Experience on Performance Evaluation with OGSA-DQP

M.Nedim Alpdemir, Anastasios Gounaris?, Arijit Mukherjee?, Desmond Fitzgerald,

Norman W. Paton?, Paul Watson2, Rizos Sakellariout, Alvaro A.A. Fernandes?, Jim Smith?

1School of Computer Science, University of Manchester, Oxford Road
Manchester M13 9PL, United Kingdom
2School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne NE1 7RU, United Kingdom

Abstract

OGSA-DQP is an open source service-based Distributed Query Processor; as such, it supports the
evaluation of queries over collections of potentially remote data access and analysis services. As it
operates over several layers of service-oriented infrastructure, one particular need (both among the
developer team and the relevant community) has been to investigate the impact of the infrastructure
layers, understand performance issues, identify bottlenecks and improve the response times of
queries where possible. This paper conveys experiences gained in doing so, by describing the
experiments carried out and presenting the results obtained.

1. Introduction

OGSA-DQP [3] is an open source service-based
Distributed Query Processor; as such, it
supports the evaluation of queries over
collections of potentially remote data access and
analysis services. OGSA-DQP uses Grid Data
Services (GDSs) provided by OGSA-DAI [1] to
hide data source heterogeneities and ensure
consistent access to data and metadata. The
current version of OGSA-DQP, OGSA-DQP
2.0, uses Globus Toolkit 3.2 for grid service
creation and management. Thus OGSA-DQP
builds upon an OGSA-DAI distribution that is
based on the OGSI infrastructure [8]. In
addition, both GT3.2 and OGSA-DAI require a
web service container (e.g. Axis) and a web
server (such as Apache Tomcat) below them
(see Figure 1). A forthcoming release of
OGSA-DQP, due in fall of 2005, will support
the WS-1 and WRRF platforms as well.

OGSA-DQP provides two additional types
of services, Grid Distributed Query Services
(GDQSs) and Grid Query Evaluation Services
(GQESs). The former are visible to end users
through a GUI client, accept queries from them,
construct and optimise the corresponding query
plans and coordinate the query execution.

GQESs implement the query engine, interact
with other services (such as GDSs, ordinary
Web Services and other instances of GQESS),
and are responsible for the execution of the
query plans created by GDQSs.

Conducting a performance analysis and
performing changes with a view to optimising
performance in the light of the analysis results is
a challenging task. This paper reports
experience in doing so for OGSA-DQP 2.0 over
time, and thus it is important to clarify that this
implies that some of the figures presented do
not describe the behaviour of the system any
more and refer to pre-optimisation stages.
Complementarily to this work, an effort is being
made to benchmark the OGSA-DAI
distributions [2][6], so that the users can have a
more complete view of the performance of the
data access and integration middleware services
that are currently available.

Two main classes of experiments have been
carried out:

1. Experiments that aim to identify the impact
of the underlying infrastructure.

2. Experiments that aim to understand the
behaviour of the OGSA-DQP framework
and identify bottlenecks in its internal
architecture.

GlnbalS chema
on of local schemas)
query/ response

Control flow
v
<" Query

" Exccution

¥ Enginc

A

Data Access and Integration Framework (OGSA-DAI)

Core Grid Middleware
g

- E

A=

Grid Service Infrastructure (OGSA / GT3)

3

‘ Web Application Servers (e.g. Tomcat - Axis) ‘

| 0S & Network Layer ‘

Computatienal Grid Resources

Figure 1. The architecture of OGSA-DQP.

The following sections briefly explain the
approach taken in conducting those experiments
and summarise the results in each case.

2. Exploring the impact of the service
infrastructure

As mentioned before, OGSA-DQP, and more
specifically the GQES service that it provides,
relies on OGSA-DAI’'s GDSs to access
underlying database management systems.
GDSs provide a high level service interface for
data access, delivery and transformation, but
internally, they access databases via JDBC
connections.

This first class of experiments measures the
response time of a scan query (i.e. a query that
returns the content of a complete table as its
result) for:

1. a direct JDBC connection to a relational
database,

2. arequest sent via an OGSA-DAI 4.0 Grid
Data Service (GDS) to the same relational
database,

3. arequest sent via OGSA-DQP 2.0 to the
same relational database.

