
SLA Based Job Scheduling: A Case Study on Policies for
Negotiation with Resources

Viktor Yarmolenko Rizos Sakellariou (first.last@manchester.ac.uk)
School of Computer Science, University of Manchester, M13 9PL, UK

Djamila Ouelhadj Jonathan M Garibaldi (dxs, jmg @cs.nott.ac.uk)
School of Computer Science and IT, University of Nottingham, NG8 1BB, UK

Abstract

In this paper, we present work on an EPSRC e-Science project whose purpose is to investigate the effects
of SLA based approaches for parallel computing job scheduling. We considered a coordinator based archi-
tecture, where the Coordinator forms SLAs with Users and Resources (parallel servers). The paper focuses
on a case study which evaluates different policies for the negotiation of SLAs between the Coordinator and
the Resources. We show that the use of information available in the SLAs agreed by the User may fun-
damentally alter the behaviour of the Coordinator and hence the performance of the overall system. These
effects need to be understood more deeply before new designs can take advantage of the possibilities offered
by SLAs.

1 Introduction

Traditionally, the enactment of jobs on parallel su-
percomputer resources has been based on queue-
based scheduling systems, offering only one level of
service, namely ‘run the job when it gets to the head
of the queue’. New patterns of usage have resulted
in the introduction of advance reservation; however,
this is an extreme level of service again since it pre-
supposes a precise time to run a job is available. It
is only recently that work [1, 2, 3] began to under-
stand how more flexible approaches, based on Ser-
vice Level Agreements (SLAs) could be effectively
used for job farming. The new avenues which SLAs
might open to the design of job management, and in
particular brokering and scheduling, are still poorly
explored.

The aim of this paper is to present some of
the work in the EPSRC project “Service Level
Agreement Based Scheduling Heuristics” (funded
by the EPSRC Fundamental Computer Science for
e-Science initiative through Grants GR/S67654/01
and GR/S67661/01), whose purpose is to understand
and provide a quantitative analysis of the main as-
pects of an SLA based management system for par-
allel computing job scheduling.

The next section outlines published work relevant
to this paper. Section 3 describes the key features of
the model architecture used, namely topology, ne-
gotiation schema and metadata. The design of an
experiment aiming to evaluate different policies for

the negotiation of SLAs with local resources is pre-
sented in Section 4. Results are presented in Section
5 followed by a conclusion.

2 Related Work

An SLA can be described as a contract between par-
ticipants, outlined as a set of guarantees, QoS met-
rics and behaviours and should be treated as a le-
gal document of the transaction. In the short paper
[1] from Fermi Lab (IL, USA) Hathaway presents a
list of SLA attributes and their importance. Impor-
tant questions are raised, such as “Why need SLA?”,
“With whom SLA should be established?”, “How do
we determine the level of service?”. The paper also
presents a list of basic components that comprise an
SLA. Later on, several focus groups were formed to
work on standards. The main contributions where
WS-* [2], which concentrates on agreement struc-
ture and specification, whereas attempt to standard-
ise protocols for negotiating and allocating resources
on Grid were made in SNAP [4] and GRAAP [5]
respectively. All this work is still in progress. Re-
cently, Padjett et al. tailored WS-A spec to build a
management architecture that monitors and validates
SLA in Grid. The architecture was designed to sat-
isfy a specific need of the DAME project [6] and the
SLA included various logs for job tracking as well as
standard Service Level Objectives (SLO) introduced
in WS-A.

Client (User or Coordinator) Service (Coordinator or Resource)
Request a service (job, SLO) � Request is received, decision is formed

Quote received, decision is made � Sending the quote
Agreement is reached (or not) � SLA is Recorded

Table 1: The single negotiation sequence of type (1).

The use of SLAs in the domain of computational
resources is not completely unchartered. For exam-
ple, a Grid resource SLA broker is presented in [7]
- GRUBER, in which resource usage policy (SLA)
is separated from resource access policy. One of
the GRUBER’s four components is, surprisingly, a
queue manager - a complex client that resides on
submitting machine and monitors policies, decides
how many jobs to submit where and when. How-
ever, the use of SLAs (the syntax of which was based
on [8, 9, 10]) has not been taken into account when
scheduling. Instead, fair share scheduling [11] tech-
niques were employed. The broker’s site selection
strategies also did not take advantage of the SLA.

