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Abstract

Cloud computing provides services to potentially numerous remote users with diverse requirements. Al-
though predictable performance can be obtained through the provision of carefully delimited services,
it is straightforward to identify applications in which a cloud might usefully host services that support
the composition of more primitive analysis services or the evaluation of complex data analysis requests.
In such settings, a service provider must manage complex and unpredictable workloads. This paper
describes how utility functions can be used to make explicit the desirability of different workload evalu-
ation strategies, and how optimization can be used to select between such alternatives. The approach is
illustrated for workloads consisting of workflows or queries.

1 Introduction

Cloud computing essentially provides services; shared computational resources execute potentially diverse re-
quests on behalf of users who may have widely differing expectations. In such a setting, someplace in the
architecture, decisions have to be made as to which requests from which users are to be executed on which
computational resources, and when. From the perspective of the service provider, such decision making may be
eased through the provision of restrictive interfaces to cloud services, as discussed for cloud data services in the
Claremont Report on Database Research [1]:

Early cloud data services offer an API that is much more restricted than that of traditional database
systems, with a minimalist query language and limited consistency guarantees. This pushes more
programming burden on developers, but allows cloud providers to build more predictable services,
and to offer service level agreements that would be hard to provide for a full-function SQL data
service. More work and experience will be needed on several fronts to explore the continuum
between today’s early cloud data services and more full-functioned but probably less predictable
alternatives.

This paper explores part of this space, by describing an approach to workload execution that is applicable
to different types of workload and that takes account of: (i) the properties of the workload; (ii) the nature of the
service level agreement associated with user tasks; and (iii) competition for the use of finite, shared resources.
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Figure 1: High level architecture.

In so doing, we explore functionalities that in future may be supported within a cloud, rather than by layering
rich application functionality over lean cloud interfaces, as in Brantner ef al. [4].

Wherever services are provided, service users have expectations; Service Level Agreements (SLAs) make
explicit what expectations users can realistically place on a service provider [16], and may be associated with a
charging model that determines the remuneration associated with certain Qualities of Service (QoS). Whether
or not formal agreements are in place, decisions must nonetheless be made that influence the behaviors users
experience, and service providers must put in place mechanisms that make such decisions.

In this paper, we assume the abstract architecture illustrated in Figure 1, where an autonomic workload map-
per provides workload evaluation services implemented within a cloud. For the moment, we are non-specific
about the nature of these services, but in due course details will be provided about support for workloads con-
sisting of collections of queries or workflows. The autonomic workload mapper adaptively assigns tasks in the
workload to execution sites. Given some objective, such as to minimize total execution times or, more gener-
ally, to optimize for some QoS target (whether these objectives are imposed by an SLA or not), the autonomic
workload mapper must determine which tasks to assign to each of the available execution sites, revising the as-
signment during workload execution on the basis of feedback on the overall progress of the submitted requests.

In this paper, we investigate the use of utility functions [9] to make explicit the desirability of the state of a
system at a point in time. In essence, a utility function maps each possible state of a system to a common scale;
the scale may represent response times, numbers of QoS goals met, income based on some charging model
for the requests, etc. In this setting, it is the goal of the autonomic workload mapper to explore the space of
alternative mappings with a view to maximizing utility as measured by the utility function. We propose that
utility functions, combined with optimization algorithms that seek to maximize utility for a workload given
certain resources, may provide an effective paradigm for managing workload execution in cloud computing.

The remainder of this paper is structured as follows. Section 2 describes a methodology for developing
utility based autonomic workload execution. Sections 3 and 4 describe the application of the methodology to
workloads consisting of sets of workflows and queries, respectively. Section 5 presents some conclusions.

2 Utility Driven Workload Execution

When a utility-based approach is adopted, the following steps are followed by designers; instantiations of each
of these steps are detailed for workloads consisting of workflows and queries in Sections 3 and 4, respectively.

Utility Property Selection: Identify the property that it would be desirable to maximize — useful utility mea-
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sures may be cast in terms of response time, number of QoS targets met, profit, etc.

