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Weight Adaptation and Oscillatory Correlation for
Image Segmentation

Ke Chen Member, IEEEDeLiang WangMember, IEEEand Xiuwen Liu

Abstract—\We propose a method for image segmentation based sive test [5]. Edge-based segmentation generally consists of two
on a neural oscillator network. Unlike previous methods, weight consecutive stages, i.e., edge detection and contour completion,
adaptation is it_JIopttedqunn? sgtgmentanon o remO\’\/Ae noise and gnq regions embraced by closed contours produce segmentation
preserve significant discontinuities in an image. Moreover, a 4 . ;
logarithmic grouping rule is proposed to facilitate grouping of results_ [71, 9], [30]. Reg|on-ba§ed tephmques qperate ‘?'feC“y
oscillators representing pixels with coherent properties. We show ON regions, and classical techniques include region growing and
that weight adaptation plays the roles of noise removal and feature split and merge [1], [14], [26], [44]. The main idea of these
preservation. In particular, our weight adaptation scheme is in-  methods s to iteratively group (or split) pixels into connected re-
sensitive to termination time and the resulting dynamic weights in gions in accordance with some prespecified criteria, e.g., homo-
a wide range of iterations lead to the same segmentation results. A . - . . . PIn
computer algorithm derived from oscillatory dynamics is applied geneity. Flnal_ly, hybrid tef:hmques combmg two or more kinds
to synthetic and real images and simulation results show that the Of aforementioned techniques to achieve improved segmenta-
algorithm yields favorable segmentation results in comparison tion [2], [4], [11], [24], [43]. Computationally, most of these al-
with other recent algorithms. In addition, the weight adaptation  gorithms are of serial nature [20] though some partially parallel
scheme can be directly transformed to a novel feature-preserving algorithms have been developed [20]-[22]. Due to many uncer-
smoothing procedure. We also demonstrate that our nonlinear __: . : ) :

tain factors in image segmentation [42], good computational so-

smoothing algorithm achieves good results for various kinds of ) = ’ :
images. lutions are often difficult to obtain [10] and the segmentation

L . . roblem is, to a great extent, viewed as unsolved.
Index Terms—Desynchronization, image segmentation, P 9

LEGION, nonlinear smoothing, oscillatory correlation, synchro- Inimage segmentation, unexpected n0|se_ often CaPSGS poor
nization, weight adaptation. performance. To tackle the problem, smoothing techniques are
widely used prior to segmentation to improve the performance
of a segmentation algorithm. Nonlinear smoothing methods
have shown their usefulness in facilitating image segmentation,
MAGE segmentation refers to the process of partitioning snd most of them are of iterative nature. For iterative smoothing,
image into a set of coherent regions. As a major aspect of iii-is well known that the performance highly depends upon
sual perception, it is central to various kinds of tasks. Althoughe termination time, and these algorithms generally cause the
humans often perform it effortlessly, image segmentation is stiltiginal image to evolve toward a uniform intensity image [15],
one of the main hurdles on the path from acquisition to undd25], which we refer to as the termination problem. Therefore,
standing of images for machine vision. those smoothing techniques are difficult to use in practice.
Image segmentation has been extensively studied in comNeural networks have been successfully applied in pattern
puter vision community, and many techniques have been precognition [3], [27]. However, relatively little work has been
posed (for reviews of the subject see [12], [13], [23], [43], anteported on image segmentation, which is generally viewed as
[44]). Basically, all of algorithms can be classified into foupart of preprocessing in neural networks. For image segmenta-
broad categories: pixel classification, edge-based segmentatlint), a nontrivial issue is how to represent the outcome of seg-
region-based segmentation, and hybrid techniques. Pixel clagagntation. Most of neural network based methods pose image
fication, e.g., thresholding, is a technique that associates a pigegimentation as pixel classification [16], [23], where a pixel is
with a specific label if a measure of the pixel is within a certaiassociated with one class label representing a region or a seg-
range. This technique has been extended to more complicatgnt of the given image. In general, however, such a represen-
forms such as multiple-threshold test [13], [17], and a recutational mechanism results in the need of prior knowledge of
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object is represented by the temporal correlation of the firing () = 0 if v < 0. I;; represents external stimulation to the
activities of the scattered cells encoding different featurescillator andS;; represents overall coupling from the network.
of an object. Neural oscillations provide a natural encodinthe parametes denotes the amplitude of a Gaussian noise term
scheme for temporal correlation. In such a scheme, eashich is introduced to test the robustness of the system and,
oscillator encodes some features of an object, and each objacre importantly, to actively desynchronize different oscillator
is represented by a group of synchronized oscillators, wheremeups. The parameteris choserd < ¢ « 1. In this case, (1)
different objects are represented by different oscillator groupsthout any coupling or noise, corresponds to a standard relax-
whose oscillations are desynchronized. This special form afion oscillator [34]. The dynamics of a single relaxation oscil-
temporal correlation is calleascillatory correlation [38]. lator is summarized as follows. To simplify the presentation, we
Furthermore, Terman and Wang propodedally excitatory drop all the subscripts. The-nullcline of (1),dz/dt = 0is a
globally inhibitory oscillator network§LEGION) [33], [38], cubic curve, while the-nulicline, dy/dt = 0 is a sigmoid. The
and analytically showed that LEGION can rapidly achievparametef controls the steepness of the sigmoid function and
both synchronization in a locally coupled oscillator group and chosen to be largé}, > 1. ForI > 0, the two nullclines in-
desynchronization among a number of oscillator groups.  tersect only at the middle branch of the cubic and (1) gives rise

LEGION has recently been applied to segment real imagsa stable periodic orbit for all sufficiently small valuesin
[39]. However, their LEGION algorithm is sensitive to noisehis case, the oscillator is referred to as enabled [see Fig. 1(a)].
since an oversimplified local coupling scheme is used. For €khe periodic solution alternates between a phase calleache
ample, it does not work for the noisy image in Fig. 4(a), whictive phaseof the oscillator and a phase called &ikent phase
contains four blocks and a background. Real images are iespectively. Within these two phases, (1) exhibits near steady
evitably noisy due to the complexity of the physical world andtate behavior. In contrast, the transition between two phases
various kinds of noise introduced by imaging apparatus. takes place on a fast time scale. The parametsrintroduced