Work done in the domain of bandwidth schedul-
ing using SLA has advanced further than SLA job
scheduling. A concrete framework on SLA based
optimisation was constructed with regards to net-
work resources, IP Services [12], Web Services [13].
In the latter, the authors use the concept of virtu-
alized resources. They present a detailed design of
the architecture and some performance results. Yun
Fu et al. proposed an SLA based scheduling ap-
proach of distributed resources for streaming [14] -
SLASH. They explored price and penalty model for
SLA and suggested a dynamic scheduling algorithm
- Squeeze - which takes into account prices and
penalties charged for the distributed resource. Other
related work has been presented in [15, 16, 17].

3 Model Architecture
During the past years, research in Grid middleware
for job and resource management has led to differ-
ent designs and implementations which vary in com-
plexity and functionality. One of the key features of
any such design is how light is the user client; in
other words, which module controls what aspect of
the job submission and scheduling. This partly de-
termines the system’s topology, negotiation mecha-
nisms and the metadata that needs to be transfered.

3.1 Topology
In this paper we assume a centralised topology in
which all jobs are submitted through a Coordinator
(or Broker). Users agree an SLA with the Coordi-

User Resource

User Resource

User ResourceCoordinator

Figure 1: The centralised model. SLA is formed
between User and Coordinator independently of the
agreement between Coordinator and Resource.

nator regarding their jobs. In turn, the Coordinator
agrees (independently) an SLA for each job with one
of the parallel servers. This is schematically shown
in Figure 1.

3.2 Negotiation

In Section 2 we mentioned some of the work done
on negotiation. Having considered these we can log-
ically categorise all negotiations into three types: (1)
Bid by Server, (2) Bid by Client and (3) Match-
making. Note, that conventional buying is simply
a special case of bidding in which the first offer
is accepted. The first type of negotiation involves
services bidding for the business suggested by the
client. This business model is well studied and
widely implemented in customer to business rela-
tionship. The service regulates itself based on the
customer’s demand. Negotiation type (2) is rela-
tively young and involves clients biding for the ser-
vice, say CPU time. A number of web based auc-
tions such as eBay [18] adopt such a model where
clients are bidding for the service/product, usually
constrained by the set of parameters (such as dead-
line, location, payment method, etc.). Type (3) is
the least exploited in contemporary business. It in-
volves a third party to be trusted with production of
a successful agreement based on requirements and
preferences of all parties (both client and server in
a simplest case). This negotiation model may work
well with certain SLA structures and topologies, but
to be effective harsh demands must be imposed on a
module that is handling the negotiation.

In this paper, we assume a ‘bid by Server’ pro-
tocol (type 1), which we simplified to a bare mini-
mum (Table 1); we also assume it is used for both

Context Comment SLO Comment
SLA ID Unique identifier of SLA

���
Earliest start time for the job

Job ID Unique identifier of a Job
���

Latest finish time for the job
Participants List of participants of this SLA �	� Job Duration (provided by the client)

(e.q. Coordinator, Resource,..)
���
�� The number of CPU Nodes required

Table 2: Table of SLA Parameters: Context and Service Level Objectives (SLO).

types of negotiations User to Coordinator and Co-
ordinator to Resource. First the client (User or Co-
ordinator) contacts the service (Coordinator or Re-
source respectively) with the request. The contents
of the request are identical to those outlined in Ta-
ble 2 (SLO section). The service forms a decision
(either independently, as it is the case in the exper-
iment presented in this paper, or negotiates the ser-
vice further down the chain) and responds with an
answer. The positive answer would contain a quote
for the requested service (effectively an SLA signed
by the service side only). If the quote is acceptable
to the client it, in turn, signs the quote - an SLA is
formed. The model allows for the unlimited number
of negotiations made before the successful SLA is
formed.

