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Abstract. A simple model that can be used for the representation of
certain workflows is a directed acyclic graph. Although many heuristics
have been proposed to schedule such graphs on heterogeneous environ-
ments, most of them assume accurate prediction of computation and
communication costs; this limits their direct applicability to a dynami-
cally changing environment, such as the Grid. To deal with this, run-time
rescheduling may be needed to improve application performance. This
paper presents a low-cost rescheduling policy, which considers reschedul-
ing at a few, carefully selected points in the execution. Yet, this policy
achieves performance results, which are comparable with those achieved
by a policy that dynamically attempts to reschedule before the execution
of every task.

1 Introduction

Many use cases of Grid computing relate to applications that require complex
workflows to be mapped onto a range of distributed resources. Although the
characteristics of workflows may vary, a simple approach to model a workflow
is by means of a directed acyclic graph (DAG) [8]. This model provides an easy
way of addressing the mapping problem; a schedule is built by assigning the
nodes (the term task is used interchangeably with the term node throughout the
paper) of the graph onto resources in a way that respects task dependences and
minimizes the overall execution time. In the general context of heterogeneous
distributed computing, a number of scheduling heuristics have been proposed
(see [13,16] for an extensive list of references). Typically, these heuristics assume
that accurate prediction is available for both the computation and the commu-
nication costs. However, in a real environment and even more in the Grid, it
is difficult to estimate accurately those values due to the dynamic characteris-
tics of the environment. Consequently, an initial schedule may be built using
inaccurate predictions; even though the schedule may be optimized with respect
to these predictions, real-time variations may affect the schedule’s performance
significantly.

An obvious response to changes that may occur at run-time is to reschedule,
or readjust the schedule dynamically, using additional information that becomes



available at run-time. In the context of the Grid, rescheduling of one kind or
the other has been considered by a number of projects, such as AppLeS [2,6],
Condor-G [7], Data Grid [9] and Nimrod-G [4, 5]. However, all these projects con-
sider the dynamic scheduling of sets of independent tasks. For DAG reschedul-
ing, a hybrid remapper based on list scheduling algorithms was proposed in [12].
Taking a static schedule as the input, the hybrid remapper uses the run-time
information that obtained from the execution of precedence nodes to make a
prediction for subsequent nodes that is used for remapping.

Generally speaking, rescheduling adds an extra overhead to the scheduling
and execution process. This may be related to the cost of reevaluating the sched-
ule as well as the cost of transferring tasks across machines (in this paper, we do
not consider pre-emptive policies at the task execution level). This cost may be
offset by gains in the execution of the schedule; however, what appears to give
an indication of a gain at a certain stage in the execution of a schedule (which
may trigger a rescheduling), may not be good later in the schedule. In this pa-
per, we attempt to strike a balance between the cost of rescheduling and the
performance of the schedule. We propose a novel, low-cost, rescheduling policy,
which improves the initial static schedule of a DAG, by considering only selec-
tive tasks for rescheduling based on measurable properties; as a result, we call
this policy Selective Rescheduling (SR). Based on preliminary simulation experi-
ments, this policy gives equally good performance with policies that consider for
rescheduling every task of the DAG, at a much lower cost; in our experiments,
SR considers less than 20% of the tasks of the DAG for rescheduling.

The remainder of this paper is organized as follows. Section 2 defines two
criteria to represent the robustness of a schedule, spare time and the slack. We
use these two criteria to make decisions for the Selective Rescheduling policy,
presented in Section 3. Section 4 evaluates the performance of the policy and,
finally, Section 5 concludes the paper.

2 Preliminaries

The model used in this paper to represent an application is the directed acyclic
graph (DAG), where nodes (or tasks) represent computation and edges represent
communication (data flow) between nodes. The DAG has a single entry node and
a single exit node. There is also a set of machines on which nodes can execute
(with a different execution cost on each machine) and which need different time
to transmit data. A machine can execute only one task at a time, and a task
cannot start execution until all data from its parent nodes is available. The
scheduling problem is to assign the tasks onto machines so that precedence
constraints are respected and the makespan is minimized. For an example, see
Figure 1, and parts (a), (b), and (c).

