
1744 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

Learning Speaker-Specific Characteristics
with a Deep Neural Architecture

Ke Chen, Senior Member, IEEE, and Ahmad Salman

Abstract— Speech signals convey various yet mixed informa-
tion ranging from linguistic to speaker-specific information. How-
ever, most of acoustic representations characterize all different
kinds of information as whole, which could hinder either a speech
or a speaker recognition (SR) system from producing a better
performance. In this paper, we propose a novel deep neural
architecture (DNA) especially for learning speaker-specific char-
acteristics from mel-frequency cepstral coefficients, an acoustic
representation commonly used in both speech recognition and SR,
which results in a speaker-specific overcomplete representation.
In order to learn intrinsic speaker-specific characteristics, we
come up with an objective function consisting of contrastive
losses in terms of speaker similarity/dissimilarity and data
reconstruction losses used as regularization to normalize the
interference of non-speaker-related information. Moreover, we
employ a hybrid learning strategy for learning parameters of the
deep neural networks: i.e., local yet greedy layerwise unsuper-
vised pretraining for initialization and global supervised learning
for the ultimate discriminative goal. With four Linguistic Data
Consortium (LDC) benchmarks and two non-English corpora,
we demonstrate that our overcomplete representation is robust
in characterizing various speakers, no matter whether their
utterances have been used in training our DNA, and highly
insensitive to text and languages spoken. Extensive comparative
studies suggest that our approach yields favorite results in
speaker verification and segmentation. Finally, we discuss several
issues concerning our proposed approach.

Index Terms— Deep neural architecture, hybrid learning strat-
egy, overcomplete representation, speaker comparison, speaker
segmentation, speaker verification, speaker-specific characteris-
tics.

I. INTRODUCTION

AS ONE of the most important ways for human commu-
nication, speech conveys various yet mixed information.

While the major information in a speech signal is linguistic
contents expressing a message to be delivered, the speech
signal also contains nonverbal information such as speaker-
specific and emotional information as a result of various indi-
viduals’ vocal apparatus and emotional states during speech
production. For human communication, all the information
conveyed in speech turns out to be very useful, and people
are good at making use of appropriate information for different
perceptual tasks. For instance, people can recognize a speaker

Manuscript received August 17, 2010; revised August 25, 2011; accepted
August 26, 2011. Date of publication September 26, 2011; date of current
version November 2, 2011.

The authors are with the School of Computer Science, University of
Manchester, Manchester M13 9PL, U.K. (e-mail: chen@cs.manchester.ac.uk;
salmanaa@cs.manchester.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2011.2167240

regardless of what is spoken for speaker recognition (SR),
while they easily understand linguistic contents spoken by
different speakers for speech recognition.

Although humans often perform it effortlessly, the use of
appropriate information in speech for a specific perceptual
task still remains one of the main hurdles to hinder automatic
speech information processing systems from yielding a better
performance. Since there is no effective way to distill the
information of interest from speech for a given task, a generic
spectral representation of speech containing different kinds of
information is often employed in various speech information
processing tasks including speech recognition and SR [1]–[3].
Due to the interference among different kinds of informa-
tion, the use of a spectral representation often makes speech
recognition and SR systems compromised with a moderate
performance. Thus, exploring a task-specific representation
characterizing the proper information for a given task, e.g., a
speaker-specific representation for SR, has posed a challenge
to speech information processing for a long time [1], [3]–[7].
To tackle this problem, many efforts have been made, ranging
from exploration of prosodic acoustic features and phonetic
categories sensitive to speaker variations [8] to enhanced
spectral representations [5]. In addition, feature selection and
data component analysis techniques, e.g., principal component
analysis or independent component analysis, have been also
applied to explore speaker-specific characteristics [1], [2],
[9]. However, such techniques either obtain features simply
overfitting to a specific dataset or fail to associate the extracted
data components with speaker-specific information. Despite
the limited progress mentioned above, the problem is still
unsolved in general [2], [4].

It is well known that most of artificial intelligence (AI) tasks
including speech information processing often get involved
in a complex problem-solving process and therefore need
to be fulfilled by learning highly complex functions from a
machine learning (ML) perspective [10]. Although there are
different varieties of ML models, recent theoretic studies in
the ML community have suggested that deep architectures
(DAs) become one of the best candidates for learning highly
complex functions that can represent the high-level abstraction
demanded by various AI tasks ranging from perception to deci-
sion making [10], [11]. A DA is a parametric model consisting
of multiple levels of nonlinear operations, e.g., a neural net-
work with many hidden layers, where many subformulae are
repeatedly used to form complicated propositional formulae
in a mathematical sense. By defining appropriate objectives, a
DA learns parameters from data to optimize the objectives as
required. As a result, the learned DA would produce a desired
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high-level abstract representation of the input data in a flexible
way [12]. Nevertheless, learning in a DA is often an extremely
difficult optimization task, as learning easily gets stuck in local
optima or plateaus [11], [13].

Except for few successful applications [14], to a great
extent, DAs were not applied to real-world problems until
Hinton and his colleagues invented a systematic solution
to the optimization problem for deep belief nets [15]. This
solution appears to be a hybrid learning strategy composed
of greedy layerwise unsupervised learning for pretraining and
global supervised learning for fine-tuning parameters [13],
[15]. Such a hybrid learning strategy has turned out to be
applicable to other types of DAs [16]–[18], e.g., deep neural
networks. The principle behind unsupervised pretraining has
been further investigated very recently [19]. In the last couple
of years, DAs have been successfully applied to several
difficult real-world problems including handwritten character
recognition [13], [14], [20], face detection [21] and verification
[22], and generic object recognition [17], [23]. Comparative
studies have shown that DAs are superior to many state-
of-the-art ML techniques in terms of several well-designed
benchmarks [24].

Very recently, convolutional deep belief networks (CDBNs)
have been applied to spectrograms for unsupervised acoustic
feature learning where their objective was minimizing the
reconstruction errors and regularized by a sparsity penalty
term to find appropriate representations for audio classification
[25]. Representations formed at different layers have been
investigated and some interesting results have been achieved,
e.g., gender characteristic distribution in the achieved repre-
sentation. Although they apply their representations to speaker
identification, their goal is using DAs to discover generic
yet novel representations for various audio classification tasks
other than exploring intrinsic speaker-specific characteristics,
which is a problem that we focus on in this paper.

