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A Modified HME Architecture for
Text-Dependent Speaker Identification

Ke Chen, Dahong Xie, and Huisheng Chi

Abstract—A modified hierarchical mixtures of experts (HME) architec-
ture is presented for text-dependent speaker identification. A new gating
network is introduced to the original HME architecture for the use of
instantaneous and transitional spectral information in text-dependent
speaker identification. The statistical model underlying the proposed
architecture is presented and learning is treated as a maximum likelihood
problem; in particular, an expectation-maximization (EM) algorithm is
also proposed for adjusting the parameters of the proposed architectare.
An evaluation has been carried out using a database of isolated digit
utterances by 10 male speakers. Experimental results demonstrate that
the proposed architecture outperforms the original HME architecture in
text-dependent speaker identification.

I. INTRODUCTION

The speaker identification task is to classify an unlabeled voice
token as belonging to one of a set of N reference speakers.
Speaker identification systems can be either text-dependent or text-
independent. By text-dependent, we mean that the text in both
training and test is the same or is known. This is a different
problem in comparison with text-independent identification, where
the text should be any text in either training or test. In this
paper, only text-dependent speaker identification is considered.
There have been extensive studies on speaker identification [1]-[5].
Recently, the connectionist approaches have been introduced to
speaker identification systems [6]. Neural-network classifiers may
lead to good performance because they allow to take into account
interspeaker information and to build complex decision regions for
classification. There has recently been widespread interest in the use
of multiple models for classification and regression in the statistics
and neural networks communities. The hierarchical mixtures of
experts (HME) is a typical modular neural network architecture
in which multiple subnetworks cooperate with each other based
upon the principle of divide-and-conquer for dealing with a given
problem. In particular, learning in the HME is treated as a maximum
likelihood problem and expectation-maximization (EM) algorithm
is employed for adjusting the parameters of the architecture. Both
theoretical and empirical studies [7], [8] have shown that the HME
yields significantly fast training and has been successful in a number

~of regression and classification problems [7]. Recently, the HME has

been applied to text-dependent speaker identification and outperforms
classic neural networks (e.g., MLP and RBF) in both identifying
accuracy and training speed [9]-[11].

In general, the process of automatic speaker identification consists
of three phases, i.e., preprocessing, feature extraction and classifi-
cation. For text-dependent speaker identification, the text in both
training and test is the same or is known. Thus, the utterance of
a fixed text naturally becomes a sequence consisting of successive
feature frames after preprocessing and feature extraction and the
problem of text-dependent speaker identification may be viewed as a
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Fig. 1. The modified HME architecture.
specific problem of sequence recognition. As for a feature frame, it
conveys the instantaneous spectral information which carries speaker
related information correlated with talking behavior and physiological
structure of the vocal tracts in additional to conveying phonetic
information. On the other hand, successive feature frames convey
the transitional information. Earlier studies have shown .that both
instantaneous and transitional spectral information-is useful to speaker
identification. Furthermore, the instantaneous and transitional spectral
informiation is relatively uncorrelated, thus providing complementary
information for speaker identification [12]. In most of connectionist
approaches, however, feature frames belonging to an utterance are
regarded as independent samples so that the instantaneous information
is merely used for speaker identification. To use the transitional
spectral information, some connectionist systems adopt the time-delay
technique or recurrent neural models. Unlike the aforementioned
connectionist approaches, we propose a modified HME architecture
in this letter for text-dependent speaker identification. In the proposed
architecture, the original HME architecture remains to deal with
the instantaneous information based upon each feature frame of an
utterance and a new gating network is added for use of both instanta-
neous and transitional spectral information. In the modified HME,
the transitional information is utilized by performing a sequence
recognition instead of identifying the unknown utterance merely by an
individual feature frame in most of connectionist approaches [6]. Like
the original HME [7], learning in the modified HME architecture is
still treated as a maximum likelihood problem and we present an EM
algorithm for adjusting the parameters of the proposed architecture.
We have already appliéd the modified. HME architecture to text-
dependent speaker identification. The experimental results show that
the system based upon the modified HME yields both satisfactory
performance and significantly fast training. )
The remainder of this letter is organized as follows. Section II
describes the modified HME architecture and the EM algorithm.
Section III reports  experimental results. Conclusions are drawn in
the final section.