3.3 SLA Specification
The negotiation strategies are partially chosen be-
cause of the view of the desired outcome - the agree-
ment (SLA). Therefore it is vital to choose the SLA
specification such that to optimise the cost of formed
SLA (i.e. negotiation time, size of metadata, etc.)

The idea to use SLA to record guarantees of a
service after negotiation is completed was a logi-
cal step in Grid development, having migrated from
realm of B2B commerce and, as such, was around
for a while. Since the formation of the relevant focus
groups [4, 5], various research projects [6, 7] tailored
SLAs to their specific requirements.

In this paper we introduce only few Service Level
Objectives (SLO) (Table 2), all of which can map
onto the generic WS-Agreement specification [2]. In
the project we also aim to work on the extension of
WS-Agreement; this is beyond the scope of this pa-
per. What is important is that the SLA in Table 2
contains a set of constraints and additional informa-
tion so that the overall performance of the system
can be evaluated in the context of these additional
parameters.

4 Experimental Design
The aim of the experiment is to evaluate the process
of the allocation and submission of an arbitrary job
on a distributed resource using an SLA not only as

an enforcement mechanism but also as a set of con-
straints that determine the submission process. The
model used maps topologically onto the architecture
shown in Figure 1. In the experiment we compare
traditional strategies with strategies that make use of
information in an SLA to steer the job submission
process (more on this in 4.2). Further, we describe
the specifics of the model as a whole followed by
the metrics used to evaluate it, after which we out-
line important features of each module in the model.

The experiment considered has a varied num-
ber of Resources per one Coordinator,
�������������	����� �"!$# ��%&����#'�)(

. Each Resource has a capac-
ity of 64 parallel CPUs (*,+.-	+./�01� #2�

). For each
of the
 ����� Resources there was a set of job re-
quests,
435-567� %'�98

, which where generated such
that they guarantee that a solution existed whereby
the Resource’s scheduling mechanisms could poten-
tially utilise 100% of Resource’s capacity, within the
availability time window of 147 virtual hours, thus
resulting in no SLA left unsatisfied and the resources
being fully utilised. In other words, for each set up
there was a set of
:�����<;=
 35-56 jobs that potentially
can fit into
>����� Resources over the time window of
147 virtual hours within the requirements specified
by an SLA.

The negotiation process in the model is carried out
in the following way. First the User submits a job
request (see Section 3.2) to the Coordinator, which
immediately forms an SLA with the User. Then, the
Coordinator separately negotiates an SLA for each
job request with Resource. It sequentially attempts
to negotiate with a resource until a resource is found
that is willing to make an SLA regarding this job.
The aim of our experiments is to evaluate the number
of negotiations of different policies.

In addition to those mentioned above, the follow-
ing assumptions about the model were made:? Once an SLA between Coordinator and Re-

source is agreed it will be satisfied.? The candidate list of Resources is static during
the single simulation run and its size is
 �5�	� .? All
 �5��� resources are always potentially avail-
able.? The general information about Resource’s cur-
rent capacity is available to the Coordinator.

Figure 2: The distribution of CPUs per job,
���
�� .@BA2CED
>��
F�HGI� �&8
, JK
>��
��MLI� ��N �&O

.

? The negotiation time, �	P'�RQ , is constant for any
single connection made and, thus, is set to 1.? The number of negotiations per SLA between
User and Coordinator is always 1.? The minimal number of negotiations per SLA
that can be achieved between Coordinator and
Resource is @BSUTVD
 P'�RQ GW� !

, whereas the
maximum number of negotiations is usually@XA�C4D
 P9�RQ GY�Z
 ����� , unless a policy that may
attempt to negotiate more than once with the
same resource is used.

The standard metrics used in measuring the perfor-
mance of a job scheduling management system, such
as schedule makespan or job start up delay, etc. are
no longer adequate for the system investigated. For
example, in this model there is no concept of a queue
as it is common for the batch systems, due to its SLA
steered allocation process. Instead, we evaluate it in
terms of effectiveness of the system in reaching the!$8'8\[

SLA satisfaction. This arrangement gives a
firm framework in which the model with various pa-
rameters can be quantitatively compared.

