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Abstract In wide-area database systems, which may be running on unpredictable
and volatile environments (such as computational grids), it is difficult to produce
efficient database query plans based on information available solely at compile
time. A solution to this problem is to exploit information that becomes available at
query runtime and adapt the query plan to changing conditions during execution.
This paper presents a survey on adaptive query processing techniques, examining
the opportunities they offer to modify a plan dynamically and classifying them
into categories according to the problem they focus on, their objectives, the nature
of feedback they collect from the environment, the frequency at which they can
adapt, their implementation environment and which component is responsible for
taking the adaptation decisions.

1 Introduction

In a distributed environment, statistical information about the available data sources
may be minimal, and the availability or load of physical resources is prone to changes.
Consequently, traditional query optimisation can lead to poor performance, especially
in long running query evaluations, as the query optimiser may not, at compile time, have
the necessary statistics, good selectivity estimates, knowledge of the runtime bindings
in the query, or knowledge of the available system resources required to produce an
optimal query plan (QP). In addition, traditional optimisers cannot predict the future
availability of resources. Adaptive (or dynamic) query processing (AQP) addresses this,
by adapting the QP to changing environmental conditions at runtime.

Current research on adaptive query processing follows two main directions. The first
approach responds to changes in the evaluation environment by modifying the execu-
tion plan at runtime (e.g. by changing the operators used or the order in which they are
evaluated). The other approach involves the development of operators that deal more
flexibly with unpredictable conditions and adapt their behaviour by collecting and tak-
ing into consideration information that becomes available at query runtime about how
query evaluation is proceeding and about changes in the wider execution environment.

A query processing system is defined to be adaptive in [11] if it receives informa-
tion from its environment and determines its behaviour according to that information in
an iterative manner, i.e. there is a feedback loop between the environment and the be-
haviour of the query processing system. In this survey, we assume a narrower definition,
in the sense that we restrict our attention to cases where the feedback loop produces ef-
fects during the execution of the query. If the effects of the feedback loop are deferred,
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then only subsequent queries, rather than the one that is running, can benefit from
the adaptive technique employed. This is less appealing for novel data management
tasks where systems are processing potentially very long running queries over multiple,
semi-autonomous sources on wide-area networks with unpredictable data transfer rates.
Broadly speaking, the need for adaptive query processing is emerging as query engines
are scaled and federated, so that they must cope with highly unpredictable and volatile
environments. If databases are to be integrated into the Grid [ 8], this need will become
even greater.

The remainder of the paper is structured as follows. Section 2 describes the classi-
fication criteria and the potential attributes of AQP. Sections 3 and 4 present existing
adaptive operators and algorithms respectively, followed by a discussion of general ob-
servations in Section 5. Section 6 concludes the paper.

Related Work: [11] presents the most relevant work to this survey. As mentioned above,
it examines systems that may produce different query plans at any time in the future, in
response to changes in the environment, while the present survey focuses on query pro-
cessing techniques that can adapt to changing conditions during execution time. Also,
[11] uses a very limited set of classification criteria. [14] extends this set by proposing
some dimensions over which AQP systems may differ. Other previous surveys on query
optimisation, like [10,12], include techniques that have a dynamic flavour, in the sense
that the QP they produce at compile time is not completely fixed, but such techniques
are not covered by the definition of adaptivity given earlier.

2 The Scope of the Survey

The query evaluator of a database management system (DBMS) comprises two main
sub-components: the query optimiser (QO) and the execution engine. The query op-
timiser generates the input for the execution engine. After a query is submitted, the
optimiser chooses one from many, logically equivalent, transformations of the query in
the form of algebraic expressions. These logical query plans are often represented as
logical operator trees. The most interesting characteristics of logical plans, with regard
to query optimisation, are the location of project and select operators, the operator order
and the tree shape.

A physical operator plan is derived from the logical one through the selection of
algorithms to implement each of the operators of the logical plan. In order to produce
the physical plan, decisions on whether to use indices or not, and whether to employ
pipelining instead of blocking operators, are also taken. In general, each logical plan
corresponds to many physical plans. Either cost models or heuristics are used to predict
the cheapest plan for execution.