Inthis paper, we propose an image segmentation method ugimgontrol the relative times that a stimulated oscillator spends
weight adaptation and oscillatory correlation on the basis of Lt the two phases. Fdr < 0, the two nullclines intersect on the
GION. A weight adaptation scheme is proposed to remove noisé branch of the cubic, and (1) produces a stable fixed point as
and irrelevant features to the given task in images. A logarithmillustrated in Fig. 1(b). In this case, the oscillator is referred to
grouping rule is used to replace both the summation and the mag-excitable. Fig. 1(c) illustrates the enabled behavior.
imization rules in [39]. The weight adaptation scheme and theln (1a), the Heaviside term provides a mechanism to distin-
new grouping rule lead to an extended LEGION algorithm. Wguish between major objects and noisy fragments. Wang and
have applied the algorithm to noisy synthetic images and rél@rman [39] suggested that a major object must contain at least
images. Simulation results show that our extended LEGION alne oscillator (called a leader), which is located at the center of
gorithm achieves considerably better performance. On the otlaglarge, homogeneous region. A noisy fragment does not con-
hand, the weight adaptation scheme can be directly transforntaith such an oscillator. Essentially, a leader receives large lateral
to afeature-preserving smoothing algorithm. In contrastto recentcitation from its neighborhood. The varialg denotes the
adaptive smoothing techniques [41], our smoothing algorithmlateral potential of oscillatofz, 5) and, through the threshod
relativelyimmune to the termination problem and important fealetermines whether oscillatéi, j) is a leader.
tures can be preserved in a wide range of iterations. Comparisofror image segmentation, the LEGION network generally
results demonstrate its effectiveness. has two-dimensional (2-D) architecture, as illustrated in Fig. 2,

The rest of the paper is organized as follows. Section Il brieflyhere each oscillator corresponds to a pixel in the given image
reviews the architecture and dynamics of LEGION. Section léind is connected to its eight nearest neighbors except for the
presents the weight adaptation scheme, the extended LEGI@®ndaries where there is no wrap around. The global inhibitor
algorithm, and the feature-preserved selective smoothing alg@meonnected with all the oscillators on the 2-D grid. It receives
rithm. Section IV reports simulation results, and comparisoexcitation from each oscillator and in turn exerts inhibition to
are presented in Section V. Further discussions are given in Seaeh oscillator.
tion VI. In LEGION, the overall coupling terny;; in (1a) is defined

by
Il. LEGION MODEL
In LEGION, each oscillatofz, j) is defined as a feedback

loop between an excitatory unit; and an inhibitory unit;;  whereS¥; is the total coupling from the adjacent active neigh-

Sij =85 —W.H(z - 0.), 2)

[39] bors of oscillator(¢, j) to be defined later ori¥, is the weight
da;; of inhibition from the global inhibitorz, whose activity is de-
o = Jwiyig) + LiH(piy — 0) + Sij +p (18) fined as
dy;; dz
Wi — cqfass i) (1b) @ = Mo ©

wheref(z,y) =3z —z3+2-yandg(z, y) = a(1+tanh(Bz))—y  whereo., = 0if x;; < 6. for every oscillator and ., = 1 if

are used. The detailed forms ffandg do not matter for LE- z;; > 6. for at least one oscillato#.. is a threshold ang is
GION to function (for details, see [33], [39]} (-) is the Heav- a parameter. The computation of LEGION can be briefly sum-
iside step function, which is defined #5(») = 1 if » > 0 and marized as follows. Once an oscillator enters the active phase,
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Fig. 2. Architecture of a 2-D LEGION network for image segmentation. An
oscillator is represented by an open circle and the global inhibitor is represented
by the filled circle.

proposed to achieve better segmentation. Using the weight
adaptation scheme and the new grouping rule, we extend the
LEGION algorithm for gray-level image segmentation. In
addition, we point out that our weight adaptation scheme can
be directly transformed to a nonlinear smoothing algorithm.

A. Dynamic Weight Adaptation

To facilitate weight adaptation, two kinds of connections, i.e.,
fixedanddynamicconnection, are assumed in our neural oscil-
lator network. For a specific oscillator, the fixed connectivity
specifies a group of neighboring oscillators connecting to the
oscillator. Corresponding to one pixel in the image, the lateral
attributes associated with the oscillator can be measured from
such an ensemble of fixed connections. On the other hand, the
dynamic connectivity encodes the instantaneous relationship
between two adjacent oscillators during weight adaptation.
Therefore, fixed connection weights are directly determined
based on the image, while dynamic connection weights adapt
themselves for noise removal and feature preservation.

Fig. 1. Nullclines and trajectories of a single relaxation oscillator. (a) For oscillator(s, j), the weight of its fixed connection from

Behavior of an enabled oscillator. The bold curve shows the limit cycle of t
oscillator, whose direction of motion is indicated by arrowheads with double

cillator(k,1), T; .11, is defined as the difference between the

arrowheads indicating jumping. (b) Behavior of an excitable oscillator. THAXt€rnal stimuli received bgi, j) and(k,7) in its lateral neigh-
oscillator approaches a stable fixed point. (c) Temporal activity of the oscillatdnorhood,N(i7 7 R), ie.,

Thex value of the oscillator is plotted. The parameter values usefl aré.8,
p=0.02,e =0.04, « = 9.0,ands = 10.0.

Tijiwt = I — L. (4)

it triggers the global inhibitor. As a result, the global inhibitof{€reli; andli, are the intensities of pixgi, j) and pixel(%, 1),
attempts to inhibit the entire network. On the other hand, an d&spectively, andV(z, j; R) is defined as

tive oscillator propagates its excitation to its nearest neighbors,
which is stronger than the inhibition. The propagation of the ac-
tivation rapidly continues until all the oscillators representing

N(i,j;R)={(k,)|i—- R<k<i+R,
J—R<I<j+R (k) #3G51)}

the same object are active. Thus, the dynamics underlying LE- ] ] ]
GION is a process of both synchronization by local cooperatidfere & (B = 1) is a parameter that determines the size of

through excitatory coupling and desynchronization by globt€ lateral neighborhood. For oscillatar, j), the fixed con-

competition via the global inhibitor.