II. THE MODIFIED HME ARCHITECTURE AND THE EM ALGORITHM

A. The Modified HME Architecture

The modified HME architecture is based on the principle of divide-
and-conquer in which a large, hard to solve problem is adaptively
broken up into many, smaller, easier to solve problems. IHustrated
in Fig. 1, the architecture is a tree in which the gating networks
sit at the nonterminals of the tree. For the sample X consisting of
{x1,-++,xp}, these gating networks receive the vector x; at time
t as input and produce scalar outputs that are a partition of unity at
each point in the input space. The expert networks sit at the leaves
of the tree. Each expert produces an output vector for each input
vector. These output vectors proceed up the tree, being blended by
the gating network outputs. A new gating network called S-gating

network is added and sits on the top of the original HME. It receives
both x; and X at time ¢ and produces a weight for the output of the
original HME. After all T" results based upon all x; in X are obtained,
they are linearly combined to produce the final identifying result for
X. The basic idea underlying the S-gating network is that different
feature frames belonging to an utterance may convey unequal speaker
related information and the S-gating network is used to enhance the
results produced based upon those feature frames reflecting more
speaker related information. The use of the S-gating network may
be also viewed as that the modified HME is capable of extracting
speaker related feature furthermore during classification. In Fig. 1,
there are only two levels in the architecture with 2-2; that is, there
are two modules of mixtures of experts (ME) depicted in the blocks
in Fig. 1 and two experts is in each ME module. To simplify the
presentation, we restrict ourselves to a-two-level hierarchy below.
Obviously, the architecture can be generalized readily to hierarchies
of arbitrary depth. For each vector x: in X, expert network (7, )
produces its output O;;(xX¢) as a generalized linear function [7] of
the input x; :

0ij(x) = f(Wixe) ’ @
where Wi; is a weight matrix and f(-) is a fixed continuous
nonlinearity. The dth output of the top-level gating network and

outputs of the gating networks at lower levels are obtained by the
“softmax” function, respectively,

viTxt evz}xt
w) = = S @
k k

where v; and v;; are weight vectors, respectively. For the S-gating
network, we use the Gaussian distribution to model the weighting
factor of the result produced based on x: since the conventional
speech processing often makes an'inaccurate assumption that succes-
sive observations (short-time frames of speech) are independent. The
S-gating network produces its output Ax (x:) for x; in X as

P(Xh@)
2321 P(x;,®)
P(x¢,m,Z) =

Ax (x¢) = 3)

where P(x¢, ) = meXP[_%(xt -
w

m)TE 7} (x, — m)]. Note that the Ax(x¢) is positive and sum
to one for all x; in X, i.e., 3o, Ax(x¢) = 1.

The modified hierarchy can be given a probabilistic interpretation.
In the two levels architecture with M-N, for a paired observation
(X,y) with X = {x1,++,xr}, the total probability of generating
y from X can be described with a generalized finite mixture model
as follows:

P(ylX,0)
T M N

= Y (e, @) Y gilxe, Vi) D g1k, vis) Pylxe, 6:5) (4
t=1 =1 =1
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where © is the set of all free parameters which include the expert
network parameters ¢;;, the gating network parameters v; and v;; as
well as the S-gating network parameters ®. In the generalized finite
mixture model, we interpret the value Ax(x:, ®) as the probability
that the result based on x; is used for making the final decision
in the sequence recognition for X. The probabilistic interpretation
of other components in the generalized finite mixture model is as
same as ones of the original HME [7]. The classification in speaker
identification is usually a specific multiway classification in which
the output is a binary vector with a single nonzero component. As
a result, instead of the mulrinomial logit distribution for the general
multiway classification, we use a generalized Bernoulli distribution
as the probabilistic model of expert networks in the general finite
mixture model

-y

P(yr,y2,  +,yK) = (1 —px) ®)

H vl
It can be shown that the generalized Bernoulli distribution is also a
member of the exponential family and can be written in the following
form:

P(y17y2»' ’

K
Pk

+ In(1- .
1—px ; ( pk)}

Accordingly, we may also give its link function f(t) and variance
function Var(t) from (6) as

K
Soyk) =exp{)_yiln ©)
k=1 .

1

()= THep(Zt)

Var(t) = f(t)[1 - f()]. @)
In speaker identification, the major benefit of the generalized
Bernoulli distribution is that it generates the same architecture of
expert networks as the one generated by multinomial logit distribution
but uses a more appropriate distribution to model the specific
multiway classification. With respect to these two distributions used
in speaker identification, the detailed analysis and the empirical
investigation were presented in [11].