Let us define the negotiation factor,]'P'�RQ , as:

]�P'�^Q_�
:P'�RQY` @BSUT>D
:P'�RQ2G@XA�C<D
 P'�RQ GM` @�SUTVD
 P'�RQ G �
>P'�RQE` !

 ����� ` ! (1)

Here, the negotiation factor is simply the number
of absolute negotiation attempts
�P'�RQ performed
before an SLA is achieved. Note, we define@BA2CED
>P'�RQ'G as the maximum reasonable number of
negotiation attempts, which is equal to
��5�	� be-
cause one of the Resources is bound to accept the
job request (although some policies may exceed this
value). In the model,
 �5�	� ;,
435-�6 jobs provide

!a8'8\[
potential utilisation for all Resources, therefore let
us define the utilisation factor,]�0_-5/cb , as a percentage
of the entire job pool for which a number of suc-
cessful SLAs (
 �&d)e) were formed so far, between
the Resource and Coordinator:

]f0U-�/cbE�
 �9d e
:�5���,ga
 35-56 g !a8'8&[(2)

Figure 3: The distribution of the duration of each
job, � � . @XA�C<D � � Gh� %9i

, Jj� � Lh� i�NU!a�
.

Thus the evaluation of the model will consist in mea-
suring the negotiation factor, namely its dependence
on the resource utilisation or load,] P'�RQ D]f0U-�/cbaG . This
dependence is then compared to the system with a
different algorithm for Coordinator as well as differ-
ent number of Resources per Coordinator. Further
we discuss three modules of the model investigated
in more detail (Sections 4.1-4.3).

4.1 User

The User module generates a set of job requests
(containing:
 ��
�� , ��� ,

� �
,
� �

, as denoted in Table
2). The module generates the required percentage of
utilisation with specified number of CPUs required
per job,
:��
�� , and the job duration, � � . In the cases
presented we used

!a8'8\[
utilisation. The distribution

of CPUs per job in a set
 ����� is shown in Figure 2.
The duration of a job � � is varied between 1 and 35
virtual hours with a step of 1 virtual hour. The over-
all distribution of � � per job in a set
 �5�	� is shown
in Figure 3. The general role of the User module
is to generate job requests as determined by the re-
quired distribution and to negotiate an SLA with the
Coordinator.

4.2 Coordinator

In general, the role of the Coordinator can be de-
scribed in many aspects (as a proxy, as a router, as a
broker, as a security gate). The measurement tech-
nique can only reflect a limited number of these as-
pects.

In this experimental study, we are looking at coor-
dinator’s ability to effectively minimise the number
of single negotiations per SLA achieved. The num-
ber of negotiations between Coordinator and Re-
source could be reduced if the Coordinator intelli-
gently selects its candidates. The negotiation with
such candidates would result in a successful SLA
with a minimal number of single interactions. In
other words, one of the coordinator’s roles is to pre-

dict the outcome of the request with certain accuracy
and, based on that prediction, decide whether to en-
gage in negotiation of SLA. The more effective is
the algorithm the more Resources can be handled by
a single Coordinator at any given time interval or the
less traffic is generated for each SLA.

The overall performance of the Coordinator (and
in this case the whole system) can be evaluated in
terms of the average time it took to form a successful
SLA and is defined in the relation below:

Jk� �&d)e L,� !

