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Abstract

OGSA-DQP is an open source service-based Distributed Query Processor; as such, it supports the 
evaluation of queries over collections of potentially remote data access and analysis services. As it 
operates over several layers of service-oriented infrastructure, one particular need (both among the 
developer team and the relevant community) has been to investigate the impact of the infrastructure 
layers, understand performance issues, identify bottlenecks and improve the response times of 
queries where possible. This paper conveys experiences gained in doing so, by describing the 
experiments carried out and presenting the results obtained. 

1. Introduction

OGSA-DQP [3] is an open source service-based 
Distributed Query Processor; as such, it 
supports the evaluation of queries over 
collections of potentially remote data access and 
analysis services. OGSA-DQP uses Grid Data 
Services (GDSs) provided by OGSA-DAI [1] to 
hide data source heterogeneities and ensure 
consistent access to data and metadata. The 
current version of OGSA-DQP, OGSA-DQP 
2.0, uses Globus Toolkit 3.2 for grid service 
creation and management. Thus OGSA-DQP 
builds upon an OGSA-DAI distribution that is 
based on the OGSI infrastructure [8]. In 
addition, both GT3.2 and OGSA-DAI require a 
web service container (e.g. Axis) and a web 
server (such as Apache Tomcat) below them 
(see Figure 1).  A forthcoming release of 
OGSA-DQP, due in fall of 2005, will support 
the WS-I and WRRF platforms as well.

OGSA-DQP provides two additional types 
of services, Grid Distributed Query Services 
(GDQSs) and Grid Query Evaluation Services 
(GQESs). The former are visible to end users 
through a GUI client, accept queries from them, 
construct and optimise the corresponding query 
plans and coordinate the query execution. 

GQESs implement the query engine, interact 
with other services (such as GDSs, ordinary 
Web Services and other instances of GQESs), 
and are responsible for the execution of the 
query plans created by GDQSs. 

Conducting a performance analysis and 
performing changes with a view to optimising 
performance in the light of the analysis results is 
a challenging task. This paper reports 
experience in doing so for OGSA-DQP 2.0 over 
time, and thus it is important to clarify that this 
implies that some of the figures presented do 
not describe the behaviour of the system any 
more and refer to pre-optimisation stages.  
Complementarily to this work, an effort is being 
made to benchmark the OGSA-DAI 
distributions [2][6], so that the users can have a 
more complete view of the performance of the 
data access and integration middleware services 
that are currently available.

Two main classes of experiments have been 
carried out:
1. Experiments that aim to identify the impact 

of the underlying infrastructure.
2. Experiments that aim to understand the 

behaviour of the OGSA-DQP framework 
and identify bottlenecks in its internal 
architecture.



Figure 1. The architecture of OGSA-DQP.

The following sections briefly explain the 
approach taken in conducting those experiments 
and summarise the results in each case.

2. Exploring the impact of the service 
infrastructure

As mentioned before, OGSA-DQP, and more 
specifically the GQES service that it provides, 
relies on OGSA-DAI’s GDSs to access 
underlying database management systems.  
GDSs provide a high level service interface for 
data access, delivery and transformation, but 
internally, they access databases via JDBC 
connections.

This first class of experiments measures the 
response time of a scan query (i.e. a query that 
returns the content of a complete table as its 
result) for:

1. a direct JDBC connection to a relational 
database, 

2. a request sent via an OGSA-DAI 4.0 Grid 
Data Service (GDS) to the same relational 
database,

3. a request sent via OGSA-DQP 2.0 to the 
same relational database.

The results are then compared to see the 
impact of the layered service-based 
infrastructure. In addition, the overhead of XML 
encoding that causes the volume to increase 
significantly during data shipment has also been 
investigated. The experiments indicated that the 
overhead incurred by the service-based 
infrastructures, both in terms of increase in data 
volumes and in terms of increase in processing 

load, is significant. For example retrieving the 
same amount of data using a GDS took an order 
of magnitude more compared to a direct JDBC 
connection (i.e. 5.33 secs compared to 140 
milisecs). It is therefore important to adopt 
policies to reduce the cost of using the 
infrastructure. For instance, in the case of 
asynchronous access to a GDS, it is essential to 
deliver data in buffers so that the message-
sending overheads are shared across multiple 
tuples.  