Previous work has attempted to characterize the robustness of a schedule; in
other words, how robust the schedule would be if variations in the estimates used
to build the schedule were to occur at run-time [1,3]. Although the robustness
metric might be useful in evaluating overall different schedules, it has little direct



value for our purposes; here, we wish to use specific criteria to select, at run-
time, particular tasks before the execution of which it would be beneficial to
reschedule. To achieve this, we build on and extend two fundamental quantities
that have been used to measure robustness; the spare time, and the slack of
a node. The spare time, computed between a pair of dependent nodes that
are either connected by an edge in the DAG (data dependence), or executed
successively on the same machine (machine dependence), shows what is the
maximal time that the source of dependence can execute without affecting the
start time of the sink of the dependence. The slack of a node is defined as the
minimum spare time on any path from this node to the exit node of the DAG.
This is the maximum delay that can be tolerated in the execution time of the
node without affecting the overall schedule length. If the slack of a node is zero,
the node is called critical; any delay on the execution time of this node will affect
the makespan of the application.

A formal definition and an example follow below; we note that the definitions
in [3] do not take into account the communication cost between data dependent
tasks, thereby limiting their applicability. Our definitions are augmented to take
into account communication.

2.1 Spare Time

Consider a schedule for a given DAG; the spare time between a node i and an
immediate successor j is defined as

SPGTGDAG(i,j) = ST(J) - DAT(Z,]),

where ST(j) is the expected start time of node j (on the machine where it has
been scheduled to), and DAT (i, 7) is the time that all the data required by node
j from node 4 will arrive on the machine where node j executes. To illustrate
this with an example, consider Figure 1 and the schedule in Figure 1(d) (derived
using the HEFT heuristic [16]). In this example, the finish time of task 4 is 32.5
and the data transfer time from task 4 (on machine 0) to task 7 (on machine
2) is 8 (4 * 2 = 8) time units, hence the arrival time of the data from task 4 to
task 7 is 40.5. The start time of task 7 is 45.5, therefore, the spare time between
task 4 and task 7 is 5. This is the maximal value that the finish time of task 4
can be delayed at machine 0 without changing the start time of task 7.

In addition, for tasks ¢ and j, which are adjacent in the execution order of a
particular machine (and task 7 executes first), the spare time is defined as

SpareSameMach(iaj) = ST(]) - FT(Z)J

where F'T(7) is the finish time of node ¢ in the given schedule. In Figure 1, for
example, task 3 finishes at time 28, and task 5 starts at time 29.5; both on
machine 2. The spare time between them is 1.5. In this case, if the execution
time of task 3 delays for no more than 1.5 , the start time of task 5 will not be
affected. However, one may notice that even a delay of less than 1.5 may cause



some delay in the start time of task 6; to take this into account, we introduce
one more parameter.

To represent the minimal spare time for each node, i.e., the maximal delay in
the execution of the node that will not affect the start time of any of its dependent
nodes (both on the DAG or on the machine), we introduce MinSpare, which is
defined as

MinSpare(i) = Vljnelgi Spare(i, j)
where D; is the set of the tasks that includes the immediate successors of
task ¢ in the DAG and the next task in the execution order of the machine
where task i is executed, and Spare(i, j) is the minimum of Sparepa (i, j) and

SparesameMach (7'7 .7) .

2.2 The Slack of a Node

In a similar way to the definition in [3], the slack of a node i is computed as
the minimum spare time on any path from this node to the exit node. This is
recursively computed, in an upwards fashion (i.e., starting from the exit node)
as follows:

Slack(i) = min (Slack(j) + Spare(i, j)).

VjeD;
The slack for the exit node is set equal to
Slack(iezit) = 0.

The slack of each task indicates the maximal value that can be added to
the execution time of this task without affecting the overall makespan of the
schedule. Considering again the example in Figure 1, the slack of node 8 is 0;
the slack of node 7 is also zero (computed as the slack of node 8 plus the spare
time between 7 and 8, which is zero). Node 5 has a spare time of 6 with node 7
and 9 with node 8 (its two immediate successors in the DAG and the machine
where it is executing); since the slack of both nodes 7 and 8 is 0, then the slack
of node 5 is 6. Indeed, this is the maximal time that the finish time of node 5
can be delayed without affecting the schedule’s makespan.