I1l. WEIGHT ADAPTATION AND EXTENSION OFLEGION
ALGORITHM

nections exist only inV (4, j; R) andZ;j,.: = —Th;5, Where
(k,1) € N(i,5; R). On the other hand, a dynamic connection
weight from oscillatof%, [) to oscillator(¢, j), W; ;.. is defined
only within the nearest neighborhood @f j) and initialized
to the corresponding fixed weight, i.él,/”% = T};.1, Where

In this section, we define fixed and dynamic connectiofk,lz € N(i,;1). Dynamic weights are also anti-symmetrical:
weights and present a weight adaptation scheme for nol@éﬁkl = —W,S;)ij as we shall see later, amwi(;)kﬂ encodes
removal and feature preservation. A new grouping rule is altiee dissimilarity between oscillatofs, j) and(k, {) at timet.
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The basic idea in our proposed weight adaptation scheme is D A C
to updatelV;;.x; using all the dynamic weights associated with
oscillators(i, j) and(k, 1), where(k,{) € N (i, 5;1). For noise
removal and feature preservation, intuitively, dynamic weights
should be adapted so that the absolute dynamic weight becomes
small if two oscillators correspond to two adjacent pixels in &
a homogeneous region, while the weight becomes large if the
two pixels cross a boundary between different homogeneous
regions. We observe that most of the discontinuities in a lat-
eral neighborhood correspond to significant features and such C v D
discontinuities should remain unchanged and may be used to o ) o )
control the speed of weight adaptation for preserving featurgl & Four drectons sed o detectjocy dscontiruies at i),
We call such discontinuities corresponding to a lateral neighb@im top to bottom in vertical direction.
hoodlateral discontinuitiesFurthermore, proximity is a major
grouping principle, which suggests another measure that reflects TABLE |
local discontinuitiessensitive to the changes of local attributes ~ RESPONSES OFFOUR DE;EELOS; ;ngOSJ'SEP EDGE ALONG ONE OF
among adjacent oscillators. Therefore, we adopt two different

methods to measure fixed lateral discontinuities corresponding orientation || Dy, | Dv, | Do, | Do,

to potentially significant features and variable local discontinu- - N 0 N .

ities corresponding to local changes. Two discontinuity mea-

sures are jointly used in weight adaptation. v 0 h h h
First, we use the variance of all the fixed weights associated C h h h 0

with an oscillator to measure its lateral discontinuities in the fol- D 3 h 0 N

lowing manner. For oscillatdf, ;), we first calculate the mean
of its fixed weights oW (i, j; R), p;;(R), as
as illustrated Fig. 3. These four directions are vertjéa), hor-

B ke nim i izontal (H), diagonal(D), and counter-diagondl’"), respec-

Hij = NG, js B)| . tively. Accordingly, four detectors are defined as
(R) (5) tively. Accordingly, four d defined
DHij = |Wi";i—l," — Wi";i+l,"| (Sa)
Accordingly, the variance of its fixed weighbgzj(R) is calcu- T s
lated as
ol (R) = 2 e nGigsry Liwt — 113 (1))? Dy, = Wijiij—1 = Wijii j41] (8b)
Y [N (i, 5; R)|
E kDCN(G,5R TzQ,kl
= = 7|.)N(L(j R))| : Dcij = |Wij;i*17j*1 = Wijsit1,5+1 (8¢c)
2
B <Z(k,l)e]\’(i,j;R) Tij;kl> . ©6)
|N(I[’7];R)| DDij = |Wij;i71,j+1 — Wij;i+1,jfl|- (8d)

If there is a step edge through j) in one of these four direc-
tions, the corresponding detector will respond strongly. Assume
) that 4 is the steepness of a step edge, Table | summarizes the
07 (R) — Oin(£0) responses to a possible edge through pfxel) along one of

Moreover, we normalize the varianeg;(R) as

~2 _
7 = 02 x(R) — 02 (R) (" those four directions. Based on the four detectors, we define a
measure of local discontinuity as
5 5 : - :
whereo . (R) ando—.mir}(R) are the maymal anq rrllnlmal vari- Dy, + Dy, + D¢, + Dp,,
ance across the entire image, respectively. Intuitivgly,R) re- D = 7 9

flects the relative degree of the lateral discontinuities for oscil-

lator (i, 7). A large value of};( R) indicates that the oscillator’s D;; is sensitive to local discontinuity regardless of local orien-

lateral discontinuities likely correspond to significant featurestion.

and vice versa. This suggests that the local attributes of an osUsing both&fj(R) andD,;, we introducd/igt) that integrates

cillator with a high lateral discontinuity should be preserved artte local attributes of oscillatgf, j) to realize noise removal

those of an oscillator with a low lateral discontinuity should band feature preservation, as shown in (10) at the bottom of the

adapted toward homogeneity. next page, where (s > 0) is a scale used to determine to what
To detect local discontinuities during weight adaptation, wextent local discontinuities should be preserved during weight

define four detectors for oscillat@i, ) along four directions, adaptation and (x > 0) is used to determine to what extent
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features should be preserved in terms of lateral discontinuiti§k8]. In the next section, we shall empirically show that the
The function®(r, #) is defined asb(r,0) = 0if v < § and weight adaptation scheme is insensitive to termination criteria
(v, 8) = vifv > 0.6, (0 <6, <1)is athreshold used and, therefore, an upper bound on iteration numbers can be
to alleviate the influence of noise in the estimation of laterabadily given as a termination condition.
discontinuities (discussed later).

In general, the degree of lateral discontinuities in an imade Extension of LEGION Algorithm

indicates the significance of the corresponding features. In (10),a5 described before, the size of a LEGION network forimage
if all the oscillators inN(z, 7; 1) have similar lateral disconti- segmentation is the same as the given image; each oscillator
nuities their local discontinuities should play a dominant role igf the network corresponds to a pixel of the image. Due to a
the update Oﬂ/i(jt)' In this case, the local discontinuitiés,, large number of pixels in a real image, numerical integration of
of oscillator (m,n) in N (¢, j; 1) determine the contribution of hundreds of thousands of differential equations is prohibitively
the dynamic weigh#,) . in the update o\ That is, @ expensive. To reduce numerical computation on a serial com-
small value ofD\), implies thati¥’;} . have a large contribu- puter, a simplified LEGION algorithm was recently proposed
tion and vice versa. Intuitively, the updateIQﬁt) makes oscil- PY Wang and Terman [39]. The algorithm preserves essential
lator (i, j) change its local attributes so that the dissimilarity b&lynamic properties of LEGION, such as two time scales and the
tween(4, j) and its adjacent oscillators is reduced in terms of tfEOPerties of synchronization and desynchronization. By a sim-
scales. The reduction of dissimilarity results in noise removdl@" argument, we extend this algorithm by incorporating weight
along with feature preservation in terms of local discontinuitie@daptation and a new grouping rule to be discussed below. In ad-
When adjacent oscillators 6f, j) have different lateral discon- dition, & new leader generation method is proposed.
tinuities, the contribution frorrWﬁjt,) to V(jt) must depend _ WhenaLEGION networkiis applied to gray-level image seg-