Inspired by the aforementioned successful applications of
DAs [13], [14], [20]–[23], [25], we explore speaker-specific
characteristics with a novel DA trained by the hybrid learning
strategy [15], [16]. The contributions of this paper are summa-
rized as follows. First, we propose a deep neural architecture
(DNA) especially for learning speaker-specific characteristics
from a generic spectral representation, e.g., mel-frequency
cepstral coefficients (MFCCs). For the proposed DA, we
come up with an objective function to ensure that our DA
tends to yield a speaker-specific representation via learning
intrinsic speaker similarity/dissimilarity while normalizing the
interference from non-speaker-related information. Second, we
apply the hybrid learning strategy [13], [15], [16] to our pro-
posed objective function, which leads to a two-stage learning
algorithm for our DA. Third, we empirically justify that the
proposed DA outperforms alternative DAs and other related
techniques in terms of learning speaker-specific characteristics.
Finally, we demonstrate that our overcomplete representation
is robust in characterizing various speakers, no matter whether
their speech has been used in training our DA, and insensitive
to text and languages spoken. All the contributions are verified
thoroughly by means of comparative studies on four Linguistic
Data Consortium (LDC) benchmarks [26] and two additional

non-English corpora [27], [28], all six corpora were collected
for SR. To the best of our knowledge, we are the first to apply
deep learning to explore speaker-specific characteristics.

In the remainder of this paper, Section II presents our
DNA and its learning algorithms. Section III describes our
experimental methodology and reports experimental results
in speaker-related tasks. Section IV discusses several issues
concerning our approach and relates our DNA to other DAs.
The last section draws conclusions.

II. MODEL DESCRIPTION

In this section, we first propose a DNA designed especially
for exploring speaker-specific characteristics. Then we present
a two-stage learning algorithm by applying the hybrid learning
strategy [13], [15], [16] to our proposed objective function to
train the deep neural networks. Finally, we describe a fast
speaker modeling method and a distance metric used in our
experiments.

A. DNA

As illustrated in Fig. 1(a), our DNA consists of two identical
subnets, and each subnet is a fully connected multilayered
feed-forward neural network of 2K − 1 hidden layers, where
K > 1. xi (i = 1, 2) are input to two subnets, i.e., spectral
representations of two frames after short-term speech analysis
in our work, and the output of the top layers x̂i (i = 1, 2)
are their reconstruction of input xi (i = 1, 2) in two subsets.
While the K th hidden layer is specified as a code layer whose
output would be used as a new representation of input data
after learning, the kth and the (2K−k)th hidden layers have the
same number of neurons where k = 1, . . . , K − 1. Moreover,
neurons in the code layer are divided into two groups: one
would be used to characterize speaker-specific information,
and the other is expected to encode non-speaker-related infor-
mation. Two subnets are associated with each other in their
code layers via a compatibility measure E on those neurons
characterizing speaker-specific information during learning.
Let ce(xi ;�) (i = 1, 2) denote output of those neurons
corresponding to a speaker-specific representation in the code
layer of two subnets, where � is a collective notation of all
connection weights and biases in the DNA. We define the
compatibility measure as

E(x1, x2;�) = ||ce(x1;�)− ce(x2;�)||1 (1)

where || ·||1 is the L1 norm. Hereinafter, we shall drop explicit
parameters from E(x1, x2;�) to facilitate our presentation.

To learn intrinsic speaker-specific characteristics, we come
up with a loss function given input x1, x2 and a binary
indicator I with respect to the input, where I = 1 if x1 and
x2 are extracted from speech of the same speaker, and I = 0
otherwise. As a result, we define the loss function on any two
frames as

L(x1, x2,I;�) = [L R(x1;�)+ L R(x2;�)]
+L E (x1, x2;�) (2)
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Fig. 1. Model for learning speaker-specific characteristics. (a) Deep neural architecture. (b) Greedy layerwise pretraining.

where

L R(xi ;�) = α||xi − x̂i ||22, i = 1, 2 (3a)

L E (x1, x2,I;�) = (1− α)
{I[E(x1, x2;�)]2

+(1− I)e−λE(x1,x2;�)
}
. (3b)

Here, || · ||2 is the L2 norm. L R(xi ;�) are the losses incurred
by data reconstruction errors for the given input of two
subnets, while L E (x1, x2,I;�) are contrastive losses caused
by the incompatibility in two different situations indicated by
I in a speaker-specific representation space. λ in (3b) is a
constant determined by the upper bound of E(x1, x2;�) on
all training data. Note that the use of L1 norm in (1) and
different cost functions in (3b) for two different situations is
to meet conditions required by an energy-based model for
discriminative learning [29]. Thus, our contrast loss in (3b)
avoids the collapse problem that creates a dangerous plateau
in a loss function and therefore leads to either a trivial solution
or a failure to learn whatever is expected after optimization
[29]. In general, (2) defines a multiobjective function and
α is a constant used to trade off the contrastive loss in
(3b) which hinders our architecture from learning speaker-
specific characteristics against the reconstruction loss in (3a)
that results in information loss.

Now we would make several remarks on our DNA shown
in Fig. 1(a) in terms of relevant yet alternative DAs [13], [20],
[22], which also make them self-contained to facilitate our

presentation as we shall empirically justify that our proposed
DNA is superior to some alternative yet relevant DAs in terms
of learning speaker-specific characteristics.

Remark 1: Each subset itself is a deep autoencoder (AE)
architecture originally proposed in [13]. By minimizing recon-
struction errors, e.g., the one defined in (3a), the code layer
tends to generate a representation that encodes all the impor-
tant information underlying raw data [12], [13] and presents
it in a stable way. While such an architecture was applied
to yield a parsimonious representation [13], we believe that
an overcomplete representation in the code layer of our
subnet would better distribute and disentangle different types
of speech information to facilitate learning speaker-specific
characteristics. Here we emphasize that a single deep AE
subnet does not generate a speaker-specific representation,
which will be demonstrated in our experiments.

Remark 2: If we modify our DNA by removing all the
layers above the code layer and associating two subnets with
all neurons in their code layers via a compatibility measure E ,
then it will become a typical Siamese (S) architecture [30]. By
minimizing the incompatibility, e.g., the one defined in (3b),
the code layer tends to yield a “semantic” distance metric.
While the S architecture of deep convolutional neural networks
was applied to learn facial identity characteristics [22], which
is the major or dominant information in facial images, the
original S architecture is not appropriate to our problem as
speaker-specific information is minor in comparison to lingual
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information in speech, which will be empirically justified in
our experiments.

Remark 3: Based on Remarks 1 and 2, our DNA can be
viewed as a regularized Siamese (RS) architecture in which
data reconstruction is used as regularization to normalize
the interference from non-speaker-related information so as
to avoid information loss and overfitting to training data
during discriminative learning. In particular, we anticipate that
splitting the code layer into speaker-specific and non-speaker-
specific parts would better facilitate normalizing non-speaker-
related information and isolating the spectral degradation in
noisy narrow-band speech from the speaker-specific represen-
tation. We shall demonstrate this advantage by comparison
with the deep AE [13] and the S architecture [22] in our
experiments. In addition, a similar DA has been used to
facilitate learning topological characteristics of handwritten
digits in a semisupervised setting [20]. We shall discuss the
difference between that architecture [20] and ours later on.