Clearly, if the execution of a task will start at a time which is greater than the
statically estimated starting time plus the slack, the overall makespan (assuming
the execution time of all other tasks that follow remains the same) will change.
Our rescheduling policy is based on this observation and will selectively apply
rescheduling based on the values of slack (and the spare time). This is presented
in the next section.

3 A Selective Rescheduling Policy

The key idea of the selective rescheduling policy is to evaluate, at run-time,
before each task starts execution, the starting time of each node against its
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Fig. 1. The schedule generated by the HEFT algorithm

estimated starting time in the static schedule and the slack (or the minimal
spare time) to make a decision for rescheduling. The input of this rescheduler
is a DAG, with its associated values, and a static schedule computed by any
scheduling algorithm. The objective of the policy is to optimize the makespan
of the schedule while minimizing the frequency of rescheduling attempts.

As the tasks of the DAG are executed, the rescheduler maintains two sched-
ules, S; and S>. S1 is based on the static construction of the schedule using
estimated values; Sa keeps track of what the schedule looked like for the tasks
that have been executed (i.e., it contains information about only the tasks that
have finished execution). Before each task (except the entry node) can start ex-



Input: an application graph G and a schedule S produced by an algorithm A

Selective rescheduling policy:
(1) Mark all tasks in S1 as unexecuted, Unezecuted|]
Sa < the real, post-execution schedule (initially empty)
(2) Compute for each task ¢ from Si, Slack(i) // (or MinSpare(t))
(3) While (Unezecuted|] is not empty)
t < first task in Si, which is in Unezecuted/]
m < the allocated machine for ¢ in schedule S;
if (t is not the entry task in G)
EST <+ the expected start time of ¢ in schedule S;
RST <« the real start time of ¢ on m in S
delay + RST - EST
if (delay > Slack(t)) // or (delay > MinSpare(t))
S1 «+ A(Unezecuted|], S2) // reschedule
compute MinSpare for all tasks in S1, also in Unezecuted[] // or Slack
t < first task in S1, which is in Unezecuted|]
m < the allocated machine for ¢ in schedule S;
endif
endif
execute task ¢t on machine m
Sy +— S U{(t,m)}
Unezecuted[] < Unezecutedf] \ t
endwhile

Fig. 2. The Selective Rescheduler.

ecution, its (real) start time can be considered as known. Comparing the start
time that was statically estimated in the construction of S; and the slack (or
the minimal spare time), a decision for rescheduling is taken. The algorithm will
proceed to a rescheduling action if any delay between the real and the expected
start time (in S1) of the task is greater than the value of the Slack (or, in a
variant of the policy, the MinSpare). This indicates that, in the first variant
(Slack), the makespan is expected to be affected, whereas, in the second vari-
ant, the start time of the successors of the current task will be affected (but
not necessarily the overall makespan). Once a rescheduling is decided, the set
of unexecuted tasks (and their associated information) and the already known
information about the tasks whose execution has been completed (stored in S3)
are fed to the scheduling algorithm used to build a new schedule, which is stored
in S;. The values of Slack (or MinSpare) are subsequently recomputed from Sj.

The policy is illustrated in Figure 2.



4 Simulation Results

4.1 The Setting

To evaluate the performance of our rescheduling policy, we simulated both vari-
ants of our rescheduling policy (i.e., based on spare time and the slack) using four
different DAG scheduling algorithms: Fastest Critical Path (FCP) [14], Dynamic
Level Scheduling (DLS) [15], Heterogeneous Earliest Finish Time (HEFT) [16]
and Levelized-Min Time (LMT) [10]. Each algorithm provides the initial static
schedule and is called again when the rescheduler decides to remap tasks.

We have evaluated, separately, the behaviour of our rescheduling policy with
each of the four different algorithms, both in terms of the performance of the final
schedule and in terms of the running time. We used randomly generated DAGs,
each consisting of 50 to 100 tasks, following the approach described in [17], and
we tried to schedule them on 3 to 8 machines (randomly chosen with equal
probability for each machine). The estimated execution of each task on each dif-
ferent machine is randomly generated from a uniform distribution in the interval
[50,100], while the communication-to-computation ratio (CCR) is randomly cho-
sen from the interval [0.1,1]. For the actual execution time of each task we adopt
the approach in [6], and we use the notion of Quality of Information (QolI). This
represents an upper bound on the percentage of error that the static estimate
may have with respect to the actual execution time. So, for example, a percent-
age error of 10% would indicate that the (simulated) run-time execution time of
a task will be within 10% (plus or minus) of the static estimate for the task. In
our experiments we consider an error of up to 50%.

