representing
a region and desynchronization among different oscillator groups
rapidly. This offers a theoretical advantage over pure local networks
such as Markov Random Fields, where efficient convergence has
not been established. To improve the performance, we incorporate
contextual information through a weight adaptation method proposed
by Chen et al. [2]. The weight adaptation method can be viewed as
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a way of incorporating contextual information by relating detected
structures at two different scales. In weight adaptation, statistical
information from a larger scale is derived and mainly used to govern
a locally coupled adaptation process, resulting in accurate boundary
localization and robustness to noise. We assume that features to be
extracted are specified through examples, and we use a multilayer
perceptron to determine regions with significant features. Thistraining
methodology greatly reduces the number of necessary training
samples. We have developed a functioning system using the proposed
method for hydrographic feature extraction from digital orthophoto
quarter—quadrangle (DOQQ) images and have obtained satisfactory
results.

Il. METHODOLOGY

Through theoretical investigation of brain functions, von der Mals-
burg [13] hypothesized that temporal correlation provides a generic
framework for feature binding, and Terman and Wang proposed LE-
GION networks[11], [14], [15] as a computational framework for fea-
ture binding and image segmentation. In LEGION networks, an object
isrepresented by agroup of synchronized oscillators, and different ob-
jects are represented by groups that are desynchronized. It has been
shown analyticaly that LEGION networks can rapidly achieve both
synchronization in a locally coupled oscillator group and desynchro-
nization among different oscillator groups [11], [14], [15]. LEGION
has been successfully applied to segmenting gray level images [14],
[15], range images [5], and medical images [8].

A. Single Oscillator

As the building block of a LEGION network, a single oscillator is
defined asafeedback |oop between an excitatory unit = and aninhibitor
unit y [11], [14], [15]

d,» E
d_j:3w—:ns+2—y+IH(p_9)+S+p (13
d_'y =¢e(a(l + tanh(z/3)) — y). (1b)

dt

Here, H is the Heaviside step function, I represents external stimu-
lation to the oscillator, and S represents overall coupling from other
oscillators in the network. The potential associated with the oscillator
p isintroduced to distinguish fragments from major regions[14], [15],
and ¢ isathreshold. Basicaly, only oscillators within alarge homoge-
neous region can develop a potential larger than threshold ¢ and thus
receive effective external stimuli. These oscillators are referred to as
leaders. Oscillators that belong to noisy regions cannot develop high
potentials and are suppressed into a background region. See Wang and
Terman [14], [15] for more details regarding the potentia term. The
parameter p denotes a Gaussian noise term and is introduced to test
the robustness of the system and to facilitate desynchronizing different
input patterns.

The parameter ¢ is chosen to be a small positive number, i.e, 0
< € < 1. Under this condition, without any coupling S or noise p,
(1) corresponds to a standard relaxation oscillator. For a positive ex-
terna stimulus, i.e, I > 0, (1) has a stable periodic solution for all
sufficiently small e. The periodic solution alternates between the active
phase and the silent phase. Within these two phases, (1) exhibits near
steady state behavior and the oscillator travels on aslow time scale. In
contrast, the transition between two phases occurs on afast time scale.
The highly nonlinear behavior leads to desirable properties for binding
and segmentation. For I < 0, (1) has astable fixed point. In this case,
the oscillator needs to receive excitatory coupling from other oscilla-
torsin order to oscillate.
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B. LEGION for Image Segmentation

A LEGION network for image segmentation consists of locally cou-
pled relaxation oscillators and a global inhibitor. In the two-dimen-
sional case, an oscillator is denoted by (7, j), where: and j indicate
the row and column of the oscillator. In LEGION, the coupling term
S;; for oscillator (7, j) in (1) isgiven by [2]:

Z H(xr)/ 1+ |Wijnl)

_ (K DENG.J)