Suppose that all parameters have been already determined (the
method of parameter estimation will be presented in the sequel.), the
modified HME can be used for text-dependent speaker identification.
For an unknown utterance, let us denote the set of its feature vectors

as X, = {x1(u),  +,xp,(u)}. For X, the output of the modified
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B. The EM Algorithm

In text-dependent speaker identification, the data is assumed
to form a countable set of P paired observations X =
{(X(»),y(p));p = 1,---, P} where X(p) = {x1(p),-- -, X7, (P)}.
X (p) refers to the set of feature frames, say x:(p)(t = 1,--+,1}),
corresponding to the pth utterance in the data set and T, is the
number of frames in X(p). It is worth noting that two utterances
of the same text may have different numbers of frames due to
changes in speaking rate. To develop an EM algorithm for the
modified HME architecture, we must define appropriate “missing
data” so as to simplify the likelihood function. We define indicator
variables I;, I;};, such that one and only one of the I; is equal to
one, and one and only one I;|; is equal to one. We also define the
indicator variable I;;, which is the product of I; and I;;. These
indicator variables have an interpretation as the labels that either
correspond to decision of the probability model or specify the expert
in the probability model. Moreover, we define indicator variables
I;(X,), such that one and only one of I;(X,) is equal to one for
t =1,---,T, in X,. We interpret these indicator variables as the
labels that specify the frame x;(p) in X, in the probability model.
Thus, the maximum likelihood estimation can be found iteratively
using the EM algorithm as follows. Given the current estimate o),
each iteration consists of two steps, i.e., E-step and M-step. In order
to simplify the maximization in the M-step, we first rewrite (4)
using the trick in [13] into an equivalent form -

P(y,X) = P(y|X,0)P(X,®)
T M N
= P(xe,®) Y gi(xe,vi) Y 1 (%e, vij) Py, 045)
t=1 =1 Jj=1

(10)

where P(X,®) = Y.7_, P(x,,®). Instead of the probability model
in (4), the probability model in (10) will be used for the maximimum
likelihood estimation. )

In the E-step, for each pair (X(p),y,) with X(p) =
{x1(p), -, x7,(p)}(p = 1,---,P), we compute posterior
probabilities using Bayes’ rule based upon the probability model
(using the current estimate) incorporated with the “missing data”
as follows:

Y (X,)
9i(xe(p), vi) SN, g5 (xe(p), v E?>P<yp|>ct< )85

HME as iy © )
Zi:l gi(xt(p)v )Z] 191\ (xt(p)v z] )P(yplxt(p)v'gu )
O(Xu) 1D
T, M N
- X;Axu[xt(u)]Z;gi[xt(u)]Zlgm[xt(u)]Ou[xt(U)] ® h(X,) = 9311(%e(p), Vi) Py, %2 (), 65 (12)
t= i= Jj= (Xp) = 5
| ’ S0 9 (e (). v i) Py i (p). 65)
where Oqj[x¢(u)], gi[x: ()], gjji[xe(u)] and Ax,[x:(u)] are the
outputs of expert networks, gating networks and the S-gating network, (t)(x )
respectively, for x;(u). Assume that the population in a speaker e (%
identification system is K, moreover, the output O(X.) is a K-~ h(Xp) - hj|z‘(XP)
dimensional vector, i.e., O(X.) = [O1(X4), -+, Ox (Xu)]. Thus;, gi(xe(p), v (8))2?119].‘.(&(1,) v )P(yplxt ,9§J))
we can identify the unknown speaker with X, as speaker k = = ( ) ®)
according to the following decision rule: it gi(xu(p),v )Z] 1 931 (xe(p), v ) (Yolxe(p), 0:;")
. (13)
kE* = arg max/Ok( w)- ®
: <k<K and (14), shown at the bottom of the page.
Ax, (x:(p), ) M g (xa(p) Vi) 04 g0 (e (), v )P(ypixt(m,ei” :
he(X,) = : — : (14)

