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Abstract

Cloud computing provides services to potentially numerous remote users with diverse requirements. Al-

though predictable performance can be obtained through the provision of carefully delimited services,

it is straightforward to identify applications in which a cloud might usefully host services that support

the composition of more primitive analysis services or the evaluation of complex data analysis requests.

In such settings, a service provider must manage complex and unpredictable workloads. This paper

describes how utility functions can be used to make explicit the desirability of different workload evalu-

ation strategies, and how optimization can be used to select between such alternatives. The approach is

illustrated for workloads consisting of workflows or queries.

1 Introduction

Cloud computing essentially provides services; shared computational resources execute potentially diverse re-

quests on behalf of users who may have widely differing expectations. In such a setting, someplace in the

architecture, decisions have to be made as to which requests from which users are to be executed on which

computational resources, and when. From the perspective of the service provider, such decision making may be

eased through the provision of restrictive interfaces to cloud services, as discussed for cloud data services in the

Claremont Report on Database Research [1]:

Early cloud data services offer an API that is much more restricted than that of traditional database

systems, with a minimalist query language and limited consistency guarantees. This pushes more

programming burden on developers, but allows cloud providers to build more predictable services,

and to offer service level agreements that would be hard to provide for a full-function SQL data

service. More work and experience will be needed on several fronts to explore the continuum

between today’s early cloud data services and more full-functioned but probably less predictable

alternatives.

This paper explores part of this space, by describing an approach to workload execution that is applicable

to different types of workload and that takes account of: (i) the properties of the workload; (ii) the nature of the

service level agreement associated with user tasks; and (iii) competition for the use of finite, shared resources.
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Figure 1: High level architecture.

In so doing, we explore functionalities that in future may be supported within a cloud, rather than by layering

rich application functionality over lean cloud interfaces, as in Brantner et al. [4].

Wherever services are provided, service users have expectations; Service Level Agreements (SLAs) make

explicit what expectations users can realistically place on a service provider [16], and may be associated with a

charging model that determines the remuneration associated with certain Qualities of Service (QoS). Whether

or not formal agreements are in place, decisions must nonetheless be made that influence the behaviors users

experience, and service providers must put in place mechanisms that make such decisions.

In this paper, we assume the abstract architecture illustrated in Figure 1, where an autonomic workload map-

per provides workload evaluation services implemented within a cloud. For the moment, we are non-specific

about the nature of these services, but in due course details will be provided about support for workloads con-

sisting of collections of queries or workflows. The autonomic workload mapper adaptively assigns tasks in the

workload to execution sites. Given some objective, such as to minimize total execution times or, more gener-

ally, to optimize for some QoS target (whether these objectives are imposed by an SLA or not), the autonomic

workload mapper must determine which tasks to assign to each of the available execution sites, revising the as-

signment during workload execution on the basis of feedback on the overall progress of the submitted requests.

In this paper, we investigate the use of utility functions [9] to make explicit the desirability of the state of a

system at a point in time. In essence, a utility function maps each possible state of a system to a common scale;

the scale may represent response times, numbers of QoS goals met, income based on some charging model

for the requests, etc. In this setting, it is the goal of the autonomic workload mapper to explore the space of

alternative mappings with a view to maximizing utility as measured by the utility function. We propose that

utility functions, combined with optimization algorithms that seek to maximize utility for a workload given

certain resources, may provide an effective paradigm for managing workload execution in cloud computing.

The remainder of this paper is structured as follows. Section 2describes a methodology for developing

utility based autonomic workload execution. Sections 3and 4describe the application of the methodology to

workloads consisting of sets of workflows and queries, respectively. Section 5presents some conclusions.

2 Utility Driven Workload Execution

When a utility-based approach is adopted, the following steps are followed by designers; instantiations of each

of these steps are detailed for workloads consisting of workflows and queries in Sections 3and 4, respectively.

Utility Property Selection:Identify the property that it would be desirable to maximize –useful utility mea-
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sures may be cast in terms of response time, number of QoS targets met, profit, etc.