¢ imn ¢ ) mentation, every oscillator is assumed to be stimulated [39]. It

. o _ h
upon both lateral an_d Io_cal d|scqnt|nU|t|es. In t_h|s Cé‘_yéi’zn_m implies that every oscillator can enter the active phase once the
makes a large contribution only if the overall discontinuities aﬁbupling term,S%, in (2) is strong enough. As mentioned be-

sociated with oscillatofm, n) are relatively small. Intuitively, fore, coupling is”c’:ritical for determining whether an oscillator

both lateral and .Iocal discontinuities_c00perativgly provide a an synchronize with other oscillators. Previously, two grouping
bust way to fulfill feature preservation and noise removal f%les called summation and maximization were proposed [39].
those oscillators associated with high lateral discontinuities, i. : : c
52 (R) > 6,. The local attributes of oscillatdt, /) tends to %he_ forme_r rule summates th_e dyna_mlc weights of those neigh
= e )¢ boring oscillators that are active, while the latter takes the max-

change toward reduction of the dissimilarity betwegr) and imal one. It is observed that both of them suffer from either
fosing important boundary detail or yielding small noisy re-

the adjacent oscillators with relatively low overall discontinu
jons. To overcome these shortcomings, we propose an alter-

ities, while the dissimilarity betweefi, j) and those with rel-
atively high overall discontinuities tends to remain unchange tive grouping rule using a logarithmic operation

The above analysis indicates tH@f) plays a role of updating

the local attnbgtes of oscillat@t, ;) for noise removal and fea- . Wasax X mmye vty H @) L+ Wijimn)
ture preservation. S = (12)
Based on (10), weight adaptation fidf;;,;,; is defined as log (E(nz,n)EN(i,j;l) H(zpn) + 1)
WZ(J“,ZI1 ) = Wi(jt;)kl + [exp(—mb (62(R),0,)) V& wherez,,,, is the activity of oscillatofm, n). Wiax = Imax —
= ) Inin, andl ., andly,;, are the maximal and minimal intensity
- eXP(_”‘I’ (Uz‘j(R)veo)) Vii } : (11)  across the entire image. Note that the reciprocdl®f.,,,,, is

used in (12) ad¥; ;.. encodes dissimilarity.

In (11), ij”,[ll) is adapted based on the local attributes asso-In order to lead an oscillator group, a leader is always required
ciated with(i, j) and (k,) in terms of both lateral and local to be stimulated in LEGION. Here, by extending the concept of
discontinuities. The lateral discontinuity further plays a role déteral potentials (see (1a)), we observe that an oscillator cor-
gain control during weight adaptation. Thus, (11) incorporategsponding to the pixel located near the center of a homoge-
both noise removal and feature preservation. neous region tends to have a high potential. Based on the ob-

With respect to our weight adaptation scheme, an additiorsgrvation, we identify such oscillators directly in the following
issue is worth mentioning. For an iterative system, the terminaay. For oscillator(s, j), we calculatgu;;(1), ofj(l), pij(Ry),
tion problem should be considered. For our adaptation scheraedafj(Rp) using (5) and (6). Oscillatdf, j) is a leader if and
the termination criteria can be defined in a similar way as in uonly if |1;;(R,,) — pi;(1)| < T, and|o?;(Ry) — 07,(1)| £ T,
supervised learning methods, e.g., self-organizing feature méfese, 7, andZ;, are two thresholds to reflect homogeneity and

S mmen i @0~ (K€ (63, (R).6,) + D0, [ 5)| Wi,

2 (mm)eN (i) €XP [_ ("“I’ (5%, (R),0) + Dih S)} -

® _
vy =
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R, (R, > 1) is a parameter to reflect whether an oscillatoAccording to (10) and (11), the iterative scheme is (15), as
is within a homogeneous region. Intuitively, a large valué&pf shown at the bottom of the page. In (1El)<f) denotes the
results in leaders that are generated from large homogeneousrginal intensity of pixel(¢, 7). Note that the FPS algorithm
gions, while a more rigorous test on the mean and the variariseequivalent to the weight adaptation scheme if we define
results in leaders that are from more homogeneous regions. Natéh), = 11 — 1", where(k, 1) € N(, j; 1).
that R, may be different fromR used to determine the size of There is often an issue of bounding in an adaptive scheme,
the fixed neighborhood. which concerns possible unbounded growth or boundness of
By incorporating all the proposed mechanisms describégk final result of the adaptive scheme. The essential criterion
above, an extended LEGION algorithm is generated. In sudfefining boundedness is that this numerical process must
mary, the following aspects distinguish our extended LEGIOp¢strict the amplification of all components from the initial
algorithm from the original one. First, a new method is used tnditions. Here, we show the boundedness of our proposed
generate leaders. Second, weight adaptation is performed f@h#othing method. Let;; = exp(—r®(0;(R),6,)) and
given number of iterationgy in the initialization step. Third, . ® _ exp(—D{Y /5) to simplify the presentation. We rewrite
the logarithmic grouping rule is used to replace the summatigkl, apove iterative scheme as
and maximization rules. All the other parts in the original
algorithm still remain the same (see [39] for details). We point ) o 77kl’)’(t) (I(t) _ I@)
out that, like the original LEGION algorithm, our extended j(t+1) _ ;&) .. (kDENGg51) MOTH J
algorithm is consistent with LEGION dynamics established by " " ’
Terman and Wang [33].

t
Z(k,l)eN(i,j;l) 77k171£z)
= (1 - mi)IY

)
Uinemn t
+ 7y E ki ® I,El).
(e D)EN(351) Da(kDEN (i ji1) Tl Vh

C. Feature-Preserving Smoothing Algorithm

Our weight adaptation scheme can be converted into a form
of nonlinear smoothing, which we call feature-preserving
smoothing (FPS). For consistency, the previous notations are ) ) o
still utilized to describe the algorithm. First of all, we calculatéPParently, Iin < Ijy" < Inax for any pixel (i, 7) in
the variancerfj(R) on the lateral neighborhood of pixgl ) the image. In other words, pixel values are bounded during

smoothing.
o2(R) = E(mm)eN(vt,j;R)u{ot,j)}Imn Wé)ccordlng to the detflr;tlon of dynamic coupling weight,
] |N(L,J,R)| +1 ikl can be represented as
2
T (2. 7: L7 Irnn . . .
. (E<mq;;§.<w§;;{;;;>} ) @ Witk = 1)~ 1
(VR

S . t)
The normalized variance?; (R) is calculated accordingly using Utilizing the above result, we can obtalinin < Wy, <

(7). In addition, the measure of local discontinuities in (9) is stiff max: WhlereWmi“ z Imgl - II““X ?gdWma_X - Imal’_‘ ~ Lmin- hti
used, but those detectors along four directions as iIIustrate(ﬁIﬁ a result, any updated value of dynamic coupling weight is

Fig. 3 are rewritten in terms of pixel values as ounded withinWinin, Wiax]-

DHz'j = |Iifl,j — Ii+l,j| (14a) IV S|MULAT|ON RESULTS

In this section, we report segmentation results of applying our
extended LEGION algorithm to noisy synthetic images, aerial
(14b) images, and magnetic resonance imaging (MRI) images. We
give all the parameter values in Table Il. Note that a figure ap-
pearing in this section corresponds to more than one simulation.
Therefore, an item with a single value in Table Il means that the
Dey; = Hi1j-1 = Ligr 1] (14¢)  same parameter value is used in all the simulations illustrated by
the figure, while multiple parameter values in an item indicate
that the parameter changes in different simulations. For discus-
Dp,; = lic1j41 — Lig1,5-1] (14d) sions on parameter choices see Section IV-D below.