 �&d)e

lMm$n�op q
rFs D �	b �	t D]

q
P'�RQ G�uv� P'�RQ D]

q
P'�RQ G	G

(3)
where � b ��t D G and ��P'�RQ D G are the functions that re-
turn respectively the time required by Coordinator to
form a decision as to which Resource to connect and
the time spent on negotiating with that Resource. As
pointed out before, it may take more than one negoti-
ation attempt before a successful SLA is formed and
functions ��b ��t D G , � P'�RQ D G represent the overall time
it took to secure an SLA for each job w , hence the
dependence on]

q
P'�RQ (from Equation 1). Jj� �&d)e L is

averaged over the times of all (
 �&d)e) agreements
made. � b ��t D G and ��P'�RQ D G have linear dependence in
simple case, but expand to non-trivial functions in
real life. In our case �	P'�^Q D]

q
P'�^Q G:� ! g2

q
P'�RQ is lin-

ear and � b ��t D]
q
P'�RQ Gx�zy lF{$|K}3 r�s~� 3 depends on which

negotiation attempt it is at (see Table 3). Depend-
ing on Coordinator, for any successful SLA formed,
the first negotiation is different whilst all consecutive
negotiation attempts are equal to each other.

We used four different algorithms for Coordinator.
The four different algorithms are:? RAB - Random Access Basic, in which

the Coordinator randomly accesses Resources
and does not remember those already visited.
Thus, its values for
 P9�RQ can potentially be
higher than @XA�CED
 P'�RQ G as defined earlier (i.e.] P'�RQ D Gh� �f8)����(

).? RAE - Random Access Exclusive, in which the
Coordinator randomly accesses Resources, but
excludes the visited Resource after each failed
negotiation attempt (i.e.] P'�RQ D GI� �a8 �"!2(

).? LAF - Least Accessed resource First, in which
the Coordinator prioritises Resources in the or-
der of the least accessed resource and probes
them in sequence (] P'�RQ D GI� �f8)�"!'(

).? HRL - A Heuristic based on Resource Load and
the job at hand. Here, the Coordinator calcu-
lates the resource load, �

q
30_-5/cb , relevant for a

particular job w (Equation 4) and prioritises Re-
sources (��� �9!9�
 ����� () in the order of the least

loaded Resource, @�SUT>D �
q
30_-5/cb G , accessing them

sequentially until the willing Resource is found.

�
q
30_-5/cb � !

* 3+.-�+./�0
����p
+ r � �m

������K�U���p
P r�s * 3P D �	G (4)

where * 3+.-�+./�0 is the capacity of Resource � and
is always 64 for the results presented. * 3P D �	G
is a Kronecker operator: equals 1 if node � of
Resource � is booked/busy for time � and is set
to 0 otherwise.

The first two algorithms were included mainly for
the purpose of the model evaluation. LAF was cho-
sen for its known performance [7] to be compared to
HRL, which uses metadata described by the SLA to
make an informed guess regarding the suitable Re-
source.

In Section 5 we present performance measure-
ments for all four Coordinator types, using metrics
described in this Section.

These algorithms have different � b �	t D G values
which we measured using our simulation algorithms
performed in Java (Table 3). These, combined with
negotiation over network values (not shown here)
should give an adequate information as to the per-
formance of each algorithm.

4.3 Resource
The roles of the Resource module are:? to negotiate an agreement for job allocation ac-

cording to the constraints specified in the SLA,
based on the current information about its re-
source availability and scheduling heuristics.? to form the maximum number of agreements
by re-scheduling the job within the constrains
specified in each SLA, i.e. without the need for
renegotiation.? to optimise resource utilisation.? to provide a client with general information
about the resource availability

Here we used a dummy scheduling mechanism in
which each Resource knew which job requests can
be accepted to ensure 100% utilisation. This way
we can ensure that measurements obtained are only
due to the Coordinator’s algorithm.

5 Results and Discussion
We investigated the system with a variable number
of CPU Resources per single Coordinator,
 ����� �

Figure 4: The performance of the Coordinator serv-
ing 4 Resources. The dependence of negotiation on
the number of SLAs that has been agreed so far.

Figure 5: The performance of the Coordinator serv-
ing 16 Resources. The dependence of negotiation on
the number of SLAs that has been agreed so far.