Sij =
log Z H(ze)+1
(k, DEN(i, j)

wherethefirst termistotal excitatory coupling that oscillator (7, ) re-
ceives from the oscillatorsin alocal neighborhood N (i, j). W, ;.5 is
the dynamic connection from oscillator (%, ) to (i, j), and it encodes
dissimilarity to simplify the equations for weight adaptation, hence the
reciprocall in (2). Note that, unlike in [14], [15], the first term in (2)
implementsalogarithmic grouping rule[2], which generates better seg-
mentation results. In the second term, 6. is athreshold, and the global
inhibitor = is defined as dz/dt = ¢(o — z), Where oo = 1 if
x;; > 6. for at least one oscillator (i, j) in the entire network, and
0 = 0 otherwise. The parameter ¢ determines the rate at which the
global inhibitor reacts to such stimulation. If the activity of at |east one
oscillator is above 6., the global inhibitor approachesto 1, and in turn
it sendsinhibition to the entire network. 1. in (2) isthe weight of inhi-
bition from the global inhibitor. Thisleadsto desynchronization among
different oscillator groups [11], [14], [15].

The computation of LEGION can be summarized asfollows. An os-
cillator triggers the global inhibitor when it jumps to the active phase.
Asaresult, the global inhibitor is activated and exerts inhibition on all
oscillators in the network. On the other hand, an oscillator in the ac-
tive phase propagates its activation to its local neighbors through the
local coupling as shown in the first term of (2), and the excitation will
propagate until all the oscillators representing the same object are acti-
vated. Thusthe underlying dynamicsof LEGION rapidly achievesboth
synchronization by local cooperation through excitatory coupling and
desynchronization by global competition via the global inhibitor. For
rigorous analysis, see Terman and Wang [11] and Wang and Terman
[14], [15].

-W.H(z=-6.) (2

C. Weight Adaptation

Given LEGION dynamics, to extract desired features, we need to
form local connections ;. in (2) based on the input image. In LE-
GION networks, effective couplingsin avery local neighborhood, such
as the eight nearest neighborhood, are used. Without introducing as-
sumptions about the desired features, 1W; ;.,; in genera can be formed
based on the intensity values at the corresponding pixels (i, j) and
(%, 1) in the input image. However, due to variations and noisein real
images, individual pixel values are not reliable, and the resulting con-
nections would be noisy and lead to undesirable results.

To overcome this problem, we use a weight adaptation method
for noise removal and feature preservation [2]. For each oscillator in
the network, two kinds of connections, namely, fixed and dynamic
connections, areintroduced. For oscillator (¢, j), thefixed connectivity
specifies a group of neighboring oscillators that affect the oscillator,
and the associated neighborhood is called lateral neighborhood
Ni(i, j). On the other hand, the dynamic connectivity encodes the
transient relationship between two oscillatorsin alocal neighborhood
during weight adaption and is initialized based on corresponding

IThis interpretation is different from a previous one used in [11], [14], [15].
After algebraic manipulations, the equations can be re-written in terms of the
previous, more conventional interpretation.

pixel values, and the associated neighborhood is called local neigh-
borhood N (i, j). To achieve accurate boundary localization, in this
communication, N (7, ) is defined as the eight nearest neighborhood
of (i, 7). Fixed connection weights are established based on the input
image, while dynamic connection weights adapt themselves for noise
removal and feature preservation, resulting in interactions between
two scales. Intuitively, dynamic weights between two oscillators
should be adapted so that the absolute dynamic weight becomes small
if the corresponding pixels are in a homogeneous region, while the
weight should remain relatively large if the corresponding pixels
cross a boundary between two homogeneous regions. Based on the
observation that most of the discontinuitiesin the lateral neighborhood
Ny(i, j) correspond to significant features, such discontinuities
should remain unchanged and be used to control the speed of weight
adaptation for preserving features. Such discontinuities in the lateral
neighborhood are called lateral discontinuities [2]. Furthermore,
because proximity is amajor grouping principle, local discontinuities
incorporate changes of attributes among local oscillators. The lateral
neighborhood provides a more reliable statistical context, by which
the weight adaptation algorithm is governed. The local neighborhood
utilizes the statistical context and local geometrical constraints to
adaptively change the local connections. These two discontinuity
measures are jointly used in weight adaptation.