Dy, =i j-1 — L j41|

15 = 1) + exp(=n® (7(R), 6.)
E(nl,n)EN(i,j;l) exp |:_ (qu) (a—ran(R)v 90) + Dr(rtl)n 3):| (Ir(rizl - IZ(;))
>< .

2 (mon) N (iyjis1) OXP [_ ("5‘1’ (62, (R),6,) + DS 8)}

(15)
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TABLE 1l
PARAMETER VALUES USED IN SIMULATIONS REPORTEDSECTION IV

Parameter || Figure 4 Figure 5 Figure 6 Figure 7 Figure 8
R, 9 9 12 4 2
T, 2 2 0.1 0.2 0.1
T, 10 10 1 2 2
R 9 9 2 2 1
s 12 12 8 8 (6,5,7)
6, 0.7 0.7 (0.01,0.03) | (0.02,0.03) | (0.01,0.009,0.02)
K 4 10 40 (60, 40) (80,100)
To (40, 1000) { (650, 2000) 20 20 40
W, (90, 65) (90, 65) (70, 80} (95, 70} (45,65, 42)

(© (d)

Fig. 4. Segmentation results for a synthetic image wite 4.0. (a) A noisy synthetic image consisting of 230240 pixels. (b) Segmentation result using the
logarithmic operation with; = 40. (c) Segmentation result using the logarithmic operation With= 1000. (d) Segmentation result using the maximization

operation withT, = 40 andW, = 65.0.

so-calledgray map convention [39], where each gray level
indicates a distinct segment. In the gray-map convention, all the
The use of synthetic images allows us to have a thorougRcitable oscillators constitute theckgroundcorresponding
evaluation of effectiveness of our extended LEGION algorithnip those parts with high intensity variations. Fig. 4(b) is a
The first synthetic image used to test our algorithm is showasulting gray map of this simulation, where the background
in Fig. 4(a), which was used by Sarkar and Boyer [29]. Ais indicated by the black areas. Our algorithm segments the
stated before, the original LEGION algorithm fails to segmefitnage into five segments corresponding to four parallelograms
the image into four parallelograms and an image backgrourshd the image background. To demonstrate immunity to the
To simplify the display of segmentation results, we use thermination problem, we use a different termination condition

A. Synthetic Images
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(d) (e)

Fig. 5. Segmentation results for a noisy synthetic image with 10.0. (a) A noise-free synthetic image consisting of 26&@56 pixels, where the intensities
corresponding to three regions are 42, 160, and 198, respectively. (b) A noisy version of the image in (a). (c) Segmentation result using thedpgaatiom
with Ty = 650. (d) Segmentation result using the logarithmic operation Witk= 2000. (€) Segmentation result using the maximization operationTite: 650
andW. = 65.0.

in weight adaptation and Fig. 4(c) shows the correspondingFig. 5(a) shows a noise-free synthetic image, where a square
segmentation result. A very similar segmentation result is in the middle of two adjacent rectangles and the boundary
achieved. To evaluate the logarithmic grouping rule, we alsharpness along the square is different. Fig. 5(b) shows a noisy
conduct a simulation by using the previous maximization rulersion of Fig. 5(a) by adding Gaussian noise with zero mean
[39] in our algorithm. As illustrated in Fig. 4(d), the resultingando = 64. Note different sharpness of boundaries, e.g., for

segmentation contains ragged boundaries and small holes infthe vertical lines, sharpness of three left boundaries is better
image background though four parallelograms are separatkdn the right one. The noisy image shown in Fig. 5(b) is chal-

correctly with the help of weight adaptation. This result is ndénging to an edge-based segmentation algorithm since weak
as good in comparison with those shown in Fig. 4(b) and (c).edges may either be detected along with many noisy details in
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a small scale or hardly be detected at all in a large scale. Fg. 6(c) provides the corresponding part of the USGS 1:24 000
the same purpose as described in the last paragraph, Fig. §§ppgraphic map. It is evident that our algorithm extracts the
and (d) illustrate two segmentation results using the logarithmiger precisely even along the noisy lower bank. Moreover, im-
grouping rule with two different termination conditions. Our alportant details are preserved, such as the small island near the
gorithm yields three segments corresponding to the three ragbpermost river branch. Fig. 6(d) shows a more difficult image
angular regions and a background indicated by the small blaokwhich there are several hydrographic objects. Almost all the
areas. Once again, our simulations show that the segmentationndaries are noisy. Fig. 6(e) shows the extraction result, and
results are insensitive to the termination condition. For compdtig. 6(f) gives the corresponding part of the topographic map.
ison, Fig. 5(e) shows a segmentation result using the maximiZegain, our algorithm extracts those major hydrographic objects
tion grouping rule. Again, the quality of segmentation producesell, even along some narrow river branches. A careful compar-
by the logarithmic grouping rule is superior to the one producésbn between the extracted regions and the maps indicate that the
by the maximization grouping rule. former portray the images even a little better because stationary
These simulation results show that our algorithm can segraaps do not reflect well the changing nature of geography.

gate objects that are highly corrupted by noise due to weightNext, we show the entire segmentation results on two other
adaptation. Our weight adaptation method does not suffer frararial images. Fig. 7(a) shows an aerial image severely cor-
the termination problem; that is, very similar segmentation redpted by noise. Again, we use a gray map to display the seg-
sults are achieved in a wide range of update iterations. Moraentation results. As illustrated in Fig. 7(b), the image is sepa-
over, the logarithmic grouping rule performs better than thated into seven regions and a background indicated by the black
maximization rule. In the sequel, we shall report only the rescattered areas. Our segmentation results show that the salient

sults produced by the logarithmic grouping rule. regions, e.g., the water body and the island, are segmented with
_ high accuracy. Fig. 7(c) shows another satellite image, where a
B. Aerial Images river is separated by a bridge. The segmentation result is shown