B. Learning Algorithm

We now apply the hybrid learning strategy [13], [15], [16]
to our loss function in (2) to derive a two-stage learning
algorithm, pretraining and discriminative learning, for our
architecture shown in Fig. 1(a). Before describing the learning
algorithm, we first present notations used in our DNA.

For input x of a subnet, let hkj (x) denote the output of
the j th neuron in layer k for k = 0, 1, . . . , K , . . . , 2K .
hk(x) = (

hkj (x)
)|hk(x)|

j=1 is a collective notation of the output
of all neurons in layer k, where |hk(x)| indicates the number
of neurons in layer k. k = 0 refers to the input layer with
h0(x) = x, and k = 2K refers to the top layer producing
the reconstruction x̂. In particular, layer K is specified as the
code layer so that c(x) = hK (x) and, moreover, ce(x) =(
hK j (x)

)|ce|
j=1 corresponding to an abstract yet new speaker-

specific representation after learning. Let Wk be the connection
weight matrix between layers k − 1 and k and bk denotes the
bias vector of layer k for k = 1, . . . , 2K . Then output of layer
k is

hk(x) = σ [uk(x)], k = 1, . . . , 2K − 1 (4)

where

uk(x) = Wk hk−1(x)+ bk (5a)

σ(z) = (
(1+ e−z j )−1)|z|

j=1. (5b)

Given h0(x) = x, we have x̂ = u2K (x) as its reconstruction,
i.e., instead of the nonlinear transfer function in (4) whose
value lies in (0, 1), we use the linear transfer function in the
top layer, layer 2K , to reconstruct the original input. In other
words, we do not normalize input to [0, 1], as previous studies
have revealed that the normalization of a spectral represen-
tation with a whitening procedure considerably degrades the
performance of SR [6], [31], [32].

1) Pretraining: In the hybrid learning strategy [13], [15],
[16], pretraining is an unsupervised learning process that
initializes weights via a greedy layerwise learning procedure.
As illustrated in Fig. 1(b), pretraining starts from the input
layer of a subnet. The weight matrix between layers k and k−1

is learned via an autoassociator of one hidden layer described
below where layer 0 is stipulated as the input layer of a subnet.
After learning in an autoassociator, the weight matrix between
the hidden and the input layers in the autoassociator is used
to be the initial weight matrix between layers k and k − 1 of
the subnet, and output of the hidden layer in the autoassociator
will form a representation of previous input data to be used for
achieving the initial weight matrix between layers k+1 and k.
As a result, the greedy layerwise learning procedure leads to
initial weight matrices for the first K layers, i.e., W1, . . . , WK .
Then, we set WK+k = W T

K−k+1 for k = 1, . . . , K to initialize
WK+1, . . . , W2K of the subnet.

In this paper, we apply the denoising autoassociator [33] to
learn biases and the initial connection weight matrix between
two adjacent layers of a subnet. A denoising autoassociator is
a three-layered perceptron in which the input x̃ is a distorted
version of the target output x. For a training example, (x̃, x),
the output of the autoassociator, is the restored version x̂. Since
the spectral representation fed to the first hidden layer and
its intermediate representation input to all other hidden layers
in our DNA are of continuous value, we distort either the
spectral representation or its intermediate representation x by
adding Gaussian noise to each feature in the representation to
form a distorted version x̃. The restoration learning is done
by minimizing the following loss with respect to the weight
matrix:

Ldec(x, x̂) = ||x − x̂||22. (6)

Thus, the loss function in (6) is used to achieve biases of all
hidden layers and the initial weight matrix between layers k−1
and k for k = 1, . . . , K in a layer-by-layer way, as shown in
Fig. 1(b). The appendix details the pretraining algorithm used
to train each building block.

2) Discriminative Learning: Discriminative learning is a
process of finding appropriate connection weight matrices and
biases in our DNA based on the initialization to minimize
our loss function defined in (2). We apply the stochastic
backpropagation (SBP) algorithm [14] to fulfill this task and
therefore need to derive relevant gradients from (2) via (3a)
and (3b), respectively, for a training example (x1, x2; I). To
facilitate our presentation, we drop those explicit parameters
from our formulae.

For losses defined in (3a), we have the following gradients.
When k = 2K , i.e., the top layer of subnets

∂L R

∂ui
2K

= 2α(x̂i − xi ). (7)

For all hidden layers, k = 2K − 1, . . . , 1, applying the chain
rule and (7) leads to

∂L R

∂ui
k

=
(

∂L R

∂hi
kj

hi
kj

(
1− hi

kj

))|hi
k |

j=1
(8a)

∂L R

∂hi
k

= [
W i

k+1

]T ∂L R

∂ui
k+1

. (8b)

Note that superscript i in (7), (8), and all the remaining
equations in this section indicates subnet i for i = 1, 2.
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For losses defined in (3b), we have the following gradients.
For the code layer of two subnets (i = 1, 2), i.e., hidden layer
K and its output c = hK , we have

∂L E

∂ui
K

=
(
(1− α)[2IE − λ(1 − I)e−λE ]�i

j

)|c|
j=1

(9)

where �i
j = sign[(1.5 − i)(ce1

j − ce2
j )]cei

j (1 − cei
j ) when

j = 1, . . . , |ce| and �i
j = 0 when j = |ce| + 1, . . . , |c|.

For hidden layer k = K − 1, . . . , 1, applying the chain rule
and (9) results in

∂L E

∂ui
k

=
(

∂L E

∂hi
kj

hi
kj

(
1− hi

kj

) )|hi
k |

j=1
(10a)

∂L E

∂hi
k

= [
W i

k+1

]T ∂L E

∂ui
k+1

. (10b)

Given a training dataset, training data are randomly divided
into several batches for the SBP algorithm where parameter
update in our DNA is done based on each batch of TB training
examples,

{(
x1(t), x2(t); I(t)

)}TB
t=1. As our DNA would have

two identical subnets after learning, all the weights and biases
in two subnets are always kept exactly the same during
discriminative learning. For layer k = K + 1, . . . , 2K , their
parameters solely depend on the losses defined in (3a). Hence
the use of (7) and (8) in the SBP algorithm immediately
leads to

W i
k ← W i

k −
ε

TB

TB∑

t=1

2∑

r=1

∂L R(t)

∂ur
k(t)
[hr

k−1(t)]T (11a)

bi
k ← bi

k −
ε

TB

TB∑

t=1

2∑

r=1

∂L R(t)

∂ur
k(t)

. (11b)

For layer k = 1, . . . , K , their parameters are determined
by (3a) and (3b). Applying (7)–(10) in the SBP algorithm
results in

W i
k ← W i

k −
ε

TB

TB∑

t=1

2∑

r=1

(∂L R(t)

∂ur
k(t)
+ ∂L E (t)

∂ur
k(t)

)
[hr

k−1(t)]T

(12a)

bi
k ← bi

k −
ε

TB

TB∑

t=1

2∑

r=1

(∂L R(t)

∂ur
k(t)
+ ∂L E (t)

∂ur
k(t)

)
. (12b)

Here, ε in (11) and (12) is a learning rate.