Utility Function Definition: Define a function Utility(w, a) that computes the utility of an assignment a of
tasks to execution sites for a workload w expressed in terms of the chosen property — for workload map-
ping, such a function can be expected to include expressions over variables v, that describe the environ-
ment and the assignment a that characterizes the mapping for the components of w from abstract requests
to tasks executing on specific execution sites.

Cost Model Development: Develop a cost model that predicts the performance of the workload given the in-
formation about the environment v, and assignment a, taking into account the costs associated with adap-
tations.

Representation Design: Design a representation for the assignment a of workload components to computa-
tional resources, where adaptations to the assignment can be cast as modifications to this representation.
For example, if a workload consists of a collection of tasks, then an assignment a of tasks to sites may be
represented as a vector v where each element v; represents task ¢, and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection: Select an optimization algorithm that, given values for ve, searches the
space of possible assignments a with a view to maximizing the utility function; one benefit of the utility-
based approach is that standard optimization algorithms can be used to explore the space of alternative
mappings. Note that one benefit of the methodology is that it decouples the problem of meeting certain
objectives under certain constraints into a modeling problem (i.e., to come up with a utility function) and
an optimization problem (where standard mathematical techniques can be used).

Control Loop Implementation: Implement an autonomic controller [8] that: monitors the progress of the
workload and/or properties of the environment of relevance to the utility function; analyses the monitored
information to identify possible problems or opportunities for adaptation; plans an alternative workload
execution strategy, by seeking to maximize Utility(w, a) in the context of the monitored values for v,;
and updates the workload execution strategy where planning has identified an assignment that is predicted
to increase utility.

Several researchers have reported the use of utility functions in autonomic computing, typically to support
systems management tasks (e.g. [19, 3]); to the best of our understanding this is the first attempt to provide a
methodology for the use of utility functions for adaptive workload execution.

3 Autonomic Workflow Execution

A cloud may host computational services in a specific domain; for example, the CARMEN e-Science cloud
provides a collection of data and analysis services for neuroscience, and applications are constructed using
workflow enactment engines hosted within the cloud [20]. In such a setting, autonomic workflow execution
must determine how best to map workflows to the resources provided by the cloud.

3.1 Problem Statement

A workload w consists of a set of workflow instances ¢, each of which consists of a collection of tasks, i.tasks,
and is evaluated through an allocation of tasks to a set of execution sites. The role of the autonomic workload
mapper is to adaptively assign the tasks to specific sites.

53



3.2 Methodology Application

The methodology from Section 2 can be applied in this example as follows.

Utility Property Selection: Two utility properties are considered here, namely response time and profit. In
practice, a single utility function is used by an autonomic workload mapper, but alternatives are shown
here to illustrate how the approach can be applied to address different system goals.

Utility Function Definition: A utility function is defined for each of the properties under consideration. For
response time we have:

Utility, " (w, a) = 1/(Siew PRTw (i, a;))

where, w is the set of workflows, a is a set of assignments for the workflows instances ¢ in w, a; is the
assignment for workflow instance ¢, and P RT,, estimates the predicted response time of the workflow for
the given assignment.

For profit we have:

Utilityl ™" (w, a) = Sicw(Income(i, a;) — FvaluationCost(i, a;))

where Income estimates the income that will be received as a result of evaluating ¢ using allocation a;,
and FvaluationCost(w, a) estimates the financial cost of the resources used to evaluate 4. In this utility
function, we assume that income is generated by evaluating workflows within a response time target, but
that an EvaluationCost is incurred for the use of the resources to evaluate the workflows. As the income
depends on the number of QoS targets met, which in turn depends on reponse time, the definition of
Income is defined in terms of PRT,,. In cloud computing, the evaluation cost could reflect the fact that
at times of low demand all requests can be evaluated using (inexpensive) resources within the cloud, but
that at times of high demand it may be necessary to purchase (expensive) cycles from another cloud in
order to meet QoS targets.