In parallel and distributed DBMSs, partitioning and scheduling issues arise during
optimisation. A query plan can be divided into different sets of operators, called parti-
tions, in order to harness, to the greatest possible extent, the benefits of parallelism. The
query optimiser is responsible for deciding the number, the location, the kind, and how
partitions will be scheduled.

Existing AQP techniques differ over many dimensions, as they have impacts of
different kinds on the QP, they do not always share common goals and focus, and they



Adaptive Query Processing: A Survey 13

are applicable to different environments. Moreover, they may collect different feedback
and adapt with different frequency. These dimensions are discussed in the following
sections and provide the basis for the survey, which is summarised in Table 1.

2.1 Modifications in the Query Plan

Modifications to the query plan may occur at two levels: logical and physical. Mod-
ifications at the logical level (LL field in Table 1) may fall into one of the following
categories:

Reformulation of the remainder of the query plan, denoted in Table 1 by rem, when
the AQP techniques can produce a totally different logical subplan for the remain-
der of the query, introducing new logical operators, changing the operator order or
altering the tree shape.

Operator Reordering, denoted in Table 1 by op_or, when techniques can only change
the order of pre-defined logical operators. The two categories, rem and op_or, are
not mutually disjoint, as the extent of the effects of the techniques in the first cate-
gory is a superset of those in the second.

No effects, denoted in Table 1 by no, when the AQP methods, although they can mod-
ify a query during runtime, they do not modify their logical plan.

In this survey, three aspects of modifications to the query plan at the physical level,
which may be brought about by AQP techniques, are considered: effects on the physical
query plan, re-partitioning and re-scheduling. The impact of the dynamic techniques on
the physical query plan (PP field in Table 1) is of three kinds:

Usage of adaptive operators, in order to drive the adaptivity. In many cases, extended
variants of sort (sort), hash (hash), pipelining joins (PJ) and parallel operators
(parl) are used in order to enhance the query evaluator with the capability to adapt
dynamically to certain changes in the environment. For example, special physical
operators could be used to adapt to changes in memory availability, when these
changes happen during operator execution.

Operator Replacement, takes place when a particular physical operator can be re-
placed with a logically equivalent one at runtime in order to produce an optimised
QP. For example, a hash join may be replaced by an index join, if an index on the
joining attribute becomes available during runtime. As there are no restrictions on
the choices that can be made, the relevant category is marked as any in the relevant
field of Table 1.

No effects, if an AQP technique does not affect the physical plan at all. This is denoted
by no.

Although most of the techniques could be applied to parallel and distributed en-
vironments, a few of them deal with query re-partitioning (Par) and re-scheduling of
these partitions (Sch). An example of effects on the partitioning is when AQP allows
partitions to be joined together or split into many subpartitions at runtime. If AQP is
designed in such a way that it can explicitly modify the partitioning of a QP running in
a parallel or distributed environment, then the relevant value in Table 1 is yes. More-
over, some techniques invoke the query optimiser during query execution and, in that
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way, they may modify the partitioning, provided that they are applied to a parallel or
distributed setting (denoted as maybe in Table 1).

The scheduling of the query plan is modified when an operation in execution is
moved to another node, the number of execution nodes changes during execution, or the
relative input rates for these nodes is adjusted in order to achieve optimal performance.
In wide-area systems, it is also desirable to have the capability to replace a source
if it fails, and to postpone the decisions on which node to execute some operations
until runtime. Finally the amount of data allocated to each participating node, can be
controlled in order to achieve load balance. In all the above cases the scheduling is
affected. The semantics of the relevant field in Table 1 is the same as for partitioning.

2.2 Characteristics of Adaptive Query Processing Techniques

AQP methods vary significantly in what they attempt to adapt to. There are six main
different areas of focus, as shown in the Focus field:

Fluctuations in memory (mem_fl). Systems in this category try to adapt to memory
shortages and to the availability of excess memory. Memory shortages can happen
due to competition from higher-priority transactions, for example. In that case, run-
ning query plans may be forced to release some or all of the resources they hold.
On the other hand, executing transactions may be given additional resources as they
become available, when, e.g., other queries complete and free their buffers.