C. Speaker Modeling and Comparison

After a short-term analysis, an utterance of a speaker is
divided into TB frames and their spectral representations are
collectively denotated as

{
x(t)

}TB

t=1. When these frames are
input to one of two identical subnets in the trained DNA
as presented in Section II-B, outputs of first |ce| neurons in
the code layer are their new representations of TB frames,{

ce(t)
}TB

t=1, where ce j (t) = hK j (t) and j = 1, . . . , |ce|. Then,
we employ statistics on the new representations of TB frames
to establish a speaker model (SM). In our experiments, we

simply use the first- and second-order statistics to form an
SM S = {µ,	}, where

µ = 1

TB

TB∑

t=1

ce(t), 	 = 1

TB

TB∑

t=1

[ce(t)− µ][ce(t)− µ]T .

Note that the speaker modeling technique is also applicable to
other representations used in our experiments for comparison.

Speaker comparison (SC) is a process that finds the speaker
distance between two speech signals and provides an under-
pinning technique for many speaker-related tasks [34]. Since
we have modeled speakers with the first- and the second-
order statistics of speech signals based on a representation,
we directly compare two SMs Si = {µi ,	i } (i = 1, 2) with
a distance metric. In our experiments, we employ

d(S1, S2) = tr
[
(	−1

1 +	−1
2 )(µ1 − µ2)(µ1 − µ2)

T ]
. (13)

Intuitively, d(S1, S2) is expected to be large, as S1 and S2
belong to two different speakers, and small otherwise. The
distance metric in (13) is derived from the original divergence
metric for two normal distributions [1] by dropping the term
concerning only covariance matrices. Doing so is based on our
observation that covariance matrices often vary considerably
as short utterances are used to establish SMs but (13) is fairly
stable irrespective of utterance lengths.

III. EXPERIMENT

In this section, we first describe the experimental method-
ology, the general experimental settings, and the corpora used
in our experiments. Then we present the SC results based
on MFCCs and representations yielded by our DNA and
DAs (see remarks described in Section II-A for details) to
empirically justify the effectiveness of our proposed DNA in
learning speaker-specific characteristics. Then, we demonstrate
the effectiveness of our proposed approach by applying the
speaker-specific representations achieved with our DNA to
speaker verification and segmentation tasks along with a
comparison to relevant state-of-the-art techniques.

A. Experimental Setting

In our experiments, we employ four LDC benchmark
corpora in English [26], i.e., TIMIT, narrow-band TIMIT
(NTIMIT), KING, and narrow-band KING (NKING), to train
different DAs for new representations, respectively. Also we
use two non-English corpora, one in Chinese (CHN) [28] and
the other in Russian (RUS) [27], for test in the cross-corpora
and the cross-language experiments. Table I summarizes the
information on the six corpora.

In our experiments, we adopt the MFCCs to be a raw
acoustic representation of speech since this representation has
been widely used in various speech information processing
tasks and has led to good performance. The same acoustic
analysis and feature extraction procedure as used in [6], [7],
[35] is applied to six corpora to extract MFCCs as follows:
1) removing silent parts in speech signals with an energy-based
method; 2) pre-emphasis with the filter H (z) = 1 − 0.95z−1;
3) Hamming windowing speech by a frame size of 20 ms with



CHEN AND SALMAN: LEARNING SPEAKER-SPECIFIC CHARACTERISTICS WITH A DEEP NEURAL ARCHITECTURE 1749

TABLE I

INFORMATION ON THE CORPORA USED IN OUR EXPERIMENTS

Corpus Speaker no. Session no. Sampling Bandwidth

TIMIT 630 1 16 kHz 0–8 kHz

NTIMIT 630 1 16 kHz 0.3–3.3 kHz

KING 49 10 8 kHz 0–4 kHz

NKING 51 10 8 kHz 0.3–3.3 kHz

CHN 59 3 16 kHz 0–8 kHz

RUS 50 1 8 kHz 0–4 kHz

a frame shift of 10 ms; 4) applying 24 mel-scale triangular
filters to calculate magnitude spectrum; and 5) extracting
MFCCs by excluding the coefficient of order zero. Thus, 19-
order MFCCs are achieved for each frame for all corpora
except NTIMIT where 15-order MFCCs are only used due
to channel losses (see the explanation in [7] for details). Note
that the use of high-order MFCCs was suggested in [1]–[3]
and [4] to avoid loss of speaker-specific information.

In our experiments, we train DAs on four LDC corpora for
a thorough evaluation. To train and test a DA, we randomly
divide speakers in a corpus into two groups, say A and B. For
each speaker in group A, we further split his/her utterances
into two subsets randomly; one used for training a DA and
the other served for validation, hereinafter named training set
and validation set, respectively. All utterances of speakers’ in
group B are reserved as a test set for various experiments.
In the experiments reported in this paper, 50 speakers in
TIMIT/NTIMIT and 20 speakers in KING/NKING are ran-
domly chosen to constitute group A. For each of four LDC
corpora, a training set is composed of five utterances of each
speaker’s in group A on TIMIT/NTIMIT or all the utterances
of those speakers’ in group A that were collected in first
two sessions on KING/NKING. During the collection, there
were equipment/environmental changes on KING/NKING and
further a so-called “Great Divide” problem on NKING [26].
Therefore, we mainly employ all the utterances collected
in sessions 1–5 in our experiments and also investigate the
effect of equipment/environmental changes and the “Great
Divide” with utterances collected in sessions 6–10 in speaker
verification experiments. For a complete cross-corpora/cross-
language experiment in speaker segmentation, we also train
our DNA on the CHN corpus where 19 speakers are randomly
chosen to form group A.

For learning in our DNA and two alternative DAs described
in Section II-A, we have carried out empirical studies via an
exhaustive search for a reasonable parameter subspace with the
cross-validation method. Here, we present the best parameter
values used in our experiments. For our cost function, we set
α = 0.2 in (2) and λ = 1/100 in (3b). For model selection
of DAs, we look into a number of different subnet structures
corresponding to 2 � K � 5 [see Fig. 1(a)] and the number
of neurons in a layer ranging from 50 to 500 where layer 0
always refers to the input layer. Our empirical studies reveal
that a subnet structure of K = 4 yields the best performance
for three DAs in general. In detail, we adopt the structure with
the number of neurons in layers 1–4 as 100, 100, 100, and 200,

respectively, where |ce| in the code layer, i.e., layer 4, is 100 in
our DNA. Note that layer 4 in the S architecture is the output
layer, while this layer is hidden and the code layer in the deep
AE and our DNA (see remarks in Section II-A for details). The
learning rates ε in pretraining and discriminative learning are
0.01 and 0.001, respectively. In pretraining, we add Gaussian
noise subject to N(0, 0.25σ j ) to feature j in a representation
input to a denoising autoassociator for restoration learning,
where σ j is the standard deviation of feature j estimated from
the training set. To avoid overfitting, the number of epochs
for discriminative learning is determined by an early stopping
criterion.