This method can be viewed as an efficient way of integrating infor-
mation from multiple scales. However, it is different from multiscale
approaches [4]. Instead of applying the same operators on different
scales, in lateral neighborhoods, statistical information is derived and
used mainly to guide local weight adaptation. In local windows, ge-
ometrical constraints are enforced through local coupling, preserving
boundaries precisely. The weight adaptation schemeis closely related
to nonlinear smoothing algorithms [6]. It preserves significant discon-
tinuities, while adaptively smoothing variations caused by noise. Com-
pared to existing nonlinear smoothing methods, the weight adaptation
method offers several distinct advantages [2]. Firgt, it is insensitive to
termination conditions, while many nonlinear methods critically de-
pend on the number of iterations. Second, it is computationally fast.
Third, by integrating information from different scales, this method
generates better results. Quantitative comparisons with other methods,
including various smoothing algorithms, are provided in [2].

D. Automated Leader Selection

Both LEGION networks and weight adaptation methods are generic
approaches, where no assumption about the features being extracted
is made. To extract desired features from remote sensing images, we
need to specify relevant features. One way isto use certain parametric
forms based on assumptions and heuristics about the properties of fea-
tures. However, for map revision and other remote sensing applications,
images may be acquired under different conditions and even through
different sources such as DOQQ images. These factors make it very
difficult to model the features using parametric forms. A morefeasible
way is to specify the desired features using positive and negative ex-
amples. Here we use a multilayer perceptron to learn the parameters
systematically through user-specified examples.

To apply a multilayer perceptron, a number of design choices must
be made. If we present the pixels in the training examples directly to
the network, we observe that many training examples are necessary
to achieve good results. Due to the potential conflicting conditions,
the network often does not converge. To achieve rotational invariance
and reduce the necessary number of training samples, we extract sev-
eral local attributes from training windows as input to the network in-
stead of presenting the training windows directly to the network. More
specifically, we use the average value, minimum, maximum, and vari-
ancefrom training samples, and athree-layer (4-3-1) perceptron. These
values are normalized to improve training and classification results.
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Fig. 1. DOQQ image with 6204 x 7676 pixels of the Washington East,
DC/MD area. The Kenil Worth Aquatic Garden is located below the river in
the upper right quadrant.

To further reduce the number of necessary training samples and deal
with variations within features being extracted, the multilayer percep-
tronisapplied for leader selection only. In other words, instead of clas-
sifying all the pixelsdirectly, wetrain the network to find pixelsthat are
within large regions to be extracted. The accurate boundaries are then
derived using a LEGION network with weight adaptation. As demon-
strated in the next section, asmall number of training samples are suffi-
cient for very largeimageswith significant variations. In contrast, some
existing methods such as [9] often divide the entire data into training
and test setswith approximately the same size in order to achieve good
performance, ending up using many more training samples.

I1l. EXPERIMENTAL RESULTS

We have applied the proposed method to extract hydrographic re-
gions from DOQQ images. Given an input image, we construct a two-
dimensional (2-D) LEGION network, where each pixel correspondsto
an oscillator. A three-layer perceptron is used to determine the leaders
in the LEGION network. Oscillators in a major region develop high
potentials and thus are oscillating. In this communication, aregion is
considered to be mgjor if its sizeislarger than athreshold ¢,,. The dy-
namic connection W ;.. between oscillator (i, j) and (k, 1) is estab-
lished based on the weight adaptation method. Extracted regions cor-
respond to al the oscillating oscillators.