User preferences (user_pr). Adapting to user preferences includes cases where users
are interested in obtaining some partial results of the query quickly. In order to meet
such needs, the system produces results incrementally, as they become available,
and the user can tradeoff the time between successive updates of the running queries
and the amount by which the partial and the actual results differ at each update. The
user can also classify the elements of the output in terms of importance, and in that
case the query evaluator adapts its behaviour in order to produce more important
results earlier.

Data arrival rates (dar). Techniques that adapt to data arrival rates apply to parallel
and distributed systems, where the response times of remote data sources are less
predictable.

Actual statistics (ac_stats) about the data sources which are not available initially. In
some cases, it is not possible at compile time to gather accurate statistics about the
data sources. A solution to this problem is to collect such statistical information at
runtime, thereby ensuring that they are valid for the current circumstances, and to
adapt query execution based on it. Techniques that adopt this policy may change
the query plan when the actual statistics have become available.

Fluctuations in performance (per_fl). Problems in performance fluctuation arise more
often in parallel systems. In these systems, performance can degrade when even a
single node experiences poor data layout on disks, high memory and CPU load, or
competing data streams.

Any changes in the environment (any) combine elements of all the other categories.
Some techniques are comprehensive, as they can adapt to many kinds of changes
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in their environment, i.e. to computer resources, like memory and processor avail-
ability, and to data characteristics, like operator costs, selectivities and data arrival
rates.

The aim of adaptive techniques may also differ. More specifically, AQP may aim at:

Minimising the total response time (trt) for a single evaluation. It is important to note
that many AQP techniques use specific operators in order to achieve adaptivity.
Adaptive operators perform better than static ones when there are changes in the
environment. However, if all the parameters of the query are known at compile time
and do not change during execution, a static QP may result in better response times.

Minimising the initial response time (irt). Some systems are mostly interested in min-
imising the time until useful information is returned to the user, according to his or
her preferences. These systems are optimised to produce more, or more important,
results during the early stages of the execution.

Maximising the throughput (thr) of the system. Some AQP techniques aim at min-
imising the total response time for the evaluation of a set of independent operations.
Apparently, there is an interplay between the techniques of the last two categories.
E.g., if there is only one operation to be evaluated, they share exactly the same ob-
jective. This is only one of the many possible ways that techniques described in the
survey can interfere with each other.

Another characteristic of AQP techniques is the nature of the feedback (FN) they
collect from the environment in order to examine whether there is scope for adaptation
of the QP. Different kinds of feedback include:

– memory availability (mem_av),
– potential input from the user (user_in), such as priority ratings for different parts of

the result or for the rate of updates of partial results,
– input availability (in_av), which is relevant to operators that may have one or more

of their inputs blocked and need to check whether delayed inputs have become
available,

– workload (l),
– data rates (dr), i.e. the rates at which tuples are produced, and
– statistical information (stats), other than those covered by the above categories, e.g.

the size of each relation, the approximate number and frequency of different values
for an attribute, the availability of indices, the layout of the data on disk, lists of
replicated databases, etc.

For the frequency of feedback collection (FFC), there are two possible values:

– inter-operator (inter), and
– intra-operator (intra) frequency.

Techniques in the first category collect and may act on feedback between the execu-
tion of different physical operators in the QP. Collection can be triggered after certain
physical operators have been evaluated or after special events, like the arrival of partial
results from local data sources in multidatabase environments. In techniques adapting
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with intra-operator frequency, feedback is collected during the evaluation of physical
operators. Check-points are added to the operator execution for this purpose. In gen-
eral, feedback is collected after a block of tuples has been processed. In the limit, this
block consists of a single tuple, resulting in a potentially different plan for each tuple.

Techniques differ in whether they have been designed for

– uniprocessor (U),
– parallel (P), or
– distributed (D) environments,

as shown in the Env field of Table 1. This does not mean that a technique initially de-
veloped on a single processor platform cannot be applied to a parallel or distributed
setting, rather it is used to indicate that the developers may not have taken into con-
sideration some of the specific problems that arise in such settings. For example, for
a QP to be optimal in a distributed environment, statistical information about network
cost, replicated data sources and the available nodes is required, along with commonly
available statistics which underpin good models at least for uniprocessor systems. Such
statistics typically include selectivities, histograms and indices among others. The main
difference between distributed and parallel DBMSs is that the former are constructed
by a collection of independent, semi-autonomous processing sites that are connected
via a network that could be spread over a large geographic area, whereas the latter are
tightly coupled systems controlling multiple processors that are in the same location,
usually in the same machine room [12].