B. Speaker Comparison (SC)

SC provides a direct way of evaluating representations
produced by different DAs with MFCCs as the reference
point. In this experiment, we make use of a test set with
known speaker identities to generate two data subsets with the
same protocol used in producing a training set for learning
parameters in DAs, as described in Section II-A. We first
divide all test utterances into segments of a fixed length and
establish a SM with a segment based on a representation of
its frames as described in Section II-C. Then we exhaustively
combine any two SMs to generate SM pairs. If two SMs in a
pair correspond to the same speaker, they become a member
of the genuine pair subset. Otherwise, they are a member of
the imposter pair subset.

In our SC experiments, we use MFCCs and representations
produced by the deep AE, the S, and our RS to establish an
SM, hereinafter named SM-MFCC, SM-AE, SM-S, and SM-
RS, respectively, as described in Section II-C. For performance
evaluation, we use the detection error tradeoff (DET) measure
[36] to show all possible errors made in decision making
during SC where the area of the operating region enclosed
by a DET curve and two error axes is generally regarded as
one of the best performance indexes for a detection task. Fig. 2
depicts DET curves on test sets of four LDC benchmark cor-
pora with MFCCs and three different representations yielded
by aforementioned DAs, where speech segments of 5 s are
used for speaker modeling.

It is evident from Fig. 2 that representations by our DNA
outperform MFCCs and those by the deep AE and the S
architectures on all four corpora given the fact that the
DNA representations always lead to smaller operating regions
irrespective of corpora. In particular, it appears that our DNA
representation leads to an operating region of zero area on the
DET plane, which indicates no errors in SC, on the TIMIT
corpus of 630 speakers. In contrast, neither the deep AE nor
the S yields a smaller operating region than MFCCs on TIMIT
and KING, although the representations yielded by them lead
to slightly smaller or similar operating regions in comparison
to those of MFCCs on the two narrow-band corpora NTIMIT
and NKING. Note that changing a segment length in speaker
modeling could alter the shape of the DET curves or their
error rates, the use of a longer length in SC results in lower
error rates in general. Nevertheless, all experimental results not
reported here due to the limited space reveal that the use of
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Fig. 2. SC performance for MFCCs and representations yielded by three
different DAs on four LDC corpora. (a) DET curves on TIMIT. (b) DET
curves on NTIMIT. (c) DET curves on KING. (d) DET curves on NKING.

different segment lengths in speaker modeling does not alter
the conclusion drawn from Fig. 2. Thus, we conclude that
representations by our DNA better characterize the speaker-
specific information than MFCCs and those by other DAs in
question. Next, we shall focus only on representations learned
by our DNA and apply them to two real-world problems, i.e.,
speaker verification and segmentation, for further assessment.

C. Speaker Verification (SV)

SV is a process that accepts or rejects the identity claim
of a speaker. Typically, an SV system is composed of an
SM and a decision-making mechanism [31], [37]. Since the
work presented in this paper mainly focuses on speaker-
specific representations, we employ the DET measure [36]
for performance evaluation, which allows us to illustrate all
possible errors made by an SV system via smoothly changing
the thresholds in decision making. By using the DET mea-
sure, we avoid addressing other less relevant decision-making
issues [31].

A CDBN [25] was recently applied to learning a generic
representation from a spectrogram for audio classification.
For a thorough evaluation, we also employ representations
produced by the CDBN in our SV experiments. To make a
fair comparison, we strictly follow their experimental protocols
in [25] by using the same preprocessing procedure, the same
CDBN structure, including the kernel size for feature maps and
the neighborhood size for probabilistic maximal pooling, and
the same sparsity penalty. While all other parameters are kept
the same as in [25], we also exhaustively search three tunable
parameter values in a broad range for the best performance
with the cross-validation method. The best parameter values
found for SV are as follows: the learning rate of 0.01; the
sparsity parameter of 0.02; and the sparsity regularization
constant of 0.1. As their CDBN structure has two hidden

layers, output from either of the hidden layers and their
combination by concatenating the output of two hidden layers
form different representations [25], we have investigated all
three representations by the CDBN in our experiments. It is
worth mentioning that all features in the spectrogram input
to the CDBN were normalized with a whitening procedure
in their work [25]. By using both the normalized and the
original spectrogram in our experiments, however, we find
that representations achieved by the CDBN with the original
spectrogram without the normalization always significantly
outperforms those with the normalized spectrogram regardless
of corpora, which is consistent with previous SR studies [6],
[31], [32] and our work presented in this paper. In the sequel,
we always use the best performance achieved by the CDBN
to compare with others.

The Gaussian mixture model (GMM) trained on MFCCs
has been a sophisticated SR technique [1], [2], [4] and, in
particular, leads to the state-of-the-art SR performance on four
LDC benchmark corpora used in our experiments [6], [7], [35].
Like most of existing SR studies, e.g., [1], [2], [4], [25], [31],
and [32], we employ GMM with MFCCs to be a baseline
system. In our experiments, we use the same experimental
settings as used in [6] and [7], i.e., for a speaker we establish
an SM, named GMM-MFCC, by training a GMM of 32
components on MFCCs with the expectation maximization
(EM) algorithm and the likelihood score of an utterance is
normalized with a background model in decision making. To
train a GMM, we divide all utterances of a speaker into two
subsets, i.e., training and test sets, respectively. To produce the
training subset, we randomly choose five utterances of 14 s for
TIMIT, NTIMIT, and CHN, utterances of 30 s for RUS, and
utterances of 60 s, recorded in the first two sessions, for KING
and NKING, respectively. The remaining utterances in each
corpus form the test subset used to evaluate different SMs.

In our SV experiments, we employ different representations
produced by the CDBN and our RS, to establish an SM, named
SM-CDBN and SM-RS, respectively. To simulate the speaker
enrolment process in an SV system, we use an utterance of a
fixed length as a reference to establish an SM as described in
Section II-C. For four LDC corpora, the speaker’s reference
speech is randomly chosen from either the validation set if
his/her utterances got involved in training DAs, or the test
set otherwise. For CHN and RUS corpora, all utterances of
a speaker are randomly divided into training and test subsets,
respectively. Then the reference utterance for enrolment on
CHN/RUS is randomly chosen from the training subset. To
simplify the presentation, we report the experimental results
on the setting that the length of the reference speech is fixed
at 5 s for TIMIT, NTIMIT, CHN, and RUS, and 10 s for
KING and NKING. The use of a short reference utterance
greatly facilitates the assessment of a representation to see if
it characterizes the speaker-specific information well, although
the use of a longer reference utterance leads to a considerably
better performance. Here, we emphasize that the reference
speech length for training a GMM-MFCC is significantly
longer than that used to establish the SM-CDBN and the SM-
RS on the same corpus given the fact that this is the minimum
length that allows us to reproduce the same performance as
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Fig. 3. SV performance of the SM-CDBM and the SM-RS with representations learned from different corpora versus the baseline performance of GMM-
MFCC in cross-corpora and cross-language experiments. Five plots from top to bottom in (a)–(c) correspond to test results on TIMIT, KING, NKING, CHN,
and RUS corpora, respectively. (a) DET curves for representations learned from TIMIT. (b) DET curves with representations learned from KING. (c) DET
curves with representations learned from NKING.

reported in [6] and [7] by training GMM on MFCCs with the
EM algorithm.