The results are then compared to see the
impact of the layered service-based
infrastructure. In addition, the overhead of XML
encoding that causes the volume to increase
significantly during data shipment has also been
investigated. The experiments indicated that the
overhead incurred by the service-based
infrastructures, both in terms of increase in data
volumes and in terms of increase in processing

load, is significant. For example retrieving the
same amount of data using a GDS took an order
of magnitude more compared to a direct JDBC
connection (i.e. 5.33 secs compared to 140
milisecs). It is therefore important to adopt
policies to reduce the cost of using the
infrastructure. For instance, in the case of
asynchronous access to a GDS, it is essential to
deliver data in buffers so that the message-
sending overheads are shared across multiple
tuples.

2.1 The Characteristics of the Data Sources
and the Effect of XML

Two data sources are used, which are part of
the demo application and databases included in
the OGSA-DQP system:

1. Protein_goterm is a table with two
columns, which contains proteins and their
GeneOntology (www.geneontology.org)
identifier. The table contains 16803 rows.
Although the column sizes are variable,
average row length is 24 Bytes, so the total
size of the table is approximately 404188
bytes. A sample table with two rows of data
is given below.

ORF GOTermlidentifier
[varchar (55)] [varchar(32)]
Q0010 G0:0000004
YALO37W G0:0005554

Table 1. Sample protein_goterm data

2. Protein_interaction is a table with 6
columns: ORF1, ORF2, baitProtein,
interactionType, repeats, experimenter. It
contains experimental results involving
proteins. The table contains 4716 rows with
an average row length of 47 bytes, so the
total size of the table is approximately
225688 bytes.

A Grid Data Service (GDS) delivers the
query result as a WebRowSet [10], according to
which each data tuple is wrapped inside XML
tags. For instance each row in
protein_interaction table (see Table 1) is
represented in the form of an XML fragment of
the following form:

<currentRow>
<columnValue>YALO37W</columnValue>
<columnValue>G0:0000004</columnvValue>
</currentRow>

These tags add an extra 188 characters (of 2
bytes each) for each tuple in the
protein_interaction table and 80 characters for
each tuple in the protein_goterm table. As a
result the amount of data on the wire grows
significantly. To be more precise, for the
protein_interaction table, there are
188*4716=886608 additional characters, plus
the header section, which are transmitted over
SOAP to the client. Considering that the
original size of that table was ~226 KB, the total
size becomes ~2 MB (assuming 2 bytes per
character), resulting in an increase of more than
eight times. Table 2 illustrates in more detail the
impact of XML on data sizes of both tables used
in the experiments.

Table Original = XML Total Total
name datasize | overhead XML Size
per row | overhead

profein_ ' 4o4kB | 160B 268MB | ~3MB
goterm

profein_ ,oc kg 3768 177MB | ~2MB
interaction

Table 2.The impact of XML format on data
sizes.

2.2 Experiments Description

During the experiments, seven main access
methods were examined:

1. Local JDBC access. This indicates
direct access to the data store, which is co-
located with the JDBC client.

2. Remote JDBC access. This indicates
that the data store is located on a separate
machine, and is accessed via JDBC
remotely.

3. Local Synch-GDS. This indicates that
the data source is accessed via a GDS co-
located with client, and that the GDS request
is synchronous. In other words, the results
are delivered to the client at once, as a single
document (in XML WebRowSet format).

4. Remote Synch-GDS. This indicates that
the data source is accessed via a GDS that is
located on a different machine from the
client, and that the GDS request is
synchronous as in item 3 above.

5. Local Asynch-GDS. This indicates that
the data source is accessed via a GDS co-
located with the client, and that the GDS
request is asynchronous with no block
aggregation. In other words, the results are
pulled by the client tuple by tuple, using the
GDT (Grid Data Transport) port-type of

GDS. Each tuple is wrapped in XML tags as
discussed earlier.