2.1 The Characteristics of the Data Sources 
and the Effect of XML

Two data sources are used, which are part of 
the demo application and databases included in 
the OGSA-DQP system:

1. Protein_goterm is a table with two 
columns, which contains proteins and their 
GeneOntology (www.geneontology.org) 
identifier. The table contains 16803 rows. 
Although the column sizes are variable, 
average row length is 24 Bytes, so the total 
size of the table is approximately 404188 
bytes. A sample table with two rows of data 
is given below.

ORF 
[varchar (55)]

GOTermIdentifier 
[varchar(32)]

Q0010 GO:0000004
YAL037W GO:0005554

Table 1. Sample  protein_goterm data

2. Protein_interaction is a table with 6 
columns: ORF1, ORF2, baitProtein, 
interactionType, repeats, experimenter. It 
contains experimental results involving 
proteins. The table contains 4716 rows with 
an average row length of 47 bytes, so the 
total size of the table is approximately   
225688 bytes.

A Grid Data Service (GDS) delivers the 
query result as a WebRowSet [10], according to 
which each data tuple is wrapped inside XML 
tags. For instance each row in 
protein_interaction table (see Table 1) is 
represented in the form of an XML fragment of 
the following form: 

<currentRow>
<columnValue>YAL037W</columnValue>
<columnValue>GO:0000004</columnValue>

</currentRow>



These tags add an extra 188 characters (of 2 
bytes each) for each tuple in the 
protein_interaction table and 80 characters for 
each tuple in the protein_goterm table. As a 
result the amount of data on the wire grows 
significantly. To be more precise, for the 
protein_interaction table, there are 
188*4716=886608 additional characters, plus 
the header section, which are transmitted over 
SOAP to the client. Considering that the 
original size of that table was ~226 KB, the total 
size becomes ~2 MB (assuming 2 bytes per 
character), resulting in an increase of more than 
eight times. Table 2 illustrates in more detail the 
impact of XML on data sizes of both tables used 
in the experiments. 

Table 
name

Original 
data size

XML 
overhead 
per row

Total 
XML 
overhead

Total 
Size

protein_
goterm

404 KB 160 B 2.68 MB ~3 MB

protein_
interaction

226 KB 376 B 1.77 MB ~2 MB

Table 2.The impact of XML format on data 
sizes.

2.2 Experiments Description

During the experiments, seven main access 
methods were examined:

1. Local JDBC access. This indicates 
direct access to the data store, which is co-
located with the JDBC client. 

2. Remote JDBC access. This indicates 
that the data store is located on a separate 
machine, and is accessed via JDBC 
remotely.

3. Local Synch-GDS. This indicates that 
the data source is accessed via a GDS co-
located with client, and that the GDS request 
is synchronous. In other words, the results 
are delivered to the client at once, as a single 
document (in XML WebRowSet format).

4. Remote Synch-GDS. This indicates that 
the data source is accessed via a GDS that is 
located on a different machine from the 
client, and that the GDS request is 
synchronous as in item 3 above. 

5. Local Asynch-GDS. This indicates that 
the data source is accessed via a GDS co-
located with the client, and that the GDS 
request is asynchronous with no block 
aggregation. In other words, the results are 
pulled by the client tuple by tuple, using the 
GDT (Grid Data Transport) port-type of 

GDS. Each tuple is wrapped in XML tags as 
discussed earlier. 

6. Remote Asynch-GDS. This indicates 
that the data source is accessed via a GDS 
located at a different machine than the client 
machine, and that the GDS request is 
asynchronous as in item 5 above. 

7. OGSA-DQP Scan. This indicates that 
the data store is accessed via OGSA-DQP. 
The aim is to compare this with the response 
time of the GDS. Note, however, that since 
leaf GQESs (which contain the SCAN 
operator) use asynchronous requests to 
stream data out of GDSs and since they are 
co-located with the GDSs, the comparison 
should be made against Local Asynch-GDS. 