4.2 Scheduling Performance

In order to evaluate the performance of our rescheduling policy, in terms of
optimising the length of the schedule produced, we implemented both the spare
time and the slack variants, and compared the schedule length they generate
with three other approaches; these are denoted by static, ideal, and always.
Static refers to the actual run-time performance of the original schedule (which
was constructed using the static performance estimates); that is, no change in
the original static schedule takes place at run-time. Ideal refers to a schedule,
which is built post mortem; that is, the schedule is built after the run-time
execution of each task is known. This serves as a reasonable lower bound to the
performance that rescheduling can achieve. Finally, always refers to a scheme
that re-schedules all remaining non-executed tasks each time a task is about to
start execution.

The results, for each of the four different algorithms considered, are shown in
Figure 3. We considered a Qol error percentage from 10% to 50 %. As expected,
larger values of the Qol error result in larger differences between the static and
the ideal. The values of the three different rescheduling approaches (i.e., always,
and the two variants of the policy proposed in this paper, slack, spare) are roughly
comparable. However, this is achieved at a significant benefit, since our policy
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Fig. 3. Average makespan (over 100 runs on randomly generated DAGs) for various
levels of Qol with four scheduling algorithms.

attempts to reschedule only in a relatively small number of cases rather than
always.

Another interesting remark from the figures is that rescheduling falls short of
what can be assumed to be the ideal time; this is in line with the results in [12].
The results also indicate that even for relatively high percentage errors, it is still
the behaviour of the scheduling algorithm chosen that has the highest impact
on the makespan.

4.3 Running Time

Although the three rescheduling approaches that were compared in the previous
section perform similarly, the approaches based on the policy proposed in this
paper (i.e., slack and spare) achieve the same result (with always) at a signifi-
cantly reduced cost. Table 1 shows the running time of each of the 3 approaches
averaged over 50 runs on DAGs of 50 tasks each, using QoI 20%, and scheduling
on 5 machines. It can be seen also that the two variants of our policy run at no
more than 25% of the time that is needed and attempt to reschedule tasks at no
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Fig. 4. Average running time (over 100 runs on randomly generated DAGs with fixed 5
machines) of four scheduling algorithms with dynamic scheduling and our rescheduling
policy.

more than 20% of the total number of tasks (note that always would attempt
to reschedule all the tasks except the entry node, hence the value 49). Figure 4
shows how the running time varies if DAGs having 10 to 50 nodes are used. It
can be seen that attempting to rescheduling always leads to faster increases in
the running time than our policy. It is worth noting that the slack variant is
slightly faster than the spare variant; this is because the slack is cumulative and
refers to the makespan of the schedule (as opposed to the spare time) and, as a
result, it will lead to fewer rescheduling attempts.

5 Conclusion

This paper presented a novel rescheduling policy for DAGs, which attempts to
reschedule selectively (hence, without incurring a high overhead), yet achiev-
ing results comparable with those obtained when rescheduling is attempted for
every task of the DAG. The approach is based on evaluating two metrics, the



Always Slack Spare

R.T. #R| R.T. #R| R.T. #R
FCP |345.77 49| 66.87 6.82| 74.28 7.83
DLS (699.33 49| 122.18 7.35| 126.23 7.95
LMT (528.23 49| 77.93 6.51| 97.15 8.41
HEFT|(357.40 49| 73.01 7.51| 86.20 8.86

Table 1. Average running time and number of times rescheduling is attempted for
each of three rescheduling approaches using four algorithms. The average is over 50
runs using randomly generated DAGs each with 50 tasks, Qol 20% and scheduling on
5 machines.

minimal spare time and the slack, and is general, in that it can be applied to
any scheduling algorithm.

Although there has been significant work in static scheduling heuristics, lim-
ited work exists in trying to understand how dynamic, run-time changes can af-
fect a statically predetermined schedule. The emergence of important use cases in
Grid computing, such as workflows, as well as new ideas and approaches related
to scheduling [11] are expected to motivate further and more elaborate research
into different aspects related to the management of run-time information.
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