6. Remote Asynch-GDS. This indicates
that the data source is accessed via a GDS
located at a different machine than the client
machine, and that the GDS request is
asynchronous as in item 5 above.

7. OGSA-DQP Scan. This indicates that
the data store is accessed via OGSA-DQP.
The aim is to compare this with the response
time of the GDS. Note, however, that since
leaf GQESs (which contain the SCAN
operator) use asynchronous requests to
stream data out of GDSs and since they are
co-located with the GDSs, the comparison
should be made against Local Asynch-GDS.

Three queries are used in the tests:

1. Scan-1, which is a full scan of the
protein_goterm table: select * from
protein_goterm;

2. Scan-2, which is a full scan of the

protein_interaction table: select * from
protein_interaction;

3. Join, which is an equi-join of the two
tables: select i .ORF2 from
protein_goterm as p,
protein_interaction as i where
p.ORF=i .ORF;

The join query is significantly different in the
case of OGSA-DQP because the two tables
scanned are hosted by two separate machines,
whereas in the case of GDSs they are hosted by
the same machine and defined in the same
database.

The data sources are hosted in mySQL
databases, and duplicated on two different
machines with similar ~ computational
characteristics. Each machine has an AMD
Athlon 1.13 GHz processor and 512 MB RAM.
Both machines are connected to the same
100Mps departmental network.

2.3 Experiments Results

The results show query execution times
recorded for each data access mode. There is a
bar chart for each of the three queries (Figures 2
— 4). Each query ran three times and the
average is presented.

Different Data Access vs. Execution Times for a Full Scan Query Against
protein_goterm

DO Exec. Times for protein_goterm SCAN ‘

-~
Q250,00 218.3

< 20000 156.37
£ 150.00 117.00

F 100,00

§ 50004 014 043 533 633 |

W 000

local JDBC ~ remote local remote local remote OGSA-
JDBC Synch-GDS Synch-GDS Asynch- Asynch- DQP-scan
GDS GDs

Data Access Mode

Figure 2. Execution times vs. different access
modes for the first query Scan-1.

Different Data Access vs. Execution Times for a Full Scan Query
Against protein_interaction

‘ O Exec. Time for protein_interaction SCAN ‘

Time

80.00 63.00
3 ~ 60.00 32.33

40.00
20.00 | 200 3.0

0.00

47.27

)

(sec

Query Exec.

local remote local remote local remote OGSA-
JDBC JDBC Synch- Synch- Asynch- Asynch- DQP-scan
GDS GDS GDS GDS

Data Access Mode

Figure 3. Execution times vs. different access
modes for the second query Scan-2.

Different Data Access vs. Execution Times for the Join of Two
Data Sources
DExec. Times for JOIN query
$ 400.00 49.0:
£ 35000
“E’ 300.00 —
E 25000 197.00
s 200.00 =
8 15000 97.67
d 10000
> 50.00740@_0@_7_110_1110_'_'7 .
g 000
[e4 local JDBC remote local remote local remote OGSA-
JDBC Synch- Synch- Asynch- Asynch- DQP-join
GDS GDS GDS GDS
Data Access Mode

Figure 4. Execution times vs. different access
modes for the third join query.

The figures above should be interpreted
carefully, as the access modes examined refer to
different layers of infrastructure (for example,
GDS builds a service layer on top of simple
JDBC access). Moreover, as already clearly
documented, the performance of OGSA-DAI
can vary significantly for different activities,
delivery mechanisms, and result sizes [2][6].

In general, for non-small datasets, accessing
databases through a GDS service
synchronously, and retrieving the data tuple by
tuple, incurs an overhead of an order of
magnitude compared to simple JDBC access
(from hundreds of miliseconds the response
time becomes a few seconds, for the database
sizes used in these experiments). Accessing
GDSs asynchronously with no block

aggregation incurs an additional overhead of an
order of magnitude too (the response time is in
tens of seconds).

Moreover, the overhead incurred by the
GDS-GQES interaction is also significant. For
Scan-1, the response time increases from 117
secs to 156.37 (33.6%), whereas for Scan-2 the
increase is from 32.33 secs to 47.27 (46.1%).
Thus the average overhead is approximately
40%.