The responsibility for adaptivity decisions (AD) may also be assigned differently.
Such decisions can be taken:

by the physical operators (O), when physical operators are implemented in such a
way that they can adapt their behaviour during runtime without being invoked by
any other DBMS component or optimiser;

locally (L), if the query optimiser, or any other DBMS component, takes action dur-
ing runtime to ensure that the remainder of the query plan will be evaluated in an
optimal manner;

globally (G), which applies to parallel and distributed systems when a global view of
the state of many participating nodes may be required, in order to adapt.

The last criterion used in this survey is whether a technique is realised as a physi-
cal operator (O), a concrete algorithm (A), or a system (S). In the first case, the whole
technique can be represented in the physical query plan as a single physical operator.
A technique is classified as an algorithm, if it implies extension and specific manipula-
tion of the operators of a QP, in order to achieve adaptivity. A system comprises many
autonomous techniques in an integrated computational entity.

3 Adaptive Query Operators

This section describes query operators which have the capability to adjust their be-
haviour according to changing conditions and the information available at runtime.
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Adaptive operators continuously collect and evaluate the feedback from the environ-
ment. They act autonomously in order to adapt to changes but have limited effects on
the executing QP, as they cannot perform radical changes to it. Additionally, as they are
basically developed for uni-processor environments, they do not consider partitioning
and scheduling issues.

Table 1. Properties of existing adaptive query processing techniques

Technique LL PP Par Sch Focus Aim FN FFC Env AD real.
Memory
Adaptive
Sorting [19]

no sort no no mem_fl trt mem_av intra U O O

Memory
Adaptive
Merge-Sort
[27]

no sort no no mem_fl thr mem_av intra U O A

PPHJ [20] no hash no no mem_fl trt mem_av intra U O O
Ripple [9] no PJ no no user_pr irt user_in intra U O O
XJoin [24] no PJ no no dar/

user_pr
trt -
irt

in_av intra U O O

Dynamic Re-
ordering [23]

no sort no no user_pr irt user_in intra U O O

Mid-
Query Re-
optimisation
[15]

rem any may-
be

may-
be

ac_stats trt stats inter U L A

Eddies [4,5] op_or no no no any trt stats intra U L A
Rivers [3] no parl no yes per_fl trt l/dr intra P O A
MIND [18] op_or any no yes ac_stats trt stats inter D G A
Query Scram-
bling[1,2,26]

rem any no no dar trt in_av inter D G A

Pipeline
Scheduler
[25]

op_or PJ no no user_pr irt dr/
user_in

intra D O A

Bouganim et
al [6,7]

rem PJ may-
be

may-
be

dar/
mem_fl

trt dr/
mem_av

intra D O/G A

Conquest
[16,17]

rem any yes yes any trt stats inter P G A

Tukwila
[13,14]

rem PJ may-
be

yes any trt -
irt

stats inter D O/G S

Telegraph
[11]

op_or parl no yes any trt stats/
l/dr

intra D O/L S

dQUOB
[21,22]

op_or no no no ac_stats trt stats inter D L A
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3.1 Memory Adaptive Sorting and Hash Join

[19] introduces techniques that enable external sorting to adapt to fluctuations in mem-
ory availability. External sorting requires many buffers to run efficiently, and memory
management significantly affects the overall performance. The memory-change adapta-
tion strategy introduced is dynamic splitting, which adjusts the buffer usage of external
sorts to reduce the performance penalty resulting from memory shortages and to take
advantage of excess memory. It achieves that by splitting the merge step of external sorts
into a number of sub-steps in case of memory shortage, and by combining sub-steps into
larger steps when sufficient buffers are available. Alternative strategies, like paging and
suspension, are non-adaptive and yield poor results [ 19]. Adopting memory-adaptive
physical operators for sort operations avoids potential under-utilisation of memory re-
sources (e.g. when memory reserved prior to execution based on estimates is in fact
more than the memory required) or thrashing (e.g. when memory reserved prior to ex-
ecution is in fact less than the memory required), and thus reduces the time needed for
query evaluation. This technique is complementary to existing optimised strategies for
the split phase of external sorts. In the same way, new memory-adaptive variants of
merge-sort operators can also be developed.