Utility Function Definition:Define a function Utility(w, a) that computes the utility of an assignment a of

tasks to execution sites for a workload w expressed in terms of the chosen property –for workload map-

ping, such a function can be expected to include expressions over variables ve that describe the environ-

ment and the assignment a that characterizes the mapping for the components of w from abstract requests

to tasks executing on specific execution sites.

Cost M odel Development:Develop a cost model that predicts the performance of the workload given the in-

formation about the environment ve and assignment a, taking into account the costs associated with adap-
tations.

Representation Design:Design a representation for the assignment a of workload components to computa-

tional resources, where adaptations to the assignment can be cast as modifications to this representation.

For example, if a workload consists of a collection of tasks, then an assignment a of tasks to sites may be

represented as a vector v where each element vi represents task i, and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection:Select an optimization algorithm that, given values for ve, searches the

space of possible assignments a with a view to maximizing the utility function; one benefit of the utility-

based approach is that standard optimization algorithms can be used to explore the space of alternative

mappings. Note that one benefit of the methodology is that it decouples the problem of meeting certain

objectives under certain constraints into a modeling problem (i.e., to come up with a utility function) and

an optimization problem (where standard mathematical techniques can be used).

Control Loop Implementation:Implement an autonomic controller [8] that: monitors the progress of the

workload and/or properties of the environment of relevance to the utility function; analyses the monitored

information to identify possible problems or opportunities for adaptation; plans an alternative workload

execution strategy, by seeking to maximize Utility(w, a) in the context of the monitored values for ve;

and updates the workload execution strategy where planning has identified an assignment that is predicted

to increase utility.

Several researchers have reported the use of utility functions in autonomic computing, typically to support

systems management tasks (e.g. [19, 3]); to the best of our understanding this is the first attempt to provide a

methodology for the use of utility functions for adaptive workload execution.

3 Autonomic WorkflowExecution

A cloud may host computational services in a specific domain; for example, the CARMEN e-Science cloud

provides a collection of data and analysis services for neuroscience, and applications are constructed using

workflow enactment engines hosted within the cloud [20]. In such a setting, autonomic workflow execution

must determine how best to map workflows to the resources provided by the cloud.

3.1 Problem Statement

A workload w consists of a set of workflow instances i, each of which consists of a collection of tasks, i.tasks,
and is evaluated through an allocation of tasks to a set of execution sites. The role of the autonomic workload

mapper is to adaptively assign the tasks to specific sites.
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3.2 Methodology Application

The methodology from Section 2can be applied in this example as follows.

Utility Property Selection:Two utility properties are considered here, namely response time and profit. In

practice, a single utility function is used by an autonomic workload mapper, but alternatives are shown

here to illustrate how the approach can be applied to address different system goals.

Utility Function Definition:A utility function is defined for each of the properties under consideration. For

response time we have:

UtilityR T
w (w, a) = 1/(Σi∈wP R T w(i, ai))

where, w is the set of workflows, a is a set of assignments for the workflows instances i in w, ai is the

assignment for workflow instance i, and P R T w estimates the predicted response time of the workflow for

the given assignment.

For profit we have:

UtilityP r o f it
w (w, a) = Σi∈w(I n co m e (i, ai)− E valu atio n C o st(i, ai))

where I n co m e estimates the income that will be received as a result of evaluating i using allocation ai,

and E valu atio n C o st(w, a) estimates the financial cost of the resources used to evaluate i. In this utility
function, we assume that income is generated by evaluating workflows within a response time target, but

that an E valu atio n C o st is incurred for the use of the resources to evaluate the workflows. As the income
depends on the number of QoS targets met, which in turn depends on reponse time, the definition of

I n co m e is defined in terms of P R T w. In cloud computing, the evaluation cost could reflect the fact that

at times of low demand all requests can be evaluated using (inexpensive) resources within the cloud, but

that at times of high demand it may be necessary to purchase (expensive) cycles from another cloud in

order to meet QoS targets.

Cost M odel Development:The cost model must implement P R T w(i, ai); the predicted response time of a

workflow depends on the predicted execution times of each of the tasks on their assigned execution site,

the time taken to move data between execution sites, the other assignments of workflows in w, etc. The
description of a complete cost model is beyond the scope of this paper, but cost models for workflows

have been widely studied (e.g. [12, 18, 21]).