Since all speech in a corpus is often collected under the
same condition, a representation learned from the corpus
might overfit to only those speakers in the corpus. Hence,
we first conduct cross-corpus and cross-language experiments
to assess generalization, stability, and robustness of repre-
sentations by the CDBN and our DNA. The cross-corpus
experiments apply a representation by DAs learned from a
single corpus to all corpora apart from NTIMIT, as the order
of MFCCs extracted from this corpus is different from those

used in other corpora as described in Section III-A, while
the cross-language experiments apply a representation by DAs
learned from an English corpus to two non-English corpora.
Fig. 3 depicts the DET curves achieved by SMs for the test
length of 5 s, where the DET curve achieved by GMM-MFCC
is always illustrated in each plot although their performance
remains unchanged in plots corresponding to a specific test
corpus, i.e., the same DET curve appears in three plots in
a row across Fig. 3(a)–(c). It is observed from Fig. 3 that
representations by our DNA are stable and robust given the fact
that a representation by the DNA trained on a corpus yields
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not only the smallest operating regions on the same corpus but
also the favorite performance on other corpora in general. In
particular, our SM-RS, regardless of training corpora, yields
the error-free performance on TIMIT, as shown in three plots
at the top of Fig. 3, and outperforms GMM-MFCC on all
test corpora apart from KING. As depicted in plots aligned
in the second row of Fig. 3, DET curves on KING show
that, in comparison with the baseline performance of GMM-
MFCC, the use of representations learned from TIMIT and
NKING in our SM-RS leads to worse performance in terms of
false alarm but better performance in terms of missing, while
it outperforms GMM-MFCC as the representation learned
from KING itself is used. In contrast, representations by the
CDBN do not capture speaker-specific characteristics well
given the fact that the performance of the SM-CDBN is
always significantly inferior to that of our SM-RS in all cross-
corpora and cross-language experiments. In addition, the SM-
CDBN also underperforms GMM-MFCC on all test corpora in
general. The comparative results suggest that representations
by our DNA are insensitive to the text and language spoken.

It is well known that a short length poses a challenge to
an SR system [1], [2], [4], [6]–[8], [31], [34]. By means
of NTIMIT, we conduct experiments on this noisy narrow-
band corpus to compare different SMs in terms of short
test utterance lengths. As illustrated in Fig. 4, our SM-RS
significantly outperforms the SM-CDBN for short test lengths
of 1–4 s, while it outperforms GMM-MFCC for test lengths of
2–4 s but its performance is similar to that of GMM-MFCC for
1 s in terms of the size of their operating regions. In contrast,
the performance SM-CDBN is also worse than the baseline
performance of GMM-MFCC in all four short test lengths.
Thus, the comparative results on NTIMIT demonstrate that
our SM-RS works well even though only a short utterance is
available during test.

As described in [26], there were equipment and environ-
mental changes after the fifth session during KING/NKING
collection. Hence, sessions 1–5 and 6–10 form two different
datasets in terms of the recording equipment and environment.
With the same representations by the CDBN and our DNA
trained on the first two sessions and the same experimental
settings as used in all aforementioned experiments, we conduct
two experiments to investigate the effect of recording equip-
ment and environmental changes. One is a within-boundary
experiment by using utterances in session 6 as speakers’
references in enrolment for test on sessions 7–10 but those
in session 7 as references for test on session 6, where there is
no channel/environmental mismatch between the reference and
the test utterances. The other is a cross-boundary experiment
using utterances recorded in session 3 as references for test
on sessions 6–10, where there is a channel/environmental
mismatch between the reference and the test utterances. Again,
we report only the results as the length of reference and
test utterances is 10 and 5 s, respectively. Fig. 5 depicts the
DET curves achieved by the SM-CDBN, our SM-RS, and
GMM-MFCC in two experiments. From Fig. 5(a) and (b),
it is observed that our SM-RS outperforms the SM-CDBN
and GMM-MFCC on both KING and NKING in the within-
boundary experiments. As shown in Fig. 5(c), however, our

SM-RS is inferior to the GMM-MFCC on KING in the cross-
boundary experiment although it outperforms the SM-CDBN
in Fig. 5(d). In comparison to the baseline performance,
the SM-CDBN outperforms GMM-MFCC on NKING in the
within-boundary experiment, as shown in Fig. 5(b), but is
inferior in other experiments, as illustrated in Fig. 5.

Here, we emphasize that our DNA has been trained on only
a dataset without any channel and environmental mismatch so
far, and hence there is no chance for learning the channel and
environmental variabilities with contrastive losses, which is
responsible for the poor performance in the cross-boundary
experiment. From all SV experiments, however, we observe
that contrastive losses work well in capturing speaker-specific
characteristics when the reference and test data are of the
same variability sources even for noisy narrow-band speech
in NTIMIT and NKING. To verify our above analysis, we
have carried out a preliminary experiment by retraining our
DNA and GMM with utterances in sessions 1 and 6 instead
of sessions 1 and 2, and found that the performance of our
SM-RS with the newly achieved representation is comparable
with that of GMM-MFCC with the previous cross-boundary
experimental setting. Although we also found that the use of
longer reference utterances of 30 s in our SM-RS outperforms
GMMs trained on utterances of 60 s in the cross-boundary
experiment, we believe that the twofold behaviors of contrast
losses depending on training data raise a general issue to be
discussed later on.

D. Speaker Segmentation (SS)

SS is the task of detecting speaker change points in an audio
stream so that the audio stream can be split into acoustically
homogeneous segments where every segment contains one
speaker only. As reviewed in [38], there are two typical
techniques: model-based methods with prior knowledge on
speakers who get involved in a conversation, and distance-
based methods without the use of prior knowledge. In our SS
experiments, we mainly focus on the comparison between a
representation by our DNA and MFCCs with the SC technique,
as described in Section II-C, by using a simple distance-
based algorithm and do not consider additional performance
improvement mechanisms used in more sophisticated SS algo-
rithms [38], [39]. As the Bayesian information criterion (BIC)
is widely used in SS, we also conduct comparative studies with
the standard BIC technique [38], [40]. Here, we emphasize
that our experiments are designed to simulate a scenario in
which a representation by our DNA trained on a corpus off-
line is applied to unknown audio streams for online SS with the
cross-corpus and cross-language experimental protocol. Note
that here we conduct a two-way cross-language experiment,
as a representation learned from the CHN corpus is also used
in the dataset generated from TIMIT.