For join execution, when the amount of memory changes during its lifetime, a fam-
ily of memory adaptive hash joins, called partially preemptible hash joins (PPHJs), is
proposed in [20]. Initially, source relations are split and held in memory. When memory
is insufficient, one partition held in memory flushes its hash table to disk and deallocates
all but one of its buffer pages. The most efficient variant of PPHJs for utilising additional
memory is when partitions of the inner relation are fetched in memory while the outer
relation is being scanned and partitioned. This method reduces I/O and, consequently,
the total response time of the query. Although it cannot adapt very well to rapid mem-
ory fluctuations, it outperforms non-memory-adaptive hybrid hash joins, which employ
strategies, such as paging and suspension.

3.2 Operators for Producing Partial Results Quickly

In many applications, such as online aggregation, it is useful for the user to have the
most important results produced earlier. To this end, pipelining algorithms are used for
the implementation of join and sort operations. The other kind of operators are block
ones, which produce output after they have received and processed the whole of their
inputs.

Ripple joins [9] are a family of physical pipelining join operators that maximise the
flow of statistical information during processing. They generalise block nested loops
(in the sense that the roles of inner and outer relation are continually interchanged dur-
ing processing) and hash joins. Ripple joins adapt their behaviour during processing
according to statistical properties of the data, and user preferences about the accuracy
of the partial result and the time between updates of the running aggregate. Given these
user preferences, they adaptively set the rate by which they retrieve tuples from each
input of the ripple join. The ratio of the two rates is reevaluated after a block of tuples
has been processed.
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XJoin [24] is a variant of Ripple joins. It is an operator with low memory require-
ments (due to partitioning of the inputs), so many such operators can be active in
parallel. Apart from producing initial results quickly, XJoin is also optimised to hide
intermittent delays in data arrival from slow and bursty remote sources by reactively
scheduling background processing. XJoin executes in three stages: Initially, it builds
two hash tables, one for each source. In the first stage, a tuple, which may reside on
disk or memory, is inserted into the hash table for that input upon arrival, and then is
immediately used to probe the hash table of the other input. A result tuple will be pro-
duced as soon as a match is found. The second stage is activated when the first stage
blocks and it is used for producing tuples during delays. Tuples from the disk are then
used to produce some part of the result, if the expected amount of tuples generated is
above a certain activation threshold. The last stage is a clean-up stage as the first two
stages may only partially produce the final result. In order to prevent the creation of
duplicates, special lists storing specific time-stamps are used.

To obtain and process the most important data earlier, a sort-like re-ordering oper-
ator is proposed in [23]. It is a pipelining dynamic user-controllable reorder operator
that takes an unordered set of data and produces a nearly sorted result according to user
preferences (which can change during runtime) in an attempt to ensure that interesting
items are processed first; it is a best-effort operator. The mechanism tries to allocate as
many interesting items as possible in main memory buffers. When consumers request
an item, it decides which item to process (i.e. it uses a pull model). The operator uses
the two-phase Prefetch & Spool technique: in the first phase tuples are scanned, and
uninteresting data are spoooled to an auxiliary space until input is fully consumed. In
the second phase the data from the auxiliary space are read.

4 Algorithms and Systems for Adaptive Query Processing

4.1 Extensions to Adaptive Operators

A work on memory-adaptive sorting, which is complementary to [ 19] as discussed in
Section 3.1, is presented in [27]. This method focuses on improving throughput by
allowing many sorts to run concurrently, while the former focuses on improving the
query response time. Because it depends on the sort size distribution, in general, lim-
iting the number of sorts running concurrently can improve both the throughput and
the response time. The method proposed enables sorts to adapt to the actual input size
and changes in available memory space. For the purpose of memory adjustment, all the
possible stages of a sort operation regarding memory usage are identified and priori-
tised. The operations may be placed in a wait queue because of insufficient memory
in the system. Priority ratings are assigned to the wait queues as well. When memory
becomes available, the sorts in the queue with the highest priority are processed first.
A detailed memory adjustment policy is responsible for deciding whether a sort should
wait or proceed with its current workspace. If it is decided to wait, further decisions on
which queue to enter, and whether to stay in the current queue or to move to another,
are made. Like [19], [27] has impact only on the physical query plan and adapts with
intra-operator frequency.
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The method in [25] for quicker delivery of initial results in pipelined query plans
extends Ripple joins [9] and XJoin [24] with the capability to re-order join operators
of the QP. Instead of scheduling operators, the Dynamic Pipeline Scheduler splits them
into independent units of execution, called streams, and then schedules these streams.
This reduces the initial response time of the query but may result in increases in the
total execution time.