Intuitively, significant performance benefits
are expected when tuples are retrieved by the
GDS in blocks, which is a functionality that has
been incorporated in OGSA-DAI. The next
section investigates the impact of such blocks.

2.4 The Effect of Block Aggregation when
Accessing the GDS.

This section investigates the effect of the block
size (i.e. the number of tuples contained in a
single block of data transport) when shipping
data from the store. In this set of experiments,
the ability to specify different block sizes when
submitting a query request to a GDS is utilized.

Retrieving data from the GDS using the
block aggregator activity improves the
performance significantly. For this experiment
we re-ran Scan-1 (two iterations) with different
block sizes. Table 3 and Figure 5 indicate the
cost of accessing the protein_goterm database
remotely with different block sizes. In
summary, the observed behaviour for this
category of experiments indicates a
considerable improvement in response time
with there is an increase in the block size, but
only up to the point where the cost of
constructing the blocks starts to overweigh the
improvement gained by returning larger blocks
of data per service invocation. This is due to the
reduced number of service calls, which tend to
be one of the dominant factors in the cost.
Recalling from Figure 2 that the cost of
accessing the same data source with single-tuple
blocks (i.e. block size = 1) was 218 seconds,
reducing this cost to 10.5 seconds with a block
size of 120 or 130 is a significant improvement.

Scanning the protein_intractions table
exhibits similar behaviour (see Figure 6). The
only difference is that the optimal performance
is achieved when the block size is slightly
smaller; 110 tuples per block.

remote Asynch GDS for Different block sizes

‘ ——@—remote Asynch GDS for diff block sizes == Synchronous GDS

b\
\

30

N\
ol Yot 000000000

5 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Query Execution Time in Seconds

Number of Tuples per Block

Figure 5. Cost of GDS access with different
block sizes.

The reduction in the cost of accessing GDSs
propagates improvements to the OGSA-DQP
performance too. Motivated by the lessons
learnt from these experiments, any access to the
underlying databases in OGSA-DQP has been
modified to utilise the block aggregation
activity. With a block size of 100 the time to get
the results of the protein_goterms scan via
OGSA-DQP reduces from 156.37 seconds to
27.8 seconds. Although this is a significant
improvement it is still more than twice the
equivalent (i.e. with the same block size) GDS
response time. Therefore it is worth analysing
the stages internal to OGSA-DQP so that a
clearer picture of the whole query processing
life cycle can be drawn. The following section
aims to do that.

—e— cost of Remote Asynch GDS Calls for Different Block Sizes
—m— Remote Synchronous Call

g
4 L]
2
0

T T T T T — T T T — T T
5 10 20 30 40 50 80 70 80 90 100 110 120 130 140
NUmber of Tuples per Block

Figure 6. Cost of GDS access with different
block sizes.

3. Understanding the behaviour of
the internal architecture

OGSA-DQP evaluates a query by
instantiating evaluator service instances on
available servers, to yield a tree of evaluator
services, the leaf nodes of which interact with
GDSs to stream data from relational databases.
One noteworthy feature of OGSA-DQP is its

ability to parallelise the execution of
computationally expensive operations across
available resources and to perform pipelined
execution. This class of experiments, therefore,
aims to identify the bottlenecks in the internal
architecture by which the query evaluation is
achieved, and to assess the impact of
parallelism. Two distinct categories of
investigation are considered:

1. Investigating the most time consuming
operations during the pipeline of processes
involved in executing a query by profiling
the OGSA-DQP code.

2. Investigating the effect of parallelising the
computationally intensive operations across
available computational resources as and
when they become available.

GDQS

* Delivery to GDQS ——

i DELIVER
dqp_protein_goterm . ORF,
dqp_protein_goterm.GOTermldentificr

Data Translation
EXCHANGE (1) -= (0}

9 Data Transfer =
Size Computation +

Block Transmission

+ Nata Tranclatinn
i1 PROJECT

dqp_protein_gaterm . ORF.
dqp_protein_goterm .GOTermldentifier

GDS Access =
GDS block
Retrieval +
'[P WebRowSet
1
1
1
1
1

TAELE_SCAN

Processing

protain_goterm

Figure 7. The query plan for the Scan-1 query.
The shaded boxes indicate the costs at the
corresponding part of the plan.