Fig. 1 shows a DOQQ image from the Washington East, DC/MD
area. The training samples are chosen manually to represent typical
samples from hydrographic and nonhydrographic regions. The trained
network is then applied to classify the entire DOQQ image. While the
pixels in central and major river regions are correctly classified, the

Fig.2. Extracted hydrographic regionsfromthe DOQQ imageshowninFig. 1.
Hydrographic regions are marked as white and superimposed on the origina
image to show the accuracy of the extracted result. Here, W, = 0.15and 9, =
4000. It takes about 100 min on an HP workstation to generate this result.

river boundaries are rough. Also, there are pixels that are misclassi-
fied as hydrographic seed points even though they do not belong to any
hydrographic regions. The false target rate is 1.97%. Here, the fase
target rate is the ratio of the number of nonhydrographic pixels that
are misclassified to the total number of true hydrographic pixels. Simi-
larly, the false nontarget rate is the ratio of the number of hydrographic
pixels that are misclassified to the total number of true hydrographic
pixels. Theground truth isgenerated by manual seed selection based on
al: 24000 topographic map from the United States Geol ogical Survey,
Boulder, CO. We then apply a LEGION network with weight adapta-
tion. Leaders in LEGION are determined with 4, = 4000. Because
noisy seed points cannot develop high potentials, no hydrographic re-
gionsare extracted around those pixels. Extracted hydrographic regions
areshowninFig. 2. Both thefa setarget and fal se nontarget ratesarere-
duced dramatically. Thefalsetarget rateisreduced to 0.75%. Also, the
hydrographic region boundaries are localized much more accurately,
and thus, the false nontarget rate is reduced. Mainly because the Kenil
Worth Aquatic Garden (see Fig. 1), where pixels are statistically very
similar to soil land, is not extracted, the fal se nontarget rate of the pro-
posed method still stands at 11.70%. If we assume that |eaders are cor-
rectly detected in the area, the proposed method can correctly extract
the aquatic region with high accuracy. All major hydrographic regions
are extracted with accurate boundaries and cartographic features, such
as bridges and islands, are preserved well, which are critically impor-
tant for deriving accurate spatial information. The mgjor river, Ana
costia River, is extracted correctly, and several roads crossing the river
are preserved.

To demonstrate the effectiveness of our method in preserving impor-
tant cartographic features, Fig. 3(a) shows an areaaround the Kingman
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Fig. 3. Extraction result for an image patch from the Washington East DC/MD area: (&) Input image. (b) Seed points from the neural network. (c) Topographic
map of the area. Here, the map is scanned from the hardcopy and not wrapped with respect to the image. (d) Extracted result from the proposed method. Extracted

regions are represented by white and superimposed on the original image.

Lake. Within this image, intensity values and local attributes change
considerably. Fig. 3(b) shows the classification result using the multi-
layer perceptron, Fig. 3(c) shows the corresponding part of the USGS
1: 24,000 topographic map, and Fig. 3(d) shows our result. The bound-
ariesof small islands arelocalized accurately even though they are cov-
ered by forests. In weight adaptation, the information from the lateral
and local windows is jointly used when variancesin aloca neighbor-
hood are large, resulting in robust feature preservation and noise re-
moval. Similarly, the forests along the river banks are preserved well.
A bridgethat connectsthelakeand theriver isal so preserved. Asshown
in Fig. 3(a), the bridge is spatially small and it would be very difficult
for nonlinear smoothing algorithms to preserve this important carto-
graphic feature.

By comparing Fig. 3(a) and (c), one can see that hydrographic re-
gions have changed from the map. Note, for example, the lower part of
theleft branch. Thisgeographical changeillustratesthe constant nature
of such changes and the need for frequent map revision. With precise
region boundaries produced by our method, our system is suited for
map revision purposes. For example, the lake has shrunk in size, and
such shrinkage is well captured by our algorithm [see Fig. 3(d)]. This
suggests that our method can be used for monitoring changes of hydro-
graphic features.

