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ABSTRACT
In Simultaneous Multithreaded (SMT) architectures most
hardware resources are shared between threads. This pro-
vides a good cost/performance trade-off which renders these
architectures suitable for use in embedded systems. How-
ever, since threads share many resources, they also interfere
with each other. As a result, execution times of applications
become highly unpredictable and dependent on the context
in which an application is executed. Obviously, this poses
problems if an SMT is to be used in a real-time system.

In this paper, we propose two novel hardware mechanisms
that can be used to reduce this performance variability. In
contrast to previous approaches, our proposed mechanisms
do not need any information beyond the information already
known by traditional job schedulers. Nor do they require
extensive profiling of workloads to determine optimal sched-
ules. Our mechanisms are based on dynamic resource par-
titioning. The OS level job scheduler needs to be slightly
adapted in order to provide the hardware resource allocator
some information on how this resource partitioning needs to
be done. We show that our mechanisms provide high stabil-
ity for SMT architectures to be used in real-time systems:
the real time benchmarks we used meet their deadlines in
more than 98% of the cases considered while the other thread
in the workload still achieves high throughput.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
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realtime and embedded systems; C.1.3 [Processor Archi-
tectures]: Other Architecture Styles pipeline processors

General Terms
Design, Performance

Keywords
ILP, SMT, Performance Predictability, Real Time, multi-
threading, thread-level parallelism, scheduling

1. INTRODUCTION
Current processors take advantage of Instruction Level

Parallelism (ILP) to execute in parallel several independent
instructions from a single instruction stream (thread). How-
ever, the amount of ILP available in each thread may be lim-
ited due to data and control dependences [12]. Providing as
many hardware resources to a thread as could potentially
be used in some phases during its execution means that in
other phases those resources would sit idle. Clearly, this
degrades the performance/cost ratio of these processors.

A solution to improve the performance/cost ratio of pro-
cessors is to allow threads to share hardware resources. In
current processors, resource sharing can occur in different
ways. At one extreme of the spectrum, there are multipro-
cessors (MPs) that only share some levels of the memory
hierarchy. On the other extreme, there are ‘full-fledged’
simultaneous multithreaded processors (SMTs) that share
many hardware resources.

SMT processors are a viable option in embedded real-time
systems. On the one hand, real-time systems increasingly
require high computation rates and SMTs are able to pro-
vide such computational power. On the other hand, SMTs
have a good performance/cost and performance/power con-
sumption ratio due to their high resource sharing [9], which
is desirable in real-time systems. However, SMT proces-
sors have a problem that makes their use in real-time sys-
tems difficult. In SMT processors, threads interfere because
they share many resources. This implies that the speed a
thread obtains in one workload can differ significantly from
the speed it has in another workload [4]. We refer to this by
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saying that an SMT processor has a high variability. Obvi-
ously, high variability is an undesirable property in a real-
time environment. In such environments, not only does the
job scheduler need to take into account Worst Case Execu-
tion Times (WCETs) and deadlines when selecting a work-
load, but it should also know how the workload can affect the
Worst Case Execution Time. Note that redefining WCET as
the longest execution time in an arbitrary workload is not an
option. By carefully selecting a workload, the WCET could
be made arbitrarily large. Moreover, analytical approaches
to WCET would fail miserably if they would need to take a
context into consideration.

The execution time of a thread depends on the amount
of execution resources given to it. In a system with single-
thread processors, a thread has exclusive access to all avail-
able hardware resources, hence this problem is not present
here. In an SMT processor, the amount of resources given
to a thread varies dynamically. An instruction fetch policy,
e.g., icount [11], decides how instructions are fetched from
the threads, thereby implicitly determining the way inter-
nal processor resources are allocated to the threads. The
key point is that current fetch policies are designed with the
main objective of increasing processor throughput: this may
differ from the objective of the global system, in our case,
a real-time environment. This could compromise the objec-
tive of the real-time system to meet deadlines of tasks [2] if
some action is not taken.

To sum up, in current systems the performance/cost ver-
sus variability trade-off is clear. MPs have low variability
but a worse performance/cost ratio than SMTs. SMT im-
plies a good cost-performance relation but high variability
in the execution time of an application depending on the
context in which it is executed. We would like to add an
SMT some mechanisms to provide low variability while over-
all performance and performance/cost ratio remain as unaf-
fected as possible.

In the literature, several solutions have been proposed in
order to improve this trade-off in SMTs [5][6][8][10]. The
common characteristic of these solutions is that they assume
knowledge of the average number of Instructions Per Cycle
(IPC) of applications when they are executed in isolation,
called IPCalone. In other words, these solutions are IPC
based. This implies, as we show later, that these solutions
are applicable for a subset of real-time applications, where
the IPCalone of applications can be a priori determined.

As far as we know, there does not exist a proposal that
deals with this problem when the IPCalone of applications
is not known. In this case, time-critical threads are given all
the resources of the SMT in existing approaches [2]. This,
of course, solves the problem but provides low throughput.
In this paper, we propose a novel mechanism to enforce real
time constraints in an SMT based system. This mechanism
consists of a small extension of the OS level job scheduler
and an extension of the SMT hardware, called a Resource
Allocator. Our approach is resource based instead of IPC
based. By this, we mean that it relies on the amount of re-
sources given to the time-critical thread. The job scheduler
assembles a workload for the SMT processor and instructs
the Resource Allocator to dedicate at least a certain amount
of resources to the time critical thread so that it is guaran-
teed to meet its deadline. Apart from this, the Resource
Allocator tries to adjust the resource allocation in order to
maximize performance. The current paper is focused on the

Resource Allocator. In future work, we hope to give a work-
ing implementation of the job scheduler as well. Using our
method, time-critical applications meet their deadline more
than 98% of the cases considered while the non-critical ap-
plications obtain high throughput.