3.1 An analysis of the OGSA-DQP processing
cycle

The analysis is performed for the simple,
complete scan of the protein_goterms database.
The query plan generated for this query is given
in Figure 7. Data is retrieved from one machine
(with identifier 1 in the figure), and is sent to
another one (with identifier 0), which is co-
located with the DQP GDQS. The plan is
annotated at several places, with a number of
costly operations identified as the key costs.
Starting from the bottom where the
TABLE_SCAN operator accesses the GDS,
moving up to the root evaluator where the
results are delivered to the GDQS those key
costs are:

1. GDS Access Cost. This includes the cost
of retrieving tuples in block from the GDS
via the GDT port type and the processing
cost of the returned XML blocks, which are
in WebRowSet format. This cost is
encapsulated in the cost of the
TABLE_SCAN operator.

2. Data Transfer Cost. This is the cost of
packaging and sending data from an
evaluator lower in the query plan to a
higher-level evaluator. It includes the block
construction cost (because tuples are
packaged into blocks before being sent to
the receiving evaluator), the cost of
calculating the size of a tuple, the cost of
sending the block over the network and the
cost of translating the blocks into tuples at
the receiving evaluator. The last cost is
included because the sending evaluator calls
the receiving one synchronously, so it has to
wait for the data translation to complete
before the call returns. The data transfer cost
is the cost of the producer thread of the
EXCHANGE [5] operator in the query plan.

3. Data Translation Cost. This aims to
measure the cost of unblocking the data
packets at the receiving evaluator. Note that
this is also included within the Data Transfer
Cost. It related to the cost of the consumer
thread of EXCHANGES.

4, Delivery Cost. This is the cost of
sending data blocks from the root evaluator
to the GDQS. Sending data blocks in this
case is a service-to-service call over SOAP,
from the root GQES to the GDQS.

These costs do not cover all the possible
costs that contribute to the query response time,
but other remaining costs, such as applying the

PROJECT operator, adding and removing the
tuples from the queues etc., are thought to be
relatively negligible.

OGSA-DQP source code has been
instrumented to measure each of the costs
above. The results are as follows:

The total response time is 28.6 seconds. The
GDS block retrieval takes 9.6 secs and the XML
WebRowSet processing (to unpack and map the
tuples to the internal format of DQP) costs 5.5
secs. Thus the GDS access cost is 15.1 secs.

Data is transferred from the machine that is
local to the database to the machine that
receives the results in 26.8 secs, from which 4.8
secs are spent for translation and 1sec for size
computation. The latter, is a CPU-intensive
activity, and is used to determine the point at
which a buffer is adequately filled to be sent
across the network. The results are delivered to
GDQS in 8.1 secs.

If there were no pipelined parallelism the
total response time would be the sum of all
these costs, i.e., 50 secs instead of 28.6.
However, this is not the case and some of the
time slots have overlapping slices. For example,
GDS Access is handled by a separate thread and
therefore overlaps with the thread that calls the
next() method on the local root (i.e.,
EXCHANGE) operator and all the other
operators down to the TABLE_SCAN operator.
Similarly, delivery to the GDQS happens
simultaneously with the retrieval and translation
of the incoming data blocks from the lower
level evaluators in the consumer EXCHANGE.

The profiling of this query has revealed
another aspect of the negative effects of XML.
Apart from the increase in the data volume that
has to be transmitted over the network, which
inevitably leads to a significant increase in the
communication-related costs, XML-related
processing seems to incur some CPU-related
cost as well. This query was expected to have
negligible CPU cost. However, the cost to
compute the size of buffers and parse and
unpack XML blocks is responsible for approx.
20% of the total cost of EXCHANGE, which is
the bottleneck for this simple query. This
happens despite the fact that, due to an earlier
optimisation of the system, XML parsing in
OGSA-DQP employs the SAX rather than the
DOM model, which usually performs better for
these sizes (e.g., [7]).