The segmentation of aerial images is a difficult task becaue-ig. 7(d) and the image is segmented to 69 regions and a back-
the pixels within a semantically meaningful entity are general@round indicated by the black areas. Fig. 7(d) shows that most
not homogeneous while pixels belonging to different entiti€df homogeneous regions are segmented and the two parts of the
may have similar attributes. In addition, aerial images takéfyer are both segmented with good accuracy (see the three is-
from satellites are often corrupted by noise from differef@nds). Moreover, many regions with high variations are putinto
sources. Therefore, most of traditional approaches such t@g background since no leader can be generated from them.
various thresholding methods and classification techniques
have limited success. We have applied our extended LE: MRIImages
GION algorithm to satellite images. The images used in our With the wide use of MRI techniques in medicine, automatic
simulations are provided by the U.S. Geological SurvelIRIimage processingisincreasingly demanded in practice. We
These high-resolution satellite images are processed usingsa MRIimages of human heads to further test our extended LE-
nonlinear transformation to compensate variations in actualON algorithm for segmentation. Fig. 8 shows six MRI im-
pixel sizes on the ground due to perspective projection. In oages with different views and the corresponding segmentation
simulations, two types of experiments are conducted: to extraesults.
hydrographic objects and to segment images entirely. Fig. 8(a) shows a midsagittal MRI image. The segmentation

Extracting a hydrographic object refers to grouping the pixetesult is shown in Fig. 8(b) by a gray map. The image is
corresponding to a water body, e.g., river, together and puttisggmented to 43 regions plus a background indicated by the
other objects into the background. It is critical for creating a gélack regions. Many salient regions are separated such as the
ographic information system. Hydrographic objects tend to loerebral cortex, the cerebellum, the corpus callosum and fornix
more homogeneous in comparison with other kinds of objectsea, parts of the extracranial tissue and the bone marrow, and
When LEGION is applied, we can utilize this property to gerseveral other anatomical structures. The next image is another
erate leaders so that only oscillators belonging to hydrograpisizgittal section, as illustrated in Fig. 8(c). This image contains
objects are identified as leaders and other objects are natur#iilg cortex, the cerebellum, the lateral ventricle (the black hole
put into a background. In simulations, we use a set of specahbedded in the cortex), the eye, the sinus (the black hole below
parametersiz,, 1}, and1, to generate leaders and fix most othe eye), the extracranial soft tissue, and the bone marrow.
other parameters, i.e, s, x, andT,. With this set of param- Fig. 8(d) shows the segmentation result with 46 segments plus
eters leaders can be only those oscillators within very homabackground. It is evident that most of aforementioned salient
geneous regions so as to reflect hydrographic objects. Other pagions are separated correctly. In particular, the cerebellum
rameters as listed in Table Il are determined based on one im&ysegmented with high accuracy despite low contrast with its
and then used in all the simulations on extracting hydrograptdadjacent cortex. However, a small part of extracranial tissue is
objects including those not reported here. put into the background. It is worth pointing out that these two

Fig. 6(a) shows a satellite image that contains a river. ThRI images are used to test the original LEGION algorithm
docks cause the river boundaries to be irregular. Fig. 6(b) shoi88], and our algorithm yields considerably better results.
the extraction result. To facilitate comparisons, we display theFig. 8(e) is an image of a coronal section, and Fig. 8(f) shows
river by marking it as white and superimposing it on the origts segmentation. The image is segmented to 25 regions plus a
inal image. To demonstrate the effectiveness of our algorithimackground. Salient regions segmented are the cortex, the cere-
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Fig. 6. Results of extracting hydrographic objects from two satellite images. (a) Original image containing a river§88®ixels). (b) Extraction result for

the image in Fig. 6(a) with, = 0.01 andW . = 70.0. (c) The topographic map corresponding to the image in Fig. 6(a). (d) Original image containing several
hydrographic objects (648 606 pixels). (e) Extraction result for the image in Fig. 6(d) vith= 0.03 andWW, = 80.0. (f) The topographic map corresponding

to the image in Fig. 6(d).

bellum, and the lateral ventricles. Fig. 8(g) is another coronlaémispheres, two eyeballs, and the third ventricle at the center.
section, and the image is segmented into 30 regions plus a bdeik- 8(k) is the same image of Fig. 8(i) with the resolution re-

ground as shown in Fig. 8(h). Similarly, those significant reduced by half. As shown in Fig. 8(l), the image is separated into
gions are also segregated. However, much extracranial tisdderegions plus a background. Although two eyeballs and the
is suppressed into the background since no leader can be ghird ventricle are well segmented, the brain is grouped together.
erated. Next, we use a horizontal section shown in Fig. 8(i). We have applied our extended LEGION algorithm to many

Fig. 8(j) shows the result, and the image is segmented into 55 ogher images and our algorithm yields segmentation results of
gions plus a background. Salient regions segmented include sumilar quality as demonstrated above. In particular, our simu-
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Fig. 7. Segmentation results for two satellite images. (a) Original image consisting of 181 pixels. (b) Segmentation result of the image in Fig. 7(a) with
x = 60.0 andWW. = 95.0. (c) Original image consisting @40 x 640 pixels. (d) Segmentation result of the image in Fig. 7(c) witl 40.0 andW, = 70.0.

lations show that weight adaptation is relatively immune to theenatural category are of similar statistical properties, we can
termination problem. In our simulations, the same terminatiatetermine these parameters by analyzing only one image for a
condition is always used for a type of images. Finally, contlass of images in our simulatiorig, is a termination parameter
puting times taken by our algorithm are similar to those takersed in weight adaptation. As shown in simulations reported in
by the original LEGION algorithm [39] for the same imagesthis paper including the next section, the similar effects in both
which indicates that weight adaptation does not involve expesmoothing and segmentation are achieved for a large interval of
sive computation. Ty. As for W, for segmentation, its role and effect were dis-
cussed at length by Wang and Terman [39].

In the sequel, we focus on the other three parameters used
in weight adaptation. The parametedetermines the magni-

Based on simulation results, we discuss parameters in dude of the edges to be preserved during the adaptation process
extended LEGION algorithm. In original LEGION [33], [39], in terms of local discontinuities. The parameter can be viewed
there are several parameters that determine its dynamics. [@geivalently as the scale used in a diffusion scheme if the termi-
to approximation, most of them, i.ex, /3, p, €, andf. disap- nation condition or the number of iterations is fixed [28]. In a
pear. However, there are still parameters that need to be diffusion scheme, a large scale causes all the discontinuities to
justed in our extended LEGION algorithm. Most of paramedisappear, while a small scale causes all the discontinuities to be
ters may be fixed for a natural image category, e.g., satellpeeserved. The parameteplays a similar role in our method
imagery. As shown in Table Il, these include the paramé&terthough it is not the only way to determine whether discontinu-
to determine the size of the lateral neighborhood and those fides will be preserved due to two types of discontinuity used
generating leader&,,, 7,,, and7. Since images belonging toin our algorithm. Our simulations show that a proper choice of