Three queries are used in the tests:
1. Scan-1, which is a full scan of the 

protein_goterm table: select * from

protein_goterm;  

2. Scan-2, which is a full scan of the 
protein_interaction table: select * from 
protein_interaction;

3. Join, which is an equi-join of the two 
tables: select i.ORF2 from 
protein_goterm as p, 
protein_interaction as i where 
p.ORF=i.ORF;

The join query is significantly different in the 
case of OGSA-DQP because the two tables 
scanned are hosted by two separate machines, 
whereas in the case of GDSs they are hosted by 
the same machine and defined in the same 
database. 

The data sources are hosted in mySQL 
databases, and duplicated on two different 
machines with similar computational 
characteristics. Each machine has an AMD 
Athlon 1.13 GHz processor and 512 MB RAM. 
Both machines are connected to the same 
100Mps departmental  network.

2.3  Experiments Results

The results show query execution times 
recorded for each data access mode. There is a 
bar chart for each of the three queries (Figures 2 
– 4).  Each query ran three times and the 
average is presented.



Different Data Access vs. Execution Times for a Full Scan Query Against  

protein_goterm

0.14 0.43 5.33 6.33

117.00

218.33

156.37

0.00

50.00

100.00

150.00

200.00

250.00

local JDBC remote

JDBC

local

Synch-GDS 

remote

Synch-GDS

local

Asynch-

GDS

remote

Asynch-

GDS

OGSA-

DQP-scan 

Data Access Mode

E
x

e
c

. 
T

im
e

 (
s

e
c

.)

Exec. Times for protein_goterm SCAN

Figure 2. Execution times vs. different access 
modes for the first query Scan-1.
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Figure 3. Execution times vs. different access 
modes for the second query Scan-2.

Different Data Access vs. Execution Times for the Join of Two 
Data Sources

0.20 0.24 2.00 3.00

97.67

197.00

349.07

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00

local JDBC remote

JDBC

local

Synch-

GDS 

remote

Synch-

GDS

local

Asynch-

GDS

remote

Asynch-

GDS

OGSA-

DQP-join

Data Access Mode

Q
u

er
y 

E
xe

c.
 T

im
e 

(s
ec

.)

Exec. Times for JOIN query

Figure 4. Execution times vs. different access 
modes for the third join query.

The figures above should be interpreted 
carefully, as the access modes examined refer to 
different layers of infrastructure  (for example, 
GDS builds a service layer on top of simple 
JDBC access). Moreover, as already clearly 
documented, the performance of OGSA-DAI 
can vary significantly for different activities, 
delivery mechanisms, and result sizes [2][6].   

In general, for non-small datasets, accessing 
databases through a GDS service 
synchronously, and retrieving the data tuple by 
tuple, incurs an overhead of an order of 
magnitude compared to simple JDBC access 
(from hundreds of miliseconds the response 
time becomes a few seconds, for the database 
sizes used in these experiments). Accessing 
GDSs asynchronously with no block 

aggregation incurs an additional overhead of an 
order of magnitude too (the response time is in 
tens of seconds).

Moreover, the overhead incurred by the 
GDS-GQES interaction is also significant. For 
Scan-1, the response time increases from 117 
secs to 156.37 (33.6%), whereas for Scan-2 the 
increase is from 32.33 secs to 47.27 (46.1%). 
Thus the average overhead is approximately 
40%.

Intuitively, significant performance benefits 
are expected when tuples are retrieved by the 
GDS in blocks, which is a functionality that has 
been incorporated in OGSA-DAI. The next 
section investigates the impact of such blocks. 

2.4 The Effect of Block Aggregation when 
Accessing the GDS.

This section investigates the effect of the block 
size (i.e. the number of tuples contained in a 
single block of data transport) when shipping 
data from the store. In this set of experiments, 
the ability to specify different block sizes when 
submitting a query request to a GDS is utilized. 