3.2 The impact of parallelising expensive
operations

One of the main claims of Grid DQP has
been that it can parallelise expensive operations
in a transparent way to the user thereby making
it of practical interest for CPU-intensive
applications [4]. In this way, multiple instances
of the same operator in the query plan can
applied to disjoint subsets of a relation or of
intermediate results in the plan. This form of
parallelism is usually called intra-operator or
partitioned. In non-service-based Grid DQP,
intra-operator parallelism has been shown to be
capable of yielding performance improvements
[9]. The last set of experiments deals with intra-
operator parallelism in the context of OGSA-
DQP.

For this experiment, an additional table from
the OGSA-DQP demo databases,
protein_sequences, has been wused. The
expensive operation to be parallelised is a call to
the calculateEntropy method of the
EntropyAnalyser Web Service, which is part
of the publicly available OGSA-DQP demo,
too. In OGSA-DQP the OPERATION_CALL
generic query operator handles calls to WSs.
The test query is:

select p.ORF, go.id,
calculateEntropy(p.sequence)

from protein_sequences p,

goterms go, protein_goterms pg
where go.id=pg.GOTermldentifier and
p-ORF=pg.ORF and

pg-ORF like "YCLO\%" and

go.id like "GO:0\%";

To test the effect of parallelising the
OPERATION_CALL operator, two different
parameters undergo variation. Firstly, the
number of available evaluator nodes, which is
equivalent to the number of machines available
for the deployment of GQES instances that can
invoke the web service, is not predefined as
before but ranges from two to six machines.
Secondly, the number of web service copies is
increased by one for each run, from 1 to 6, to
ensure that GQES instances increasingly invoke
separate web service copies (rather than the
same web service).

Figure 8 illustrates the response times for an
increasing number of service copies. Each bar
group in the figure represents a particular
service copy configuration, and indicates the
change in response time with respect to the
number of available evaluator nodes. For

example, the leftmost group shows results for 1
service copy for an increasing number of
evaluators (i.e., the first bar indicates the
response time when 1 evaluator invokes 1
service, the second bar indicates the response
time when 2 evaluators invoke 1 service, and so
on). The optimal line links the lowest bar in
each bar group, to denote the change in the
lowest response time in each configuration. As
can be seen, the best response time for each
service copy configuration is obtained when the
number of evaluator nodes equals the number of
available service copies. In this case, each
evaluator invokes exactly one service, leading
to maximum effective concurrency. Overall,
intra-operator parallelism can improve response
times by several factors (2.25 in this example).

v (sec.)

R

time

HHHI|M1 ol service (-"‘ﬂt\.
Figure 8. Comparison of operation_call cost for
increasing number of available computational
resources.

4. Conclusions

Distributed Query Processing (DQP) is, in itself,
a complex task, and DQP artefacts comprise
many components and require several tens of
thousands of lines of code. Especially when
applied to new, emerging settings, such as
service-oriented Grids, their behaviour may be
hard to predict, and new types of bottlenecks
may arise. OGSA-DQP is one of the first Grid
DQP systems, and as such, it is desirable to
investigate its performance and to conduct some
profiling. To this end, several types of
experiments were performed, which are
described in this paper, along with their results
and lessons learnt.

The initial group of experiments tried to
investigate the impact of the double service
layer between the back-end database store and
the OGSA-DQP clients. Retrieving data through
services may slow down the tuple output rate by
an order of magnitude. To mitigate these
negative effects, tuples need to be retrieved in
blocks so that messaging overheads are
amortized across many tuples. However,

beyond a certain point, further increases in the
size of the block cause performance
degradation. As a result of these experiments,
the forthcoming release of OGSA-DQP will
retriecve data from GDS-wrapped databases
using the block aggregation functionality of
OGSA-DAI (the block size will be ~100).