Cost Model Development: The cost model must implement PRT,,(i,a;); the predicted response time of a
workflow depends on the predicted execution times of each of the tasks on their assigned execution site,
the time taken to move data between execution sites, the other assignments of workflows in w, etc. The
description of a complete cost model is beyond the scope of this paper, but cost models for workflows
have been widely studied (e.g. [12, 18, 21]).

Representation Design: For each workflow instance ¢ € w, the assignment of the tasks i.tasks can be rep-
resented by a vector v where each element v; represents task ¢, and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection: The optimization algorithm seeks to maximize Utility(w, a) by exploring
the space of alternative assignments a. As the assignments are represented as collections of categorical
variables, each representing the assignment of a task to a specific execution site, an optimization algorithm
must be chosen for searching such discrete spaces (e.g. [2]).

Control Loop Implementation: In autonomic workflow management [13], there is a requirement to halt an
existing workflow, record information on the results produced to date, deploy the revised workflow in
such a way that it can make use of results produced to date, and continue with the evaluation.
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In practice, the utility functions described above prioritize different behaviors, and effective optimization
can be expected to yield results that reflect those priorities. For example, Utility®" (w, a) will always seek
the fastest available solution, even if this involves the use of costly computational resources. As a result,
Utz’lityfjmf ZAt(w, a) will typically yield response times that are slower than those obtained by Utility® (w, a),
as it will only use expensive resources when these are predicted to give net benefits when considered together
with the income they make possible. A detailed description of utility-based workflow execution in computa-
tional grids, including an experimental comparison of behaviors exhibited by different utility functions, is given
by Lee ef al. [12].

4 Autonomic Query Workload Execution

Early cloud data services are typically associated with fairly restrictive data access models with a view to en-
abling predictable behaviors, and do not provide full query evaluation [1]. However, more comprehensive data
access services could provide access either to arbitrary query evaluation capabilities or to parameterized queries,
thus giving rise to a requirement for query workload management, where collections of query evaluation re-
quests can be managed by [11]: (i) an admission controller, which seeks to identify and disallow access to
potentially problematic requests; (ii) a query scheduler, which determines when jobs are released from a queue
for execution; and (iii) an execution controller, which determines the level of resource allocated to queries while
they are executing. In this paper we discuss how utility functions can be used to direct the behavior of an ex-
ecution controller. In comparison with recent work on workload management, a utility-driven approach can
provide relatively fine-grained control over queries; for example, Krompass et al. [10] describe an execution
controller in which the actions carried out at query runtime are job-level (i.e., reprioritize, kill and resubmit),
whereas here the optimization makes global decisions (taking into account all the queries in the workload) that
adaptively determine the resource allocations of individual queries on the basis of (fine-grained, collected per
query) progress and load data.

4.1 Problem Statement

A workload w consists of a set of queries ¢ € w, each of which are evaluated on a collection of execution sites,
potentially exploiting both partitioned and pipelined parallelism. Each query is associated with a distribution
policy dp(g), of the form [v1,va, ..., v|g|], where 0 < v; < 1 and (Eglvi) € {0, 1} where |S| is the number of
available execution sites. If the sum of v; yields 1 then each v; represents the fraction of the workload that is to
be evaluated on the ith site using partitioned parallelism, and if the sum is O this represents the suspension of the
plan. Where v; is 0 for some ¢ this represents the fact that execution site ¢ is not being used for ¢. The role of the
autonomic workload mapper in Figure 1 is to adaptively compute distribution policies for each of the queries in
the workload.

4.2 Methodology Application
The methodology from Section 2 can be applied in this example as follows.

Utility Property Selection: Two utility properties are considered here, namely response time and number of
QoS targets met. In the second case, we assume that each query is associated with a response time target.

Utility Function Definition: A utility function is defined for each of the properties under consideration. For
response time we have:

UtilityfT(w, dp) - (1/Eq€wPRTq(Q7 dp(Q)))
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Figure 2: QoS Estimate for a target response time of 50.

where, w is the set of queries, dp is a distribution policy for the queries ¢ € w, and PRTj, estimates the
predicted response time of the query for the given distribution policy.