Retrieving data from the GDS using the 
block aggregator activity improves the 
performance significantly.  For this experiment 
we re-ran Scan-1 (two iterations) with different 
block sizes. Table 3 and Figure 5 indicate the 
cost of accessing the protein_goterm database 
remotely with different block sizes. In 
summary, the observed behaviour for this 
category of experiments indicates a 
considerable improvement in response time 
with there is an increase in the block size, but 
only up to the point where the cost of 
constructing the blocks starts to overweigh the 
improvement gained by returning larger blocks 
of data per service invocation. This is due to the 
reduced number of service calls, which tend to 
be one of the dominant factors in the cost.  
Recalling from Figure 2 that the cost of 
accessing the same data source with single-tuple 
blocks (i.e. block size = 1) was 218 seconds, 
reducing this cost to 10.5 seconds with a block 
size of 120 or 130 is a significant improvement.  

Scanning the protein_intractions table 
exhibits similar behaviour (see Figure 6). The 
only difference is that the optimal performance 
is achieved when the block size is slightly 
smaller: 110 tuples per block.
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Figure 5. Cost of GDS access with different 
block sizes.

The reduction in the cost of accessing GDSs 
propagates improvements to the OGSA-DQP 
performance too.  Motivated by the lessons 
learnt from these experiments, any access to the 
underlying databases in OGSA-DQP has been 
modified to utilise the block aggregation 
activity. With a block size of 100 the time to get 
the results of the protein_goterms scan via 
OGSA-DQP reduces from 156.37 seconds to 
27.8 seconds. Although this is a significant 
improvement it is still more than twice the 
equivalent (i.e. with the same block size) GDS 
response time. Therefore it is worth analysing 
the stages internal to OGSA-DQP so that a 
clearer picture of the whole query processing 
life cycle can be drawn. The following section 
aims to do that.

Figure 6. Cost of GDS access with different 
block sizes.

3. Understanding the behaviour of 
the internal architecture

OGSA-DQP evaluates a query by 
instantiating evaluator service instances on 
available servers, to yield a tree of evaluator 
services, the leaf nodes of which interact with 
GDSs to stream data from relational databases. 
One noteworthy feature of OGSA-DQP is its 

ability to parallelise the execution of 
computationally expensive operations across 
available resources and to perform pipelined 
execution. This class of experiments, therefore, 
aims to identify the bottlenecks in the internal 
architecture by which the query evaluation is 
achieved, and to assess the impact of 
parallelism.  Two distinct categories of 
investigation are considered:

1. Investigating the most time consuming 
operations during the pipeline of processes 
involved in executing a query by profiling 
the OGSA-DQP code. 

2. Investigating the effect of parallelising the 
computationally intensive operations across 
available computational resources as and 
when they become available. 

Figure 7.  The query plan for the Scan-1 query. 
The shaded boxes indicate the costs at the 
corresponding part of the plan.
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3.1 An analysis of the OGSA-DQP processing 
cycle

The analysis is performed for the simple, 
complete scan of the protein_goterms database. 
The query plan generated for this query is given 
in Figure 7. Data is retrieved from one machine 
(with identifier 1 in the figure), and is sent to 
another one (with identifier 0), which is co-
located with the DQP GDQS. The plan is 
annotated at several places, with a number of 
costly operations identified as the key costs. 
Starting from the bottom where the 
TABLE_SCAN operator accesses the GDS, 
moving up to the root evaluator where the 
results are delivered to the GDQS those key 
costs are:

1. GDS Access Cost. This includes the cost 
of retrieving tuples in block from the GDS 
via the GDT port type and the processing 
cost of the returned XML blocks, which are 
in WebRowSet format. This cost is 
encapsulated in the cost of the 
TABLE_SCAN operator.

2. Data Transfer Cost. This is the cost of 
packaging and sending data from an 
evaluator lower in the query plan to a 
higher-level evaluator. It includes the block 
construction cost (because tuples are 
packaged into blocks before being sent to 
the receiving evaluator), the cost of 
calculating the size of a tuple, the cost of 
sending the block over the network and the 
cost of translating the blocks into tuples at 
the receiving evaluator. The last cost is 
included because the sending evaluator calls 
the receiving one synchronously, so it has to 
wait for the data translation to complete 
before the call returns. The data transfer cost 
is the cost of the producer thread of the 
EXCHANGE [5] operator in the query plan.