S A, (xe(p). 80) SO gi(xe(p), Vi) T .aj;i(xt(p),

DV P(yplxe(p), 65)
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TABLE I
THE IDENTIFYING ACCURACIES (%) IN TEST-1
Text »_’0’ 71’ ’2! 53’ ’49 !57 ’6’ »79 )87 797 mean
MLP 97.14 97.62 98.10 97.14 93.33 96.19 96.19 96.67 93.81 97.14 96.33
HME 99.05 99.52 98.57 95.24 93.80 98.57 98.10 98.57 96.67 98.16 97.62
TD-HME[1] ~99.52 99.52. 98.57 99.05 96.67 98.57 99.05 98.57 95.24 98.57 98.33
TD-HME[2] 100.0 100.0 98.57 97.62 96.67 99.05 98.10 99.05 96.67 99.05 98.78
Modified HME 99.52 99.52 99.05 99.05 95.24 98.57 98.57 99.05 97.62 98.10 98.43
TABLE I
THE IDENTIFYING ACCURACIES (%) IN TEST-2
Text 70) 717 ’27 73) 747 ?57 76’ ?77 787 797 mean
MLP 88.0 90.0 87.0 85.0 82.0 83.0 84.0 83.0 7T7.0 89.0 84.8
HME 91.0 96.0 87.0 86.0 83.0 90.0 85.0 89.0 86.0 91.0 884
TD-HME[1] 92.0 96.0 89.0 88.0 84.0 91.0 90.0 88.0 85.0 92.0 895
TD-HME[2] 91.0 95.0 91.0 85.0 86.0 88.0 93.0 93.0 85.0 92.0 89.9
Modified HME 92.0 96.0 90.0 87.0 86.0 93.0 92.0 90.0 86.0 92.0 904

In the M-step, the following Separate maximization problems need
solving:

P Tp -
ity = argng@xzZhg;)(xp)logP(yplxt(p),Gij) (15)

1 op=1t=1

P Ty M-

Vit = arg maxy > > hY (X;)log gi(xe(p), vi)

p=1t=1 k=1

(16)

(s+1)
w .
p Tp M
= argmaxz Zh(t)(xp>zh“k ) 10g gik (x¢(p), Vi)
p=1t=1 k=1
)]
and ,
p Tp
PCHY = apg mq?,leght(xp)log P(x:(p), D). (18)
=1 t=

Problems in (15)—(17) belong to iteratively reweighted least squares
(IRLS) problems. They can be solved by using the IRLS algorithm’
in [7]. Thanks to the use of (10), the problem in (18) is analytically
solvable as follows:

m{t = he(X, )% (p) (19)
P m(xp)pzl; Rt
P Tp
e = he(Xp) [x¢(p) — m©TY
Ep 1 Z?pl ht<Xp) ;; ' [ ]
() = mCe]" @0)

III. EXPERIMENTAL RESULTS

We used a 10-speaker (10 male) isolated digit database in this
study. The database consists of 10 isolated digits from zero to
nine uttered in Chinese. For each speaker, 300 utterances were
recorded (30 utterances/digit). The 300 utterances were equally

"Due to a limit of space, the IRLS algorithm is not summarized here and
readers are referred to the detailed description of the IRLS algorithm in [7,
Appendix Al.

divided and recorded in three different sessions over about a two-
month period. The technical details of the acoustic preprocessing
and feature extraction are briefly described as follows: 1) 16-bit
A/D-conveiter with 11.025 KHz sampling rate; 2) processing the
data with a preemphasis filter H(z) = 1'— 0.95z7%; 3) 16-order
linear predictive coding (LPC) analysis; 4) 256-point LPC-based fast
Fourier transform (FFT) formed every 12.8 ms using a Hamming
window; 5) combination of spectral channels from 0 Hz to 5.0125
KHz into a 24-component feature vector; 6) subtraction of the average
from the components; and 7) normalization of the feature vectors.
Depending upon ‘the fixed text (10 isolated digits), 10 modified
HME’s are used so that 10 modified HME classifiers correspond to
10 digits from zero to nine, respectively. The predetermined structure
problem refers to that for a given task an appropriate structure of
neural network must be determined before training. The use of the
modified HME also encounters the problem. We have applied the
- two-fold cross-validation method to remedy the problem: Using the
method, we have investigated seven structures covering from one
level to three levels. According to the performance and training time,
we have finally chosen a three levels modified HME with 2-2-10 as
the classifier.