�f����� �5�)�"�a�)�5�9���5�2� �
and compared four different site

selection algorithms that govern the Coordinator’s
decision. In Figures 4-7 we present the evaluation
of the system in terms of the absolute number of
negotiation attempts per successful SLA, averaged
over 100-500 experiments, �.���9�R�2� . Each curve in
Figures 4-7 was subsequently smoothed by adjacent
averaging over 50 data points, which corresponds to�:�&�) ~¡£¢'¤ on these graphs. The curves show the
dependence of �k� �'�R� � on the number of successful
SLAs or, generally speaking, the number of jobs pro-
cessed (¥X¦�§<¨.���&�) H©I¡ª�4«5¬�­H®"�>¯ ��° is equivalent to� ¤'¤\± load over �:¯ �	° resources, ²�³_¬5´cµ from Eq. 2).

Let us look first at the model with ��¯ ��° ¡ �
(Fig-

ure 4). The best performing algorithm in general
is LAF. Not far behind is HRL which starts to out-
perform the former in the region of high workload
(higher ¶¸·9¢&±). The RAE and RAB algorithms re-
quire a higher number of negotiation attempts, on
average, to achieve a successful SLA at any resource
load. All four algorithms seem to perform with a
fairly linear dependence on the resource load, apart
from the HRL, which performs extremely well at
very high resource loads. Similar, linear, perfor-
mance was observed in [7] where the algorithm sim-

Figure 6: The performance of the Coordinator serv-
ing 32 Resources. The dependence of negotiation on
the number of SLAs that has been agreed so far.

Figure 7: The performance of the Coordinator serv-
ing 64 Resources. The dependence of negotiation on
the number of SLAs that has been agreed so far.

ilar to LAF managed to allocate resources quicker
than the random pick, when working with four re-
sources.

As we increase the number of resources to 16
a new behaviour of the Coordinator’s performance
emerges (Figure 5). First of all, the average num-
ber of absolute negotiations for each successful SLA
has increased, however we should also take into ac-
count the increased numbers of jobs processed and
resources available (more on this later). Secondly,
each algorithm (to a certain degree) deviates from its
original linear behaviour and performs better, at least
in the regions of low and medium resource load. The
most interesting observation is, perhaps, the order
in which algorithms rank in terms of performance.
In the region of medium load, both random algo-
rithms begin to outperform HRL, whereas LAF re-
mains the leader, except in the region of very high
load, giving way to HRL. With the further increase
of � ¯ �	°�¡ �9�

(Figure 6) the trend observed earlier
becomes more profound. Both random algorithms
outperform HRL, but this time the difference in per-
formance and the scope is bigger. And finally, with
the further increase of �:¯ ��° to 64 resources (Figure
7) the same trend continues.

�	b ��t D
 �5��� �] P'�^Q G
 ����� � �
 ����� � �
 ����� � �
 �5��� � !$#
 �5��� � %9�
 ����� � #'�
RAB, ��b ��t D ! G 8)N¹O g !$8)º�» 8)N¹O g !$8)º�» 8)N¹O g !$8)º�» 8 N¼O g !$8�º½» 8 N¼O g !$8�º½» 8 N¼O g !a8�º½»�	b ��t D�¾ ! G 8)N 8&O g !a8�º�» 8)N 8&O g !$8)º�» 8 N 8\O g !$8)º�» 8 N 8\O g !$8)º�» 8 N 8\O g !$8)º�» 8)N 8&O g !$8�º½»
RAE, � b ��t D ! G 8)N¹O g !$8)º�» 8)N¹O g !$8)º�» 8)N¹O g !$8)º�» 8 N¼O g !$8�º½» 8 N¼O g !$8�º½» 8 N¼O g !a8�º½»�	b ��t D�¾ ! G 8)N¼� g !$8)º�» 8)N¼� g !$8)º�» 8)N % g !$8)º�» 8 N � g !$8�º½» 8 N # g !$8�º½» 8 N ¿ g !a8�º½»

HRL
s�À

, �	b ��t D ! G 8)N ¿ g !$8)º�» !'N � g !$8)º�» � NU! g !$8)º�» !$8 g !a8�º½» %)! g !a8�º�» !a8'% g !a8�º�»
HRL

s^À5À
, �	b ��t D ! G � N¼� g !$8)º�» �)N # g !$8)º�» !$¿ g !$8�º½» %&O g !a8�º½» �2� g !a8�º�» �)!ai g !a8�º�»�	b ��t D�¾ ! G 8)N � g !$8)º�» 8)N � g !$8)º�» 8)N � g !$8)º�» 8 N � g !$8�º½» 8 N � g !$8�º½» 8 N � g !a8�º½»