3. Data Translation Cost. This aims to 
measure the cost of unblocking the data 
packets at the receiving evaluator. Note that 
this is also included within the Data Transfer 
Cost. It related to the cost of the consumer 
thread of EXCHANGES.

4. Delivery Cost. This is the cost of 
sending data blocks from the root evaluator 
to the GDQS. Sending data blocks in this 
case is a service-to-service call over SOAP,  
from the root GQES to the GDQS.

These costs do not cover all the possible 
costs that contribute to the query response time, 
but other remaining costs, such as applying the 

PROJECT operator, adding and removing the 
tuples from the queues etc., are thought to be 
relatively negligible. 

OGSA-DQP source code has been 
instrumented to measure each of the costs 
above. The results are as follows:

The total response time is 28.6 seconds. The 
GDS block retrieval takes 9.6 secs and the XML 
WebRowSet processing (to unpack and map the 
tuples to the internal format of DQP) costs 5.5 
secs. Thus the GDS access cost is 15.1 secs. 

Data is transferred from the machine that is 
local to the database to the machine that 
receives the results in 26.8 secs, from which 4.8 
secs are spent for translation and 1sec for size 
computation.  The latter, is a CPU-intensive 
activity, and is used to determine the point at 
which a buffer is adequately filled to be sent 
across the network. The results are delivered to 
GDQS in 8.1 secs. 

If there were no pipelined parallelism the 
total response time would be the sum of all 
these costs, i.e., 50 secs instead of 28.6. 
However, this is not the case and some of the 
time slots have overlapping slices. For example, 
GDS Access is handled by a separate thread and 
therefore overlaps with the thread that calls the 
next() method on the local root (i.e., 
EXCHANGE) operator and all the other 
operators down to the TABLE_SCAN operator. 
Similarly, delivery to the GDQS happens 
simultaneously with the retrieval and translation 
of the incoming data blocks from the lower 
level evaluators in the consumer EXCHANGE. 

The profiling of this query has revealed 
another aspect of the negative effects of XML. 
Apart from the increase in the data volume that 
has to be transmitted over the network, which 
inevitably leads to a significant increase in the 
communication-related costs, XML-related 
processing seems to incur some CPU-related 
cost as well. This query was expected to have 
negligible CPU cost.  However, the cost to 
compute the size of buffers and parse and 
unpack XML blocks is responsible for approx. 
20% of the total cost of EXCHANGE, which is 
the bottleneck for this simple query. This 
happens despite the fact that, due to an earlier 
optimisation of the system, XML parsing in 
OGSA-DQP employs the SAX rather than the 
DOM model, which usually performs better for 
these sizes (e.g., [7]). 



3.2 The impact of parallelising expensive 
operations

One of the main claims of Grid DQP has 
been that it can parallelise expensive operations 
in a transparent way to the user thereby making 
it of practical interest for CPU-intensive 
applications [4]. In this way, multiple instances 
of the same operator in the query plan can 
applied to disjoint subsets of a relation or of 
intermediate results in the plan. This form of 
parallelism is usually called intra-operator or 
partitioned. In non-service-based Grid DQP, 
intra-operator parallelism has been shown to be 
capable of yielding performance improvements 
[9]. The last set of experiments deals with intra-
operator parallelism in the context of OGSA-
DQP.