The Dynamic Pipeline Scheduler consists of two algorithms. In the rate-based
pipeline scheduling algorithm, all result tuples have the same importance. The algo-
rithm maximises the result output rate by prioritising and scheduling the flow of data
across pipelined operators. Characteristics of the operators, such as cost and productiv-
ity, can be dynamically changed (due to blocked inputs, finished operators, etc). Pro-
ductivity differs from selectivity in that selectivity describes how many tuples will even-
tually be produced, whereas productivity describes how many tuples will be produced
at that point in the execution [25]. In the importance-based tuple regulation algorithm,
the result tuples have different degrees of importance (according to the user) and the
algorithm allocates more resources to the more important tuples. For the importance-
rated algorithm, dynamic collection of query statistics is necessary. So, this algorithm
needs to be combined with another technique that enables the collection of necessary
statistics at runtime. The scheduling policy is modified on the fly in light of changes in
system behaviour. Ideally, the output rates should be recomputed every time a tuple is
processed by a stream, but, in fact, the scheduler is invoked less often in order to avoid
large overheads.

4.2 Algorithms that Adapt to Data Arrival Rates

In the light of data arrival delays, a common approach is to minimise idle time by
performing other useful operations, thus attenuating the effect of such delays. Query
Scrambling [1,2,26] and a generic AQP architecture discussed in [6,7] are two repre-
sentative examples in this area.

Query scrambling focuses on problems incurred by delays in receiving the first tu-
ples from a remote data source. The system performs other useful work in the hope that
the problem will eventually be resolved and the requested data will arrive at or near the
expected rate from then on. In the first phase, it changes the execution order to avoid
idling (which is always beneficial) following a specific procedure, and, in the second,
it introduces new operations in the QP, which is risky. In query scrambling, there is a
trade-off between the potential benefit of modifying the QP on the fly and the risk of
increasing the total response time instead of reducing it.

[6,7] deal also with the problem of unpredictable data arrival rates, and, addition-
ally, with the problem of memory limitation in the context of data integration systems.
A general hierarchical dynamic query processing architecture is proposed. Planning and
execution phases are interleaved in order to respond in a timely manner to delays. The
query plan is adjusted to the data arrival rate and memory consumption. In a sub-optimal
query plan, the operator ordering can be modified or the whole plan can be re-optimised,
by introducing new operators and/or altering the tree shape. In general, operators that
may incur large CPU idle times are pushed down the tree. Scheduling such operators as
soon as possible increases the possibility that some other work is available to schedule
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concurrently if they experience delays. Bushy trees are also preferred because they offer
the best opportunities to minimise the size of intermediate results. Thus, in case of par-
tial materialisation, the overhead remains low. The query response time is reduced by
running concurrently several query fragments (with selection and ordering being based
on heuristics) and partial materialisation is used, as mentioned above. Because materi-
alisation may increase the total response time, a benefit materialisation indicator (bmi)
and a benefit materialisation threshold (bmt) are used. A bmi gives an approximate in-
dication of the profitability of materialisation and the bmt is its minimum acceptable
value.

4.3 Algorithms that Defer Some Optimisation Decisions until Runtime

To ensure optimality in query evaluation, algorithms may wait until they have collected
statistics derived from the generation of intermediate results thus far.

Kabra and deWitt [15] introduced an algorithm that detects sub-optimality in QPs at
runtime, through on-the-fly collection of query statistics, and improves performance by
either reallocating resources such as memory or by modifying the QP. This method aims
to combat the problem of constructing QPs based on inaccurate initial statistical esti-
mates about the data sources. To this end, a new operator, called the statistics collector
operator, is used. The re-optimisation algorithm is heuristics-based and relies heavily
on intermediate data materialisation. The statistics collector insertion algorithm inserts
statistics collector operators, ensuring that these do not slow down the query by more
than a specific fraction, and also assigns a potential inaccuracy level of low, medium, or
high to the various estimates. So, overhead is taken into consideration and only statistics
that can affect the remainder of the QP are collected.