Following the same experimental protocols used in the pre-
vious work, e.g., [38], [39], we make use of TIMIT and CHN
corpora to create a number of audio streams. With TIMIT, we
generate 25 audio streams. Each audio stream of about 40 s
consists of 10 segments of variable lengths corresponding to
different speakers whose utterances are randomly chosen to
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TABLE II

PERFORMANCE (MEAN±STD) OF SS ON DIFFERENT AUDIO STREAM DATASETS

Measure
TIMIT CHN

BIC MFCCs RS-T RS-K RS-NK RS-
CHN

BIC MFCCs RS-T RS-K RS-NK RS-
CHN

FAR 0.26±0.07 0.31±0.10 0.25±0.09 0.27±0.11 0.26±0.10 0.28±0.08 0.40±0.04 0.25±0.07 0.23±0.07 0.23±0.10 0.23±0.08 0.21±0.06

MDR 0.27±0.13 0.24±0.12 0.19±0.09 0.19±0.15 0.21±0.13 0.21±0.13 0.51±0.09 0.40±0.12 0.34±0.12 0.40±0.14 0.39±0.13 0.34±0.09

F1 0.68±0.11 0.67±0.11 0.74±0.12 0.73±0.10 0.72±0.12 0.71±0.12 0.44±0.07 0.60±0.12 0.66±0.12 0.61±0.15 0.62±0.13 0.68±0.08
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Fig. 4. SV performance of the SM-CDBM and the SM-RS versus that of
GMM-MFCC on NTIMIT in terms of short test lengths. (a) DET curves for
1 s. (b) DET curves for 2 s. (c) DET curves for 3 s. (d) DET curves for 4 s.

form segments ranging from 1.6 to 7.0 s, respectively. Totally,
utterances of 250 speakers from TIMIT are used to generate 25
audio streams. Similarly, we create 15 audio streams with 50
speakers’ utterances from the CHN corpus. Each audio stream
of 62 s on average consists of 10 segments of variable lengths
ranging from 3.0 to 9.0 s.

The distance-based algorithm [39] used in our experiments
is summarized as follows. 1) Calculate the distance between
two adjacent windows of a fixed size for an audio stream
and forming a distance curve by sliding windows with a
fixed increment through the audio stream. 2) Normalize and
smoothen the distance curve with the low-pass filter to remove
the sharp glitch. 3) Detect peaks from the smoothed distance
curve with a threshold to find speaker change points. Note
that parameters in the above algorithm are fixed for all the
audio streams generated from a specific corpus no matter
what representation is employed. For test, the detected speaker
change points are aligned against the ground-truth speaker
turn points. If a detected change point falls into the tolerance
interval of a ground-truth turn point, this change point will be
regarded as a correct detection. Otherwise, either a false alarm
or a missing detection occurs. In our experiments, the same
tolerance interval is applied in the distance-based and the BIC
algorithms for all the audio streams.
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Fig. 5. SV performance of the SM-CDBM and the SM-RS versus that
of GMM-MFCC on KING and NKING in the within- and cross-boundary
experiments. (a) DET curves on KING (within-boundary). (b) DET curves
on NKING (within-boundary). (c) DET curves on KING (cross-boundary).
(d) DET curves on NKING (cross-boundary).

For performance evaluation, we adopt three commonly used
measures [38]–[40]: i.e., false alarm rate (FAR), miss detection
rate (MDR), and F1 measure. FAR and the MDR are defined
as FAR = NF A/(NF A + NGC ) and MDR = NM D/NGC

where NF A , NM D , and NGC are the number of false alarms,
miss detections and genuine speaker changes, respectively. Let
NC FC and NT DC be the number of correctly found speaker
changes and totally detected speaker changes, respectively.
Based on the precision and the recall rates, the F1 measure
is defined as F1 = 2P R/(P + R) where the precision rate is
P = NC FC/NT DC and the recall rate is R = NC RC/NGC .
Intuitively, a large FAR and MDR implies the poor perfor-
mance, whilst a large F1 indicates the good performance.

Table II tabulates all experimental results for audio streams
generated from two corpora where the best performance cor-
responding to a specific corpus is highlighted by bold font.
MFCCs are used in the BIC and the distance-based method
for all audio streams, while four representations by our DNA
trained on TIMIT, KING, NKING, and CHN, named RS-T,
RS-K, RS-NK, and RS-CHN, are applied to the distance-based
method for audio streams generated from TIMIT and CHN.
It is observed from Table II that the use of the representation
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by our DNA trained on TIMIT and CHN leads to the best
performance on audio streams generated from TIMIT and
CHN, respectively. Nevertheless, representations by our DNA
trained on other corpora also yield satisfactory results in com-
parison to the BIC and MFCCs with the same SS algorithm.
Thus, our experimental results suggest that representations
by our DNA is promising for SS and expected to yield the
improved performance by incorporating more sophisticated SS
algorithms.

IV. DISCUSSION

In this section, we discuss issues raised by our work and
relate our DNA to the previous work.

As reported in Section III, a variety of experiments on
speaker-related tasks suggest that a representation by our
DNA outperforms MFCCs and representations by alternative
DAs. The success is attributed to the use of both contrastive
and reconstruction losses. The contrastive losses tend to cap-
ture speaker-specific characteristics, while the reconstruction
losses plays a critical role in regularization by avoiding
information loss and normalizing non-speaker variabilities in
speech signals. In particular, the splitting code mechanism
in the code layer of our DNA has greatly facilitated the
implementation. In contrast, our experiments reveal that the
use of either contrastive or reconstruction losses only does
not lead to the satisfactory performance in general. The use
of contrastive losses only actually results in an aggressive
supervised learning strategy on the frame level of speech. As
there is an inextricable relationship between speaker-specific
and non-speaker-related information, there is too much speaker
and other variability on the frame level. Unlike the previous
work in face verification [22], such an strategy itself is
unlikely to capture the intrinsic speaker-specific characteristics
with a small training set as observed from our experiments.
Nevertheless, we observe that the use of contrastive losses
in our DNA generally yields a better representation on noisy
narrow-band corpora in contrast to the baseline performance.
It is because channel noise, as a different source, was added
to speech during recording, and the minimization of contrast
losses on the code layers of two subnets tends to cancel out
the distortion from the same variability sources along with
learning speaker-specific characteristics if the input of two
subsets corresponds to utterances recorded under the same
condition. On the other hand, the reconstruction losses are
designed to generate an overcomplete speech representation
rather than capture speaker-specific characteristics in essence.
Our experimental results suggest that such an overcomplete
representation achieved with unsupervised learning facilitates
disentangling speaker-specific from non-speaker-related infor-
mation in a new representation. However, our observations
suggest that the use of unsupervised learning alone, e.g.,
the CDBN [25] and the AE, leads to a generic yet novel
representation containing all types of speech information other
than a speaker-specific representation, which is evident from
the comparative studies in this paper and results reported in
[25]. In addition, our results, along with those not reported in
this paper due to the limited space, also lend further support to

the hybrid learning strategy for deep learning [13], [15] and
its empirical justification [18], [19], given the fact that our
DNA initialized with the pretraining considerably outperforms
itself initialized randomly even though the same discriminative
learning algorithm described in Section II-B.2 is applied.