For this experiment, an additional table from 
the OGSA-DQP demo databases, 
protein_sequences, has been used. The 
expensive operation to be parallelised is a call to 
the calculateEntropy method of the 
EntropyAnalyser Web Service, which is part 
of the publicly available OGSA-DQP demo, 
too.  In OGSA-DQP the OPERATION_CALL 
generic query operator handles calls to WSs. 
The test query is:

select p.ORF, go.id,     
calculateEntropy(p.sequence)
from protein_sequences p, 
goterms go, protein_goterms pg
where go.id=pg.GOTermIdentifier and
p.ORF=pg.ORF and 
pg.ORF like "YCL0\%" and 
go.id like "GO:0\%";

To test the effect of parallelising the 
OPERATION_CALL operator, two different 
parameters undergo variation. Firstly, the 
number of available evaluator nodes, which is 
equivalent to the number of machines available 
for the deployment of GQES instances that can 
invoke the web service, is not predefined as 
before but ranges from two to six machines.  
Secondly, the number of web service copies is 
increased by one for each run, from 1 to 6, to 
ensure that GQES instances increasingly invoke 
separate web service copies (rather than the 
same web service).  

Figure 8 illustrates the response times for an 
increasing number of service copies. Each bar 
group in the figure represents a particular 
service copy configuration, and indicates the 
change in response time with respect to the 
number of available evaluator nodes. For 

example, the leftmost group shows results for 1 
service copy for an increasing number of 
evaluators (i.e., the first bar indicates the 
response time when 1 evaluator invokes 1 
service, the second bar indicates the response 
time when 2 evaluators invoke 1 service, and so 
on). The optimal line links the lowest bar in 
each bar group, to denote the change in the 
lowest response time in each configuration. As 
can be seen, the best response time for each 
service copy configuration is obtained when the 
number of evaluator nodes equals the number of 
available service copies. In this case, each 
evaluator invokes exactly one service, leading 
to maximum effective concurrency. Overall, 
intra-operator parallelism can improve response 
times by several factors (2.25 in this example).

Figure 8. Comparison of operation_call cost for 
increasing number of available computational 
resources.

4. Conclusions 

Distributed Query Processing (DQP) is, in itself, 
a complex task, and DQP artefacts comprise 
many components and require several tens of 
thousands of lines of code. Especially when 
applied to new, emerging settings, such as 
service-oriented Grids, their behaviour may be 
hard to predict, and new types of bottlenecks 
may arise. OGSA-DQP is one of the first Grid 
DQP systems, and as such, it is desirable to 
investigate its performance and to conduct some 
profiling. To this end, several types of 
experiments were performed, which are 
described in this paper, along with their results 
and lessons learnt. 

The initial group of experiments tried to 
investigate the impact of the double service 
layer between the back-end database store and 
the OGSA-DQP clients. Retrieving data through 
services may slow down the tuple output rate by 
an order of magnitude. To mitigate these 
negative effects, tuples need to be retrieved in 
blocks so that messaging overheads are 
amortized across many tuples. However, 



beyond a certain point, further increases in the 
size of the block cause performance 
degradation. As a result of these experiments, 
the forthcoming release of OGSA-DQP will 
retrieve data from GDS-wrapped databases 
using the block aggregation functionality of 
OGSA-DAI (the block size will be ~100).

Another group of experiments allowed us to 
identify several points where considerable 
resource CPU was being consumed. In 
particular, parsing and unpacking of the 
incoming data blocks in XML and constructing 
the data blocks for retransmission appeared to 
be taking considerable amounts of time. This is 
an indirect way in which XML-based 
communication compromises the performance. 
In a more direct way, inserting XML tags in the 
raw data may result in a significant increase of 
the total data volume. To tackle this, OGSA-
DQP 2.0 has already moved towards the SAX 
rather than the DOM XML parsing model. In 
the future, alternative delivery mechanisms and 
formats that are provided by more recent 
OGSA-DAI distributions will be examined.

The experiments in the last group indicated 
that parallelising computationally expensive 
operations such as service calls to web services 
that perform relatively costly analysis on data, 
may significantly improve the performance. 
This observation suggests that providing 
multiple instances of the same service (or web 
services that transparently manage multiple 
processors) is an important prerequisite for 
high-performance Grids, when combined with 
the ability of higher level middleware services 
(such as OGSA-DQP) to utilize such services 
concurrently when they are available. The 
beneficial impact of this kind of parallelism is 
complemented by the pipelining execution, 
which can reduce query response time 
significantly by performing many operations 
concurrently.
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