To summarize, the results generated for DOQQ images are compa-
rable with the hydrographic regions shown in the United States Geo-
logical Survey 1: 24 000 topographic maps. In certain cases, our results

reflect better the current status of geographical areas than the corre-
sponding topographic maps.

IV. CONCLUSION

In this communication, we have presented a computational frame-
work for extracting geographic features from remote sensing images,
and have applied our system to DOQQ images with good results.
Compared with traditional map-making methods based on aeria
photogrammetry, our method is computationally efficient. We believe
that this kind of technology is effective for improving map revision
and other remote sensing applications. Furthermore, because remotely
sensed images can be captured more readily with high resolutions,
efficient methods like the one proposed here should be very useful for
extracting up-to-date and accurate geographic information.
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New Sampling Method for the Improvement of the Image
Reconstruction Algorithm for the Rotating Obj ect

Gum-Sil Kang and Yong-Hoon Kim

Abstract—The proposed method is devised to reconstruct a focused
radar image for a wide observation angle without an interpolation, and
therefore, it improves the image quality and reduces the processing
time. To evaluate the performance, it is compared with the conventional
sampling method through simulation and experimental results. In the case
of the proposed method, the computation timeisimproved morethan 33%
for theimage size of 1024 x 1024 pixels.

Index Terms—Image reconstruction, inverse synthetic aperture radar
(ISAR), sampling method.

|. INTRODUCTION

A high resolution inverse synthetic aperture radar (ISAR) imaging
technique for a controllable rotating target has been used in various
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Fig. 1. Measurement coordinate for new sampling method.

application areas, including modeling and analysis of radar targets[1].
Also, it has been adopted as a diagnostic method to support the medical
and physical sciences and used to devel op the target detection, recogni-
tion, and classification techniques[2], [3]. In stepped frequency 1SAR,
generaly thereflected radar signal is sampled on the polar coordinates
of frequency and observation angle [4]. This method will be referred
to as the conventional sampling method in this paper. For a small ob-
servation angle, a high resolution image can be achieved with short
processing time using the unfocused reconstruction a gorithm because
the received data can be modeled by samples of the Fourier transform
on rectangular coordinates [5], but if the angle range is not very small,
the unfocused image is degraded by the blur effect. Also, the matrix
pencil method was proposed to achieve much higher resolution than
the conventional FFT method in case of small data aperture [6], but it
is not evaluated on the performance for a wide angle. The blur effect
can be removed by the reformatting of received data on rectangular
lattice using the interpolation in the focused image. However, the ad-
ditional interpolation process causes alonger processing time than the
unfocused algorithm and the image degradation due to artifacts. In this
paper, a new sampling method is proposed to obtain a focused image
for awide observation angle without an interpol ation process. Thesim-
ulation and experiment results show that this method has alower com-
plexity and shorter processing time than the conventiona method, and
the image degradation due to artifacts has been reduced remarkably.

II. NEw SAMPLING METHOD FOR IMAGE RECONSTRUCTION OF
ROTATING TARGETS

The new sampling method is devised to measure the reflected radar
signal from targets directly on arectangular raster by use of controlled
frequency and rotation angle. Fig. 1 shows the sampling coordinates
for the new sampling scheme. The sampling positions are determined
by the observation angle ¢ and the frequency f of radar waveforms
through (1). The reflected signal is sampled with interval 6X ;. along
the X axis for any fixed point Y, and also with interval 6Y along
the Y axis. Where X (=X/c), Y (=Y/c), X1 (=6Xy/c), and
8Y (=6Y/c) are normalized values of X, Y, 6Xy, 6Y by the light
velocity ¢. The start frequency, the step frequency, and the interval
of observation angle should be controlled during the measurement
of the reflected signal. To determine the start frequency and the step
frequency at a given observation angle, the initial value Y, and the
interval of measurement §Y should be selected according to (2) and
(3), respectively, where £, is the start frequency when the angle of
rotation ¢ is equal to zero. The measurement interval 6Y should be
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