D. Parameter Choice
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Fig. 8. Segmentation results for MRI images. (a) Original image consisting 0&2837 pixels. (b) Segmentation result of the image in (a) wite= 80.0,

8, = 0.01, s = 6.0, andW, = 45.0. (c) Original image consisting of 25% 257 pixels. (d) Segmentation result of the image in Fig. 8(c) with the same
parameters as in (b). (e) Original image consisting of 255 pixels. (f) Segmentation result of the image in Fig. 8(e) wits 100.0, 6, = 0.009, s = 5.0,
andWW, = 65.0. (g) Original image consisting of 256 256 pixels. (h) Segmentation result of the image in Fig. 8(g) with the same parameters as in (f). (i) Original
image consisting of 256 256 pixels. (j) Segmentation result of the image in Fig. 8(i) wite: 80.0, 6, = 0.02, s = 7.0, andW. = 42.0. (k) Original image
consisting of 256x 256 pixels. (j) Segmentation result of the image in Fig. 8(i) with the same parameters as in (k).

s can often be used in a category of images, e.g., satellite inorrupted by noise from various unknown sources, and it is im-
agery, as shown in Table Il. For preserving tiny but nontriviglossible to calculate the exact variance of noise. In our method,
structures, e.g., MRI imagery, a slight adjustment ofiay be we use the parametéy, to reduce the effects of noise instead
needed within a small interval, as also shown in Table Il. Thef directly evaluating the variance of noise. A sm@ll tends
parameter: plays two roles; one is to determine the speed &6 preserve detailed structure and a large value tends to extract
weight adaptation, and the other is to determine what discamly major regions. These three parameters are tuned based on
tinuities should be preserved. In general, a small valuergf  statistical properties of an image, e.g., histogram of intensities.
sults in fast adaptation and reduces discontinuities, while a laye shown in Table Il, the change of these three parameters for
value results in slow adaptation and preserves discontinuitiascategory of images is within a small interval.

Its choice depends upon domain tasks; a large value should be

chosen if detailed structures should be preserved (e.g., for MRI

images), while a small value should be chosen if only major V. COMPARISONS

structures are needed (e.qg., for noisy synthetic images). The last

parameted,, is used for reducing noise effects. Suppose thatIn this section, we present comparative results in terms of
noise is independent of original image data, the variance cals@gmentation and smoothing. Multiscale-based techniques have
lated in (6) is the summation of the variance of noise-free imageen shown to be effective for image processing. First, we use
data and the variance of noise, regardless of noise type. If weecent multiscale adaptive segmentation method [4] for com-
know its type or distribution, the variance of noise may be esfparison in image segmentation. As mentioned before, the pro-
mated more accurately. Unfortunately, real images are generglysed weight adaptation scheme can be connected to a nonlinear
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(b)

Fig. 9. Segmentation results by the multiscale adaptive segmentation method of Caelli and Bischof. (a) Segmentation result of the image itb}ig. 4(a).
Segmentation result of the image in Fig. 5(b). (c) Segmentation result of the image in Fig. 7(a). (d) Segmentation result of the image in Figegtt@nfa)ién
result of the image in Fig. 8(c). (f) Segmentation result of the image in Fig. 8(e).

smoothing method. Thus, we also compare results with sevefak algorithm uses both edge and region attributes at multiple
recent nonlinear smoothing methods. scales to adaptively and automatically choose the best scale for
segmenting various parts. The algorithm results in a recursive
procedure of integrating edge detection and region growing
from coarse to fine scale to achieve optimal segmentation

A multiscale adaptive method was recently proposed fand has been successfully applied in various kinds of real
Caelli and Bischof for image segmentation [4]. The basic idémages [4]. Features of this multiscale algorithm include that
underlying the method is to use region characteristics to decite parameter needs to be tuned by users and the algorithm
whether a given region should be segmented at a finer scaegments an image entirely.

A. Comparison in Segmentation
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AS
iteration 1200 iteration 2000
ADS
iteration 734 iteration 2000
EDS
iteration 1200 iteration 2000
FPS

R

iteation 200 iteation 645

PR

iteation 1200 iteation 2000

Fig. 10. Smoothing results for the synthetic image in Fig. 5(b) by different smoothing algorithms, where each row shows a set of snapshots farga smoothi
algorithm. For the AS algorithnk = 13.0; for the ADS algorithm K" = 4.0; for the EDS algorithmA = 3.5 ando = 3.0; for the FPS algorithmR = 9,
s = 12.0, xk = 10.0, andd, = 0.7.

As suggested in [4], we use three scales in their algorithsonably accurate. However, the boundary between the river and
The same images for testing our algorithm are used for coits bank cannot be correctly segmented due to noise. In addi-
parison. These images belong to three different types: two syion, the island is segmented to a large region as well as many
thetic images for comparing the capability of noise removal, twieagments. In Fig. 9(d), the image is segmented to 198 regions.
satellite images with complicated boundaries for comparisonTine right part of the river is accurately segmented, but the left
performance in real images and two MRI images with low comart cannot be segmented. Fig. 9(e) and (f) show the segmenta-
trasts for comparison in feature preservation. Fig. 9 shows thdem results of the MRI images in Fig. 8(c) and (e), where the
gray maps of their segmentation results. Fig. 9(a) and (b) shbmo images are segmented to 97 and 98 regions, respectively. In
the results on the synthetic images in Fig. 4(a) and 5(b), resp&d. 9(e), most of salient regions are partially segmented such
tively. The results are rather poor, and the two synthetic imagasthe cerebral cortex, the cerebellum, the lateral ventricle, and
are segmented to 98 and 51 fragments, respectively. The rea@nextracranial tissue. In particular, the extracranial tissue is
is probably that edges cannot be reliably detected in very noisympletely extracted. However, the cerebellum is undesirably
images, despite multiple scales used. Fig. 9(c) and (d) show #egmented to several regions. In Fig. 9(f), significant segments
segmentation results of the aerial images in Fig. 7(a) and (c).iheclude the cerebral cortex, the cerebellum, and parts of the ex-
Fig. 9(c), the image is segmented to 48 regions. The river atmdcranial tissue. Although much of the cerebellum is extracted,
the island are segmented and the boundary of the island is rié#& shrunk, and so is the segmented cortex.
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Fig. 11. Comparisons in restoration and computing time. (a) MSE'’s for th
optimal snapshots in different smoothing algorithms. (b) Relative CPU time
for 2000 iterations, where the EDS algorithm takes 968 s on an HP/C16u
workstation.

iteration 20

Fig. 12. Smoothing results for the aerial image in Fig. 7(c) by different
. . . smoothing algorithms, where each row shows a set of snapshots for a smoothing
In general, the multiscale adaptive method of Caelli angyorithm. For the AS algorithm; = 6.0; for the ADS algorithm K = 1.5;