For quality of service we have:
Utility?® (w, a) = YgewQoS Estimate(q, dp(q))

where QoS Estimate(q, dp(q)) estimates the likelihood that the query will meet its QoS target using the
given distribution policy from its predicted response time PRTj,. In practice, QoS Estimate(q, dp(q))
can be modeled using a curve such as that illustrated in Figure 2, which gives a score near to 1 for all
queries estimated to be significantly within the target response time, and a score near to 0 for all queries
estimated to take significantly longer than their target response time [3].

Cost Model Development: The cost model must implement PRT,(q, dp(q)) for queries during their evalua-
tion, and can build on results on query progress monitors (e.g. [5, 7]).

Representation Design: For each query ¢ € w, the distribution policy can be represented by a vector v where
each element v; represents the fraction of the work for ¢ that is to be assigned to execution site 4.

Optimization Algorithm Selection: The optimization algorithm seeks to maximize the utility function by ex-
ploring the space of distribution policies dp. As the assignments are represented as fractions, each repre-
senting the portion of the work to be assigned to a specific execution site, an optimization technique must
be chosen for searching such spaces (e.g., sequential quadratic programming [6]).

Control Loop Implementation: The implementation of the control loop must be able to suspend an evaluating
query, relocate operator state to reflect changes to the distribution policy, and continue evaluation using
the updated plan. A full description of such a protocol is provided in the paper on Flux [17].

As an example of the behaviors exhibited by workflow execution management techniques, we have experi-
mentally evaluated several such techniques using a simulator of a parallel query evaluation engine [15]. Figure
3 shows results for five different strategies: No Adapt, in which no runtime adaptation takes place; Adapt 1 in
which workloads are managed using action based control strategies (i.e. if-then rules based on Flux [17]) that
seek to minimize response times by adapting whenever load imbalance is detected; Adapt 2 in which utility
functions are used to minimize response times, as in U tz‘lityfT; Adapt 3 in which Adapt 2 is applied only when
it is predicted that response time targets will be missed; and Adapt 4 in which which utility functions are used
to maximize the number of response time targets met, as in Utility?os. In this experiment, four queries each

containing a single join are submitted at the same time to a cluster containing /2 execution sites, where one
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Figure 3: Numbers of Quality of Service Targets met by adaptive techniques [15].

of the sites is subject to periodic interference from other jobs broadly half of the time. In the experiment, the
queries are associated with varying QoS targets (shown on the horizontal axis, with the more stringent targets to
the left), and the number of queries meeting their reponse time targets is illustrated on the vertical axis.

The following can be observed: (i) Where no runtime workload execution adaptation takes place, no queries
meet their QoS targets expressed in terms of response time. (ii) Queries managed by U tilityggos continue
to meet (some) stringent QoS targets where the other methods fail — this is because optimization selectively
discriminates against some queries where this is necessary to enable others to meet their targets. (iii) Queries
managed by UtilityfT meet more QoS targets than the action based strategies because the optimizer considers
the combined costs or benefits of collections of adaptations in a way that is not considered by the action-based
approaches. A broader and more detailed description of the approaches and associated experiments is provided
by Paton et al. [15]. For the purposes of this paper, we note that optimization based on a utility function that aims
to maximize the number of QoS targets met has been shown to out-perform action-based strategies and utility
based strategies that target different goals, thus illustrating how utility based techniques can target application
requirements.

5 Conclusion

This paper presents a utility-based approach for adaptive workload execution, and has illustrated its application
to workloads consisting of workflows or queries. Recent research that explicitly focuses on data intensive
cloud computing has addressed issues such as evaluation primitives (e.g. [14]) or the development of layered
architectures (e.g. [4]). However, results from many different parts of the database community may usefully be
revisited in the context of clouds; this paper considers workload management [11], and in particular the use of
utility functions for coordinating workload execution. In this setting, a utility-based approach has been shown
to be applicable to different types of workload, and utility-based techniques can be applied both to coordinate
adaptations at different granularities and to address context-specific optimization goals. These context-specific
goals allow utility functions to direct system behavior in a way that reflects the requirements of the contracts or
SLAs that are likely to be prominent in cloud computing.
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