The MIND system [18] uses a similar approach to address the problem of where to
perform combination operations on partial results of a global query returned by local
DBMSs in a multidatabase system. Due to the fact that useful statistics about these
results are difficult for a static optimiser to estimate, decisions on where to execute
operations on data that reside at remote sources are deferred until the arrival of the
actual partial results. The decisions are based on both the selectivities and the cost
involved.

dQUOB conceptualises streaming data with a relational data model, thus allow-
ing the stream to be manipulated through SQL queries [21,22]. For query execution,
runtime components embedded into data streams are employed. Such components are
called quoblets. Detection of changes in data stream behaviour is accomplished by a
statistical sampling algorithm that runs periodically and gathers statistical information
about the selectivities of the operators into an equi-depth histogram. Based on this in-
formation, the system can reorder the select operators on the fly.

4.4 The Telegraph Project

The Telegraph project [11] combines River [3] with Eddies [4,5] to yield an adaptive
dataflow system. Thus, unpredictable dataflows can be routed through computing re-
sources in a network, resulting in a steady manageable stream of useful information. A
dataflow engine is an execution environment that moves large amounts of data through
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a number of operators running on an arbitrary number of machines. Such an engine is
a database query processing system. Eddies can reshape dataflow graphs for each tuple
they receive to maximise performance, while rivers are responsible for load balance
across multiple nodes.

More specifically, Eddies is a query processing mechanism that continuously (i.e.,
for each tuple) reorders operators on the fly in order to adapt dynamically to changes
in computing resources (e.g., memory) and data characteristics (operator costs, opera-
tor selectivities, and rates at which tuples arrive from the inputs), provided that these
operators are pipelined [4,5]. Although current work focuses on uniprocessor environ-
ments, Eddies can be exploited in large federated databases. In order to insert Eddies in
a query plan, joins should allow frequent and efficient reoptimisation. Such joins have
frequent moments of symmetry, adaptive or non-existent synchronisation barriers, and
minimal ordering constraints. A moment of symmetry is a state in which the orders of
the inputs to a binary operator can be changed without modifying any state in this op-
erator. A synchronisation barrier occurs when an input of a binary operator waits until
the other input produces a specific tuple. Joins that are appropriate for Eddies include
Ripple joins, pipelined hash join, Xjoin, and index joins, with the Ripple join family
being the most efficient.

A River [3] is a dataflow programming environment and I/O substrate for clusters
of computers to provide maximum performance even in the face of performance hetero-
geneity. In intra-operator parallelism, data is partitioned to be processed among system
nodes. The two main innovations in a River are distributed queues (DQ) and graduated
declustering (GD), which enable the system to provide data partitioning that adapts to
changes in production and consumption nodes. DQs are responsible for naturally bal-
ancing load across consumers running at different rates. GD is used for full-bandwidth
balanced production, with the effect that all available bandwidth is utilised at all times,
and all producers of a given data set complete near-simultaneously. While GD is trans-
parent to programmers resulting in new ready-to-use physical operators, DQs need to
be added to the operator interface manually.

4.5 Adaptive Query Processing in High-Performance Systems

AQP engines are an integral part of high-performance data mining and data integration
systems, like Conquest [16,17] and Tukwila [13,14], respectively.