In order to evaluate the effectiveness of the modified HME in text-
dependent speaker identification, we adopted the same experimental
method described in [12]. As a result, we divided all utterances
‘corresponding to every digit in the database into two sets; 90
utterances (30 utterances/session and- three utterances/speaker per
session) were randomly chosen as the training set-and the other
210 utterances were used as the testing set. For test, we used a so-
called digit-based method in which we merely used an utterance of
a single digit to identifying the unknown speaker. We denote the
test using the data in just mentioned testing set as TEST-1 and the
experimental results in TEST-1 are shown in Table 1. For the purpose
of comparison, some results using the MLP, the original HME [9]
and time-delay HME’s [10], [11] are also listed in Table I. In Table I,
TD-HME[:] ( = 1, 2) denotes a time-delay HME in which the size
of the input window is ¢ + 1 frames. According to results shown in
Table I, both the modified HME and time-delay HME’s outperform
the MLP and the original HME. It is worth noting that both the
original HME and the modified HME took almost the same time for
training (four or five epochs) but the training of TD-HME [2] took
much longer time than one of the modified HME (about three times).

In the practical application of speaker identification, only acoustic
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TABLE 1II
THE IDENTIFYING ACCURACIES (%) IN TEST-3

Text ?05 ’11 12’ )3’ 747 757 16) 771 98) ?9) mea’n
MLP 85.0 81.0 87.0 79.0 85.0 77.0 88.0 90.0 77.0 88.0 83.7
HME 89.0 95.0 88.0- 85.0 80.0 90.0 84.0 91.0 82.0 90.0 874
TD-HME[1] 87.0 95.0 91.0 84.0 82.0 88.0 87.0 88.0 86.0 89.0 87.7
TD-HME|[2] 89.0 95.0 88.00 8.0 850 92.0 86.0 87.0 87.0 89.0 88.4
Modified HME 90.0 97.0 89.0 85.0 82.0 90.0 86.0 91.0° 85.0 91.0 88.6

TABLE 1V

EXPERIMENTAL RESULTS BASED ON THE MODIHED HME USING THE SEQUENCE-BASED METHOD

Test No.

500 1000 2000 3000 4000 5000

Recognition No. 500 999 1997 2995 3993 4989
Substitution No. 0 0 1 1 2 4
Rejection No. 0 1 2 4 5 7

data recorded in finite sessions are available for training a system. In
fact, a speaker’s voices largely depend upon the characteristics of the
speaker’s vocal tracts, his/her mood, and the environment where the
speaker stays. Although acoustic data recorded in several sessions can
be used for training, an utterance recorded beyond those sessions may
often make the performance of the system degrade. For robustness,
the performance of a speaker identification system is often evaluated
by using utterances recorded beyond the sessions for training [1], [3],
[4]. For evaluating robustness of the system based upon the modified
HME, we have already done another experiment. In the experiment,
for a digit, five utterances of each speaker recorded in the first session
were merely used as the training data and all utterances of the digit
recorded in other two sessions were used as the testing data. Tests
using utterances recorded in the second and the third session are called
TEST-2 and TEST-3, respectively. Accordingly, these experimental
results are, respectively, shown in Table II and Table III. For the
purpose of comparison, we also list results of the MLP, the original

HME [9] and time-delay HME’s [11]. According to resuits in Table IL

and Table III, it is evident that the system using the modified HME
outperforms ones using the MLP, the original HME and time-delay
HME’s. Moreover, we also used a so-called sequence-based method
to evaluate the performance of the modified HME’s trained using
the just mentioned training set. In the method, we first produced a
sequence consisting of five digits at random (it may be viewed as a
password), then asked a speaker to utter the digit sequence. For each
digit in the sequence, obviously, an identifying result was available
based upon the digit-based method. After obtaining all five individual
results, the system tolled a vote with the principle of majority that
an unknown speaker can be identified only when there are at least
three same identification results for the speaker; otherwise, the system
rejects the unknown utterance. In the experiment, for each. test, we
randomly selected five utterances (belonging to the same speaker
and, respectively, corresponding to five digits in the prompted digit
sequence) from the data in the testing set. For the modified HME,
experimental results using the sequence-based method are shown in
Table IV.

IV. CONCLUSIONS

‘We have described a modified HME architecture for text-dependent
speaker identification. In the proposed architecture, a new gating
network is added for weighting results produced by the original
HME based on each feature frame of an utterance and performing
the identification with the linear combination of weighted results.

A generalized finite mixture model has been proposed for the

architecture and an EM algorithm has also been presented for ad-

justing parameters of the proposed architecture. Experimental results
demonstrate the effectiveness of the modified HME in text-dependent
speaker identification.
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