Bischof is relatively sensitive to noise, which results in eithder the EDS method with = 3.0 ands = 1.5; for the FPS algorithmi = 2,
X X . X R s = 8.0,k = 40.0, andf, = 0.02.
failure to yield meaningful objects in some cases or overseg-
mentation. In comparison, our algorithm yields considerably
better segmentation results. that adapts itself to local image structure [8], [19], [25], [28],
In addition, another modified LEGION network was recently40]. In order to demonstrate its effectiveness, we compare our
proposed for specially segmenting medical images [32]. This @PS algorithm to three other adaptive smoothing algorithms:
gorithm produces satisfactory results for MRI images. In coradaptive smoothing (AS) [28], anisotropic diffusion smoothing
parison, our algorithm yields more homogeneous regions agxbs) [25], and edge-enhanced diffusion smoothing (EDS)
more precise boundaries between different regions thougt40], respectively. These algorithms have proved to be useful in
produces worse results in extracting extracranial tissue. many domains of image processing [41]. Like comparison in
segmentation, we use three images belonging to different types
for comparison. In simulations, we determine parameter values
Nonlinear smoothing techniques have been recognizediaghe aforementioned smoothing algorithms by searching for
an effective way of preprocessing in early vision. A nonlineahe parameter space as suggested in their original work, and we
smoothing technique can remove noise and preserve significeegort only the best results here.
discontinuities. Adaptive smoothing is a classical way to Fig. 12 shows the smoothing results for the aerial image in
perform nonlinear smoothing, applying a smoothing operatéiig. 7(c) produced by the four algorithms. Due to unavailability

B. Comparison in Smoothing
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AS
iteration 20 iteration 1000 iteration 5000
ADS
iteration 80 iteration 400 iteration 1000 iteration 5000
EDS
iteration 200 iteration 1000 iteration 2000
FPS

iteation 40 iteation 400 iteation 1000 iteation 5000

Fig. 13. Smoothing results of the MRI image in Fig. 8(c) by different smoothing algorithms, where each row shows a set of snapshots for a smoitkiming algor
For the AS algorithmf = 4.5; for the ADS algorithm K = 1.5; for the EDS algorithm) = 3.0 ande = 1.0; for the FPS algorithmR = 1, s = 6.0,
x = 80.0, andf, = 0.01.

of its ground truth for a real image, we manually select the Fig. 13 shows smoothing results of the MRl image in Fig. 8(c)
best possible results based on edge maps For each algorithroduced by the four algorithms. The same method as described
two shapshots are shown and arranged in the same vedopve is used to select the best possible results. For each algo-
as in Fig. 10. The first snapshot corresponding to the be&hm, four snapshots are shown and arranged in the same way
possible result and the second one is the smoothed imagein Fig. 10. All the algorithms can preserve most of the sig-
when the algorithms are terminated after 400 iterations. Adficant discontinuities in the image after a few iterations. For
shown in the first snapshot, nonlinear smoothing effects arestance, the cortex and the cerebellum become more homoge-
reasonably achieved by the four algorithms. Except for theeous and their boundary gets clearer. Except for our algorithm,
AS algorithm, the results produced by the other three preseh@vever, further smoothing causes most of the important fea-
most of significant features; e.g, the bridge and boundarikses to disappear.

between the river and its surroundings (the bank and theln general, the above results as well as others not reported due
islands). As shown in the second snapshot, however, furtherspace demonstrate that our smoothing algorithm in compar-
smoothing in 400 iterations causes some significant featuresyn yields good results though two more parameters are used
e.g. the boundaries between the river and the islands, itoour algorithm. In particular, our algorithm does not suffer
vanish in all those except our algorithm. This demonstraté®m the termination problem and manages to preserve signifi-
that our algorithm is the only one that does not suffer fromant features for a long iteration period, which distinguishes our
the termination problem. algorithm from other smoothing algorithms [41].
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VI. DISCUSSIONS

The fundamental goal in adaptive smoothing is to preser
discontinuities due to significant features while eliminatin
variations due to noise and irrelevant features. For most existi
adaptive smoothing algorithms such as those in [25], [ng
[40], only a local discontinuity measure, e.g., spatial gradient,
is used to determine significant features, which tends to be
sensitive to noise. In order to obtain good results, one needs to
specify a nonlinear mapping from a local discontinuity measure[1]
to a diffusion speed and then choose a termination time to
achieve a compromise between noise removal and featuréz]
preservation. Unlike those algorithms, our method adopts two
complementary discontinuity measures. Lateral discontinuities!!
provide a useful context to distinguish discontinuities due to 4]
significant features from those due to noise. Moreover, they
are used to control the diffusion speed, which results in morel®!
robust performance. This also greatly alleviates the termination
problem; as shown by our numerical simulations, our algorithm 6]
can reach a near steady state in a few iterations for most tasksm

LEGION is a neurocomputational mechanism for oscillatory
correlation [33], [38].The notions of lateral potential and dy-
namic normalization were proposed [39] and these mechanism§!
were supposed to operate in the initialization stage, where
weights rapidly reach a steady state. As a result, the initializa{9]
tion process does not change the dynamics of LEGION and
the rigorous results on LEGION [33] still hold. Our proposed;q,
weight adaptation method provides an alternative way for fast
weight dynamics to remove noise and to extract features.v\‘ﬁl]
still operates in the initialization stage. Simulation results sho
that only a few iterations are required for most tasks, which
indicates that our weight adaptation can reach near steady staté!
rapidly. Like [39], our proposed weight adaptation method;;3
does not alter LEGION dynamics. However, our method leads
to substantial performance improvements in noise removal and“!
feature preservation. [15]

As mentioned earlier, iterative smoothing has been widely
used to deal with noisy images, and some form of smoothing}-c!
seems inescapable for early visual processing. How can this be
achieved in the visual system? Our notion of smoothing througki7]
weight dynamics points to a possible way by which smoothin

. . ) . 18]
effects can be achieved in the brain. Fast-changing synapsgs;
were suggested by von der Malsburg [35], [36] who forcefully
argued for its biological plausibility (see also [6]). On the same
conceptual ground, dynamic weight normalization was used th]
enhance the quality of synchronization in a network of neural
oscillators [33], [37], [38]. Our suggestion for weight adapta-[21]
tion follows the same line of argument. What is important is that
such weight dynamics is temporary in nature and adapts to nejae]
stimuli (images) rapidly without keeping any permanent trace.
Given that many powerful learning (weight update) methodsyg;
have been proposed in neural networks, it is reasonable to ex-
pect that future research along the same path will reveal morié4!
effective techniques for image processing and computer vision.

(25]
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