Our work was limited by only a few of speech corpora
available for us but reveals that learning a universal speaker-
specific representation is still a challenging problem as a
number of factors could affect such a learning task. First of all,
as a data-driven methodology, deep learning requires sufficient
training data but it is very difficult to collect them, ideally,
a training dataset should cover all possible variabilities in
speech including not only speaker-specific but also other non-
speaker variabilities, as demonstrated in our SV experiments
on KING/NKING where there are not only speaker-specific
but also channel variabilities across different sessions. Next,
there is a huge structure hypothesis space for our DNA and,
to our knowledge, there are only very few empirical studies
in model selection of DAs [18]. In particular, the hybrid
learning strategy makes this problem more challenging, it is
generally unclear how to determine the structure of a DA
during pretraining and whether altering the structure of a
DA after pretraining would compromise the pretraining effect.
In addition, the role of the pretraining strategy [13], [16]
is not well understood, although it practically works very
well and some hypothesis were made [19] recently. Finally,
we use statistics of a representation by our DNA to model
speakers in our work. To improve the performance, we could
modify our loss functions in (3b) to explicitly learn speaker-
specific characteristics in terms of statistics, possibly including
higher order ones, as required in speaker modeling along with
a proper distance metric. In our ongoing research, we are
studying the aforementioned problems in terms of learning
speaker-specific characteristics. We anticipate that our studies
will help understand DAs and the hybrid learning strategy
toward discovering a universal speaker-specific representation.

Our DNA is especially motivated by the previous work [20],
where a similar DA was proposed in the context of learning
a nonlinear embedding to find a parsimonious representation
for handwritten digits. Apart from the difference in building
blocks, namely, restricted Boltzmann machine versus autoas-
sociator, the two architectures differ in loss functions and
motivations. In [20], neighborhood component analysis (NCA)
[41] is employed to yield a representation that minimizes the
variability of a digit class. Thanks to the probabilistic formu-
lation of the NCA, there is no need to consider the interclass
variability explicitly. However, NCA is inappropriate to our
requirements as there are so many examples in one class and,
instead, we employ contrastive losses to minimize both intra-
and interclass variabilities simultaneously. On the other hand,
the intrinsic topological structure is the major information
source in a handwritten digit given the fact that the deep AE
itself can yield an adequate representation [12], [13], [15],
[20]. Thus, the use of the NCA in [20] simply reinforces the
topological invariant by minimizing the variabilities incurred
by geometric transformations and noise distortion with a small
amount of labeled data [20]. In our work, however, speaker-
specific information is minor in speech in comparison with
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non-speaker-related information and hence a large amount of
labeled data covering all kinds of variabilities in speech is
required during discriminative learning despite the pretraining.

V. CONCLUSION

We have proposed a deep learning architecture for learn-
ing intrinsic speaker-specific characteristics. Our architecture
working on the regularized discriminative learning leads to a
speaker-specific overcomplete representation. With a simple
SC technique, we demonstrated that a representation learned
by our DNA can capture intrinsic speaker-specific character-
istics and generally outperform MFCCs by incorporating a
state-of-the-art speaker modeling technique in various speaker-
related tasks. Moreover, our work presented in this paper also
reveals a number of challenges in discovering a universal
speaker-specific representation with a DA. In our ongoing
work, we are investigating those challenging problems.

In a broader sense, we argue that speech Information Com-
ponent Analysis (ICA) becomes critical to overcome one of
main obstacles that prevents a speech information processing
system from achieving a higher performance, i.e., the use of
proper speech ICA techniques would result in task-specific
speech representations to improve the performance radically.
This paper has demonstrated that speech ICA via learning is
feasible. Moreover, deep learning could be a promising yet
effective methodology for speech ICA.

APPENDIX

Let W denote the connection weight matrix between the
input and the hidden layers in an autoassociator. Accordingly,
W T is the weight matrix between the hidden and the output
layers. Let bh and bo denote biases of the hidden and the
output layers, respectively. For a distorted input x̃, output of
the hidden and the output layers are h(x̃) = σ [uh(x̃)] and x̂ =
uo(x̃) for the first hidden layer or x̂ = σ [uo(x̃)] for hidden
layer k, k = 2, . . . , K , respectively, where uh(x̃) = W x̃ + bh

and uo(x̃) = W T h(x̃)+ bo.
Given a training example (x̃, x), we have the gradient for

the cost function in (6) with respect to uo(x̃)

∂Ldec(x̃, x)

∂uo(x̃)
= 2(x̂ − x)σ ′[uo(x̃)]. (A.1)

Based on (A.1), we have the gradient

∂Ldec(x̃, x)

∂h(x̃)
= W

∂Ldec(x̃, x)

∂uo(x̃)
. (A.2)

By using the chain rule, we achieve the gradient

∂Ldec(x̃, x)

∂uh(x̃)
=

(
h j (x̃)[1− h j (x̃)]∂Ldec(x̃, x)

∂h j (x̃)

)|h(x̃)|

j=1
.

(A.3)

Here, h j (x̃) is the j th element of h(x̃). Similarly, we have
the gradient with respect to biases

∂Ldec(x̃, x)

∂bo(x̃)
= ∂Ldec(x̃, x)

∂uo(x̃)
(A.4)

and
∂Ldec(x̃, x)

∂bh(x̃)
= ∂Ldec(x̃, x)

∂uh(x̃)
. (A.5)

Based on (A.1)–(A.5), we apply the gradient descent method
and tied weights to achieve update rules as follows:

W ← W − ε

(
∂Ldec(x̃, x)

∂uh(x̃)
x̃T + h(x̃)

[∂Ldec(x̃, x)

∂uo(x̃)

]T
)

(A.6)

bo = bo − ε
∂Ldec(x̃, x)

∂uo(x̃)
(A.7)

and

bh = bh − ε
∂Ldec(x̃, x)

∂uh(x̃)
.

Here, ε is a learning rate.
Instead of the online learning, the SBP algorithm [14]

applies the same rules as described above but updates parame-
ters by using the averaging gradient over a batch of training
examples, i.e., a speech segment of several frames in our work.
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