The Conquest query processing system enables dynamic query optimisation in a
parallel environment for long-running queries following a triggering approach in re-
sponse to runtime changes [16,17]. Changes relate to system parameters (e.g., new pro-
cessors become available, while others may be withdrawn), and data characteristics
relevant to query statistics (e.g., a buffer queue becomes empty, or selectivity is higher
than initially estimated). Such changes make the re-computation of cost estimates nec-
essary. The capabilities of Conquest for modifying a QP are very strong, especially in
terms of partition scheduling, but are limited to unary operators, such as scans. Sys-
tems that can modify the remainder of a QP use materialisation techniques in order to
capture and restore the intermediate state of the operators and executions. One partial
exception to this is the Conquest System, which may only require the buffered records
to be materialised before reconfiguring the operators.
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The Tukwila [13,14] project is a data integration system in which queries are posed
across multiple, autonomous and heterogeneous sources. Tukwila attempts to address
the challenges of generating and executing plans efficiently with little knowledge and
variable network conditions. The adaptivity of the system lies in the fact that it inter-
leaves planning and execution and uses adaptive operators. Coordination is achieved
by event-condition-action rules. Possible actions include operator reordering, operator
replacement and re-optimisation of the remainder of a QP. The Tukwila system inte-
grates adaptive techniques proposed in [15,26]. Re-optimisation is based on pipelined
units of execution. At the boundaries of such units, the pipeline is broken and partial
results are materialised. The main difference from [15] is that materialisation points can
be dynamically chosen by the optimiser (e.g., when the system runs out of memory).
Tukwila’s adaptive operators adjust their behaviour to data transfer rates and memory
requirements. A collector operator is also used, which is activated when a data source
fails so as to switch to an alternative data source.

5 Discussion

In general and according to results from evaluation of prototypes, AQP techniques often
attain their goal of decreasing the response time of a query in the presence of changes in
the parameters they consider, or of delivering useful results as early as possible. How-
ever, in AQP, there is always a trade-off between the potential benefits from adapting to
current conditions on the fly with very high frequency, and the risk of incurring large
overheads.

The techniques that have more extensive capabilities in terms of the modifications
they can induce in the running plan, are more expensive and risky than the others. Be-
fore applying such techniques, certain steps need to be taken (e.g., validation against
a cost model) to ensure that adaptation is likely to be beneficial. These techniques are
mostly applicable to parallel and distributed settings, taking the adaptivity decisions at
a global level and relying heavily on the materialisation of intermediate results. This
happens because in parallel and distributed settings, network costs and resource avail-
ability need to be taken into consideration, and not adapting to changes in data transfer
rates or resources may have detrimental effects. On the other hand, less complex adap-
tive strategies (e.g. those that do not affect the logical plan of the query) are generally
intended for single processor environments, where it is more common that satisfactorily
accurate statistics can be obtained at compile-time.

Surprisingly, little attention has been paid to changes in the pool of available proces-
sors and data sources, which have a great impact on long-running queries in wide-area
systems. As a result, most of the AQP techniques proposed so far for parallel and dis-
tributed DBMSs do not alter their partitioning and scheduling policies dynamically at
runtime.

In summary, for memory fluctuations, the main strategy is to dynamically adjust
the usage of memory buffers. In the light of data arrival delays, a common approach is
to minimise idle time by performing other useful operations, and thus to hide such de-
lays. The problem of inaccurate cost and statistical estimates is addressed by collecting
and using the actual statistics on the fly and then comparing them with the estimates in



24 Anastasios Gounaris et al.

order to decide whether there is an opportunity for query re-optimisation. Techniques
that attempt to adapt to various changes in a wide area environment follow a triggered
approach. Event-condition-action rules are used, where events can be raised both by
operator execution (e.g. a block has completed its processing or there is insufficient
memory) and by environmental changes (e.g. a new processor has become available).
In online aggregation queries where the time to provide the user with useful informa-
tion quickly is more important than the time to query completion, adaptive pipelining
operators need to be adopted. Non-traditional operators are also required in all the cases
where the query needs to adapt with intra-operator frequency.

6 Conclusions

In this survey, existing adaptive query processing techniques have been classified and
compared. The opportunities offered by such techniques to modify a query plan on the
fly, have been identified. In addition, adaptive systems have been classified according to
the problem they focus on, their objectives, the nature of feedback they collect from the
environment and the frequency at which they can adapt. Other areas of interest include
the implementation environment and which component is responsible for taking the
adaptation decisions. The survey reveals the inadequacy of existing techniques to adapt
to environments where the pool of resources is subject to changes. In particular, the
paper provides evidence to the need for research into AQP in computing infrastructures
where resource availability, allocation and costing are not, by definition, decidable at
compile time. Consequently, a promising area for future work is the development of
concrete cost models to evaluate whether the expected benefits from the improved query
plan and decision quality compensate for the cost of collecting and evaluating feedback
from the environment during execution time.
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