Representation Design:For each workflow instance i ∈ w, the assignment of the tasks i.tasks can be rep-

resented by a vector v where each element vi represents task i, and each element value represents the

execution site to which the task is assigned.

Optimization Algorithm Selection:The optimization algorithm seeks to maximize Utility(w, a) by exploring
the space of alternative assignments a. As the assignments are represented as collections of categorical

variables, each representing the assignment of a task to a specific execution site, an optimization algorithm

must be chosen for searching such discrete spaces (e.g. [2]).

Control Loop Implementation:In autonomic workflow management [13], there is a requirement to halt an

existing workflow, record information on the results produced to date, deploy the revised workflow in

such a way that it can make use of results produced to date, and continue with the evaluation.
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In practice, the utility functions described above prioritize different behaviors, and effective optimization

can be expected to yield results that reflect those priorities. For example, UtilityR T
w (w, a) will always seek

the fastest available solution, even if this involves the use of costly computational resources. As a result,

UtilityP r o f it
w (w, a) will typically yield response times that are slower than those obtained by UtilityR T

w (w, a),
as it will only use expensive resources when these are predicted to give net benefits when considered together

with the income they make possible. A detailed description of utility-based workflow execution in computa-

tional grids, including an experimental comparison of behaviors exhibited by different utility functions, is given

by Lee et al. [12].

4 Autonomic Query Workload Execution

Early cloud data services are typically associated with fairly restrictive data access models with a view to en-

abling predictable behaviors, and do not provide full query evaluation [1]. However, more comprehensive data

access services could provide access either to arbitrary query evaluation capabilities or to parameterized queries,

thus giving rise to a requirement for query workload management, where collections of query evaluation re-

quests can be managed by [11]: (i) an admission controller, which seeks to identify and disallow access to

potentially problematic requests; (ii) a query scheduler, which determines when jobs are released from a queue

for execution; and (iii) an execution controller, which determines the level of resource allocated to queries while

they are executing. In this paper we discuss how utility functions can be used to direct the behavior of an ex-

ecution controller. In comparison with recent work on workload management, a utility-driven approach can

provide relatively fine-grained control over queries; for example, Krompass et al. [10] describe an execution

controller in which the actions carried out at query runtime are job-level (i.e., reprioritize, kill and resubmit),

whereas here the optimization makes global decisions (taking into account all the queries in the workload) that

adaptively determine the resource allocations of individual queries on the basis of (fine-grained, collected per

query) progress and load data.

4.1 Problem Statement

A workload w consists of a set of queries q ∈ w, each of which are evaluated on a collection of execution sites,
potentially exploiting both partitioned and pipelined parallelism. Each query is associated with a distribution

policy d p (q), of the form [v1, v2, . . . , v|S|], where 0 ≤ vi ≤ 1 and (Σ
|S|
i=1

vi) ∈ { 0, 1} where |S| is the number of
available execution sites. If the sum of vi yields 1 then each vi represents the fraction of the workload that is to

be evaluated on the ith site using partitioned parallelism, and if the sum is 0 this represents the suspension of the
plan. Where vi is 0 for some i this represents the fact that execution site i is not being used for q. The role of the
autonomic workload mapper in Figure 1 is to adaptively compute distribution policies for each of the queries in

the workload.

4.2 Methodology Application

The methodology from Section 2can be applied in this example as follows.

Utility Property Selection:Two utility properties are considered here, namely response time and number of

QoStargets met. In the second case, we assume that each query is associated with a response time target.

Utility Function Definition:A utility function is defined for each of the properties under consideration. For

response time we have:

UtilityR T
q (w, d p ) = (1/Σq∈wP R T q(q, d p (q)))
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Figure 2: Q o SE stim ate for a target response time of 50.

where, w is the set of queries, d p is a distribution policy for the queries q ∈ w, and P R T q estimates the

predicted response time of the query for the given distribution policy.