Another group of experiments allowed us to
identify several points where considerable
resource CPU was being consumed. In
particular, parsing and unpacking of the
incoming data blocks in XML and constructing
the data blocks for retransmission appeared to
be taking considerable amounts of time. This is
an indirect way in which XML-based
communication compromises the performance.
In a more direct way, inserting XML tags in the
raw data may result in a significant increase of
the total data volume. To tackle this, OGSA-
DQP 2.0 has already moved towards the SAX
rather than the DOM XML parsing model. In
the future, alternative delivery mechanisms and
formats that are provided by more recent
OGSA-DAI distributions will be examined.

The experiments in the last group indicated
that parallelising computationally expensive
operations such as service calls to web services
that perform relatively costly analysis on data,
may significantly improve the performance.
This observation suggests that providing
multiple instances of the same service (or web
services that transparently manage multiple
processors) is an important prerequisite for
high-performance Grids, when combined with
the ability of higher level middleware services
(such as OGSA-DQP) to utilize such services
concurrently when they are available. The
beneficial impact of this kind of parallelism is
complemented by the pipelining execution,
which can reduce query response time
significantly by performing many operations
concurrently.

References

[1] M. Antonioletti, M. Atkinson, R. Baxter, A.
Borley, N. P. Chue Hong, B. Collins, N.
Hardman., A. Hume, A. Knox, M. Jackson, A.
Krause, S. Laws, J. Magowan, N. W. Paton, D.
Pearson, T. Sugden, P. Watson and M.
Westhead. The design and implementation of
Grid database services in OGSA-DAI, in
Concurrency and Computation: Practice and
Experience, Volume 17, Issue 2-4, pages 357 —
376, Feb, 2005.

[2] Mario Antonioletti, Malcolm Atkinson, Rob
Baxter, Andrew Borley, Neil P. Chue Hong,
Patrick Dantressangle, Alastair C. Hume, Mike
Jackson, Amy Krause, Simon Laws, Mark
Parsons, Norman W. Paton, Jennifer Schopf,
Tom Sugden, Paul Watson and David Vyvyan.
OGSA-DAI Status and Benchmarks, 4" UK e-
Science Programme All Hands Meeting (AHM
2005), 2005.

[3]1 M.Nedim Alpdemir, Arijit Mukherjee, Norman
W. Paton, Paul Watson, Alvaro AA.
Fernandes, Anastasios Gounaris, and Jim
Smith. "Service-Based Distributed Querying on
the Grid". In Proc. of First International
Conference on Service Oriented Computing -
ICSOC 2003, LNCS 2910, pages 467-482.

[4] Anastasios Gounaris, Rizos Sakellariou,
Norman W. Paton, Alvaro A. A. Fernandes.
Resource Scheduling for Parallel Query
Processing on Computational Grids. 5th
IEEE/ACM International Workshop on Grid
Computing, GRID’04, 2004.

[5] G. Graefe. Encapsulation of parallelism in the
Volcano query processing system. In Proc. of
ACM SIGMOD, pages

[6] M. Jackson, M. Antonioletti, N.P. Chue Hong,
A.C. Hume, A. Krause, T. Sugden, and M.
Westhead. Performance Analysis of the
OGSA-DAIl Software. OGSA-DAI mini-
workshop, 3@ UK e-Science Programme All
Hands Meeting (AHM 2004), 2004.

[7]1 Matthias Nicola and Jasmi John. XML parsing:
a threat to database performance. Proceedings
of the 12th International Conference on
Information and Knowledge Management,
CIKM’03, pages 175-178, 2003

[8] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S.
Graham, C. Kesselman, T. Maquire, T.
Sandholm, D. Snelling, P. Vanderpilt, Open
Grid Services Infrastructure, Version 1.0, June
27, 2003, GFD.15.

[9] Jim Smith, Anastasios Gounaris, Paul Watson,
Norman. W. Paton, Alvaro. A. A. Fernandes,
and Rizos Sakellariou. Distributed query
processing on the grid. International Journal of
High Performance Computing Applications,
17(4):353-367, 2003.

[10] JSR 114: JDBC Rowset Implementations
http://www.jcp.org/en/jsr/detail?id=114

	Abstract
	Introduction
	Exploring the impact of the service infrastructure
	Understanding the behaviour of the internal architecture
	Conclusions

	References