LAF, � b ��t D ! G 8)N � g !$8 º�» 8)N � g !$8 º�» !'N % g !$8 º�» i g !a8 º�» ��! g !a8 º�» �2� g !a8 º�»�	b ��t D�¾ ! G 8)N � g !$8)º�» 8)N � g !$8)º�» 8)N � g !$8)º�» 8 N � g !$8�º½» 8 N � g !$8�º½» 8 N � g !a8�º½»
Table 3: Average performance figures, �5b ��t D] P'�RQ G for different algorithms and
 ����� . For each prospective
SLA at least one negotiation attempt is made, whilst �5b �	t before each attempt is different, so that �5b ��t D ! GYÁ��	b ��t D.Â G and �	b ��t D.Ã GÄ�Å�	b ��t DjÃ u ! G , where Â � �����
 ����� (, Â Á� Ã � �f�)�
 ����� (. For HRL two sets of data
are provided: ÆÇ� !$8

- sum over ten elements, ÆÈ� !$898
- sum over hundred elements (in Equation 4),

where ÆvÉ D �
q
� ` �

q
� G for any given Job w . Times are given in milliseconds for a single decision made per

successful SLA and are based on real times of Java code running on 3GHz processor.

Figure 8: The dependence of the negotiation factor
on the load factor,]2P'�^Q D] 0_-5/cb G for different number
of Resources served by an RAB based Coordinator.

Figure 9: The dependence of the negotiation factor
on the load factor,]2P'�^Q D] 0_-5/cb G for different number
of Resources served by an RAE based Coordinator.

In all four cases (Figures 4-7) we observe an im-
provement in the performance of all four algorithms
as the number of Resources served by a single Co-
ordinator is increased, although the HRL algorithm
remains fairly stable to the change.

In the region of large]�0U-�/cb , even the worst per-
forming algorithm, RAB, performs reasonably well
with high
 ����� , keeping the average number of ne-
gotiations close to the number of Resources avail-

Figure 10: The dependence of the negotiation factor
on the load factor,] P'�RQ D]�0_-�/"b$G for different number
of Resources served by an RHL based Coordinator.

Figure 11: The dependence of the negotiation factor
on the load factor,] P'�RQ D]�0_-�/"b$G for different number
of Resources served by an LAF based Coordinator.

able. A Coordinator serving a lower number of Re-
sources makes more negotiation attempts per SLA
than there are Resources even at lighter resource
loads. An RAE based Coordinator achieves the rates
of half of its possible maximum negotiations per
SLA for high]�0_-�/"b values as compared to its own
performance with smaller number of Resources. The
variations in performance for HRL is least notice-
able among all four. In addition, the peak on the

graph (Figure 10) which represents the point of the
worst performance shifts slightly toward the higher
load as
 ����� increases. All algorithms approach a
saturation in performance with increase in
 �5�	� . Ta-
ble 3 outlines the running time for each algorithm
presented here.

6 Conclusions and Future Work
We have built a model in which a job allocation
mechanism may be explored by means of vary-
ing topology, negotiation processes, SLA specifi-
cations as well as various heuristics for Coordina-
tor’s site selection and Resource’s scheduling algo-
rithms. The model was tested using four simple al-
gorithms. We found that the performance of the Co-
ordinator may and usually does depend on the num-
ber of Resources served, precisely it improves with
the increase of Resources in terms of negotiation
attempts performed for each successful SLA. We
showed that a simple heuristic based on data from
SLA can provide more stable and, in places, better
performance than that of other standard site selection
algorithms. The important conclusion from this is
that the HRL method behaves fundamentally differ-
ently from other methods that do not use SLA data.