For quality of service we have:

UtilityQ o S
q (w, a) = Σq∈wQ o SE stim ate (q, d p (q))

where Q o SE stim ate (q, d p (q)) estimates the likelihood that the query will meet its QoS target using the
given distribution policy from its predicted response time P R T q. In practice, Q o SE stim ate (q, d p (q))
can be modeled using a curve such as that illustrated in Figure 2, which gives a score near to 1 for all

queries estimated to be significantly within the target response time, and a score near to 0 for all queries

estimated to take significantly longer than their target response time [3].

Cost M odel Development:The cost model must implement P R T q(q, d p (q)) for queries during their evalua-

tion, and can build on results on query progress monitors (e.g. [5, 7]).

Representation Design:For each query q ∈ w, the distribution policy can be represented by a vector v where

each element vi represents the fraction of the work for q that is to be assigned to execution site i.

Optimization Algorithm Selection:The optimization algorithm seeks to maximize the utility function by ex-

ploring the space of distribution policies d p . As the assignments are represented as fractions, each repre-
senting the portion of the work to be assigned to a specific execution site, an optimization technique must

be chosen for searching such spaces (e.g., sequential quadratic programming [6]).

Control Loop Implementation:The implementation of the control loop must be able to suspend an evaluating

query, relocate operator state to reflect changes to the distribution policy, and continue evaluation using

the updated plan. A full description of such a protocol is provided in the paper on Flux [17].

As an example of the behaviors exhibited by workflow execution management techniques, we have experi-

mentally evaluated several such techniques using a simulator of a parallel query evaluation engine [15]. Figure

3shows results for five different strategies: No Adapt, in which no runtime adaptation takes place; Adapt 1in

which workloads are managed using action based control strategies (i.e. if-then rules based on Flux [17]) that

seek to minimize response times by adapting whenever load imbalance is detected; Adapt 2in which utility

functions are used to minimize response times, as in UtilityR T
q ; Adapt 3in which Adapt 2is applied only when

it is predicted that response time targets will be missed; and Adapt 4in which which utility functions are used

to maximize the number of response time targets met, as in UtilityQ o S
q . In this experiment, four queries each

containing a single join are submitted at the same time to a cluster containing 12execution sites, where one
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Figure 3: Numbers of Quality of Service Targets met by adaptive techniques [15].

of the sites is subject to periodic interference from other jobs broadly half of the time. In the experiment, the

queries are associated with varying QoS targets (shown on the horizontal axis, with the more stringent targets to

the left), and the number of queries meeting their reponse time targets is illustrated on the vertical axis.

The following can be observed: (i) Where no runtime workload execution adaptation takes place, no queries

meet their QoS targets expressed in terms of response time. (ii) Queries managed by UtilityQ o S
q continue

to meet (some) stringent QoS targets where the other methods fail –this is because optimization selectively

discriminates against some queries where this is necessary to enable others to meet their targets. (iii) Queries

managed by UtilityR T
q meet more QoS targets than the action based strategies because the optimizer considers

the combined costs or benefits of collections of adaptations in a way that is not considered by the action-based

approaches. A broader and more detailed description of the approaches and associated experiments is provided

by Paton et al. [15]. For the purposes of this paper, we note that optimization based on a utility function that aims

to maximize the number of QoS targets met has been shown to out-perform action-based strategies and utility

based strategies that target different goals, thus illustrating how utility based techniques can target application

requirements.

5 Conclusion

This paper presents a utility-based approach for adaptive workload execution, and has illustrated its application

to workloads consisting of workflows or queries. Recent research that explicitly focuses on data intensive

cloud computing has addressed issues such as evaluation primitives (e.g. [14]) or the development of layered

architectures (e.g. [4]). However, results from many different parts of the database community may usefully be

revisited in the context of clouds; this paper considers workload management [11], and in particular the use of

utility functions for coordinating workload execution. In this setting, a utility-based approach has been shown

to be applicable to different types of workload, and utility-based techniques can be applied both to coordinate

adaptations at different granularities and to address context-specific optimization goals. These context-specific

goals allow utility functions to direct system behavior in a way that reflects the requirements of the contracts or

SLAs that are likely to be prominent in cloud computing.
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