Further work will investigate different SLA based
scheduling algorithms, more accurately the evalu-
ation of the Coordinator-Resource pair in different
topologies and negotiation approaches. We also
intend to widen the set of parameters outlined in
the SLA and increase the overall complexity of the
model, incorporating various time factors, identify-
ing new metrics, etc. The new results and findings
from the simulation are expected to feed into the en-
hanced requirements to SLA based job management,
including extensions to the current WS-A specifica-
tion.

Acknowledgement: This research has been
funded by EPSRC (through grants GR/S67654/01
and GR/S67661/01) whose support we are pleased
to acknowledge.

References
[1] Joy Hathaway, “Service Level Agreements: Keep-

ing A Rein on Expectations”, Winning The Net-
working Game, ACM (1995)

[2] “WS-Agreement”, the White Paper to GGF, Draft
18 (14 May 2004)

[3] Jon MacLaren, Rizos Sakellariou, Krish T. Krish-
nakumar, Jon Garibaldi, Djamila Ouelhadj, “To-
wards Service Level Agreement Based Scheduling

on the Grid”, Workshop on Planning and Schedul-
ing for Web and Grid Services (in conjunction with
ICAPS-04; Whistler, British Columbia, Canada,
100 (3-7 Jun 2004)

[4] Karl Czajkowski et al, “SNAP: A Protocol for Ne-
gotiation of Service Level Agreements and Coor-
dinating Resource Management in Distributed Sys-
tems”, 8th Workshop on Job Scheduling Strategies
for Parallel Processing.

[5] “Grid Resource Allocation Agreement Protocol”,
GGF Working Group, https://forge.gridforum.org/
projects/graap-wg

[6] J. Padjett, M. Haji, K. Djemame, “SLA Man-
agement in a Service Oriented Architecture”,
ICCSA’05, LNCS 3483, 1282 (2005)

[7] C. Dumitrescu, Ian Foster, “GRUBER: A Grid Re-
source SLA Broker”, University of Chicago, USA

[8] A. Dan, C. Dumitrescu, M. Ripeanu, “Connecting
Client Objectives with Resource Capabilities: An
Essential Component for Grid Service Management
Infrastructure”, ACM ICSOC’04, New York (2004)

[9] IBM, “WSLA Language Specification, ver. 1.0.”,
(2003)

[10] H. Ludwig, A. Dan, B. Kearney, “Cremona: An
Architecture and Library for Creation and Monitor-
ing WS-Agreements”, ACM ICSOC’04, New York
(2004)

[11] G. J. Henry, “A Fair Share Scheduler”, University of
Sydney, AT&T Bell Labs (1984)

[12] D. Kagklis, N. Liampotis, C. Tsakiris, “A Frame-
work for Implicit and Explicit Service Activation
Based on Service Level Specification”, SAC’04, 363
(14-17 Mar 2004)

[13] V. K. Naik, S. Sivasubramanian, S. Krishnan,
“Adaptive Resource Sharing in a Web Service Envi-
ronment”, Middleware ’04 LNCS 3231, 311 (2004)

[14] Yun Fu, Amin Vahdat, “SLA Based Distributed Re-
source Allocation for Streaming Hosting Systems”,
http://issg.cs.duke.edu

[15] Mladen Vouk, Yannis Viniotis, “Satisfac-
tion of Service-Level Agreements”, North
Carolina State University, web presentation
http://renoir.csc.ncsu.edu/Faculty/Vouk/Papers/
Slides/SLA CACC Nov01.pdf (Nov 2001)

[16] Li Zhang, Danilo Ardagna, “SLA Based Profit Op-
timization in Autonomic Computing Systems”, IC-
SOC’04, 173 (15-19 Nov 2004)

[17] Zhen Liu, Mark S. Squillante, Joel L. Wolf,
“On maximizing Service Level Agreement Profits”,
Technical Paper, IBM T.J. Watson Research Center,
NY 10598, USA

[18] Web based auction, http://www.ebay.co.uk

	Abstract

	Introduction

	Related Work

	Model Architecture

	Experimental Design

	Results and Discussion

	Conclusions and Future Work

	Acknowledgement

	References