This paper is structured as follows. Section 2 presents
some background on real-time scheduling. Section 3 presents
related work. Section 4 explains our experimental setup.
Section 5 presents our two proposals and section 6 the sim-
ulation results. In section 7, we explain the changes required
to implement our mechanisms. In Section 8 we compare all
the techniques we present throughout this paper. Finally,
section 9 presents some conclusions.

2. BACKGROUND ON REAL-TIME SCHE-
DULING

In this section we discuss some of the challenges to de-
velop a real-time scheduler for SMT processors. We focus
on real-time systems with periodic task sets. For each task,
the scheduler knows three main parameters. First, the pe-
riod, that is, the interval at which new instances of a task
are ready for execution. Second, the deadline, that is, the
time before which an instance of the task must complete.
For simplicity, the deadline is often set equal to the period.
This means that a task has to be executed before the next
instance of the same task arrives in the system. Third, the
Worst Case Execution Time (WCET ) is an upper bound
on the time required to execute any instance of the task,
which is guaranteed never to be exceeded.

In soft-real time scheduling, many algorithms have been
used to schedule the task set in single-threaded systems (e.g.,
EDF or LLF). However, these algorithms are no longer suf-
ficient in an SMT processor, since the execution time of a
thread is unpredictable when this thread is scheduled with
other threads. Algorithms should be adapted to meet this
new situation.

As shown in [8], the problem of scheduling a task set turns
into two different problems in SMT systems. First, to select
the set of tasks to run. This problem is called the workload
selection problem. Second, to determine how resources are
shared between threads. In this paper, we focus on the latter
problem that is also known in the literature as the resource
sharing problem.

The high variability of SMTs implies that the task of a
real-time job scheduler for SMT processors is much more
complex and challenging than for single-threaded processors.
When scheduling a job, the job scheduler must take into
account the amount of resources given to a thread, which is
implicitly decided by the instruction fetch policy in current
systems, in order to ensure that it meets its deadline.

3. EXISTING APPROACHES
In [2], the authors propose an approach where the WCET

is specified assuming a virtual simple architecture (VISA).
At execution time, a task is executed on the actual proces-
sor. Intermediate virtual deadlines are established based on
the VISA. If the actual processor is an SMT and a task fails
to meet its intermediate deadlines, the SMT is switched to
single-threaded mode, to ensure that tasks can meet their
deadlines. The authors conclude that fetch policies that at-
tempt to maximize throughput, like icount, should be “bal-
anced” for minimum forward progress of real-time tasks.
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Processor Configuration

Pipeline depth 12 stages
Fetch/Issue/Commit Width 8
Queues Entries 64 int, 64 fp, 64 ld/st
Execution Units 6 int, 3 fp, 4 ld/st
Physical Registers 256 integer, 256 fp
(shared)ROB size 512 entries
Branch Predictor 16K entries gshare
Branch Target Buffer 256-entry, 4-way associativity
Return Address Stack 256 entries
Icache, Dcache 64 Kbytes, 2-way, 8-bank,

64-byte lines, 1 cycle access
L2 cache 2048 Kbytes, 8-way, 8-bank,

64-byte lines, 20 cycle access
Main memory latency 300 cycles
TLB miss penalty 160 cycles

Decode

Fetch

Rename

Instruction
Cache

PCs

LSQ

IQ
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IREG
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FREG
Read

IREG
Write

FREG
Write

Execution

Data
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(a) Main parameters (b) Schematical view

Figure 1: Baseline configuration

This is precisely the target of our paper: we ensure a min-
imum amount of resources for a given time-critical thread
so that it meets its deadline regardless of the other threads
executed in its workload. Our approach is orthogonal to the
VISA framework, making it suitable for hard-real time sys-
tems: a time-critical thread is executed on the actual SMT
processor that provides the thread with a given percentage
of resources. In the event that the task does not meet its
intermediate deadlines, instead of switching the processor
to single-threaded mode, we can increase the amount of re-
sources given to it, so that it meets its deadline and its
overall performance does not drop drastically.

To the best of our knowledge, there are three main studies
dealing with real-time scheduling for SMTs. Two of these
studies focus on real-time systems [5][8], while the third fo-
cuses on general-purpose systems [10]. In [8], the authors
focus on workload selection in soft-real time systems, al-
though they also briefly discuss the resource sharing prob-
lem. The authors propose a method to solve the problem of
high variability of SMTs by profiling all possible combina-
tions of tasks. By comparing the IPC of a thread when it is
executed in a given workload, IPCSMT , with the IPC that
the thread achieves when it is run in isolation, IPCalone,
the slowdown that the thread suffers from being executed in
a context is determined. This information is given as addi-
tional input to the scheduler and is used to maximize per-
formance, since the scheduler selects those workloads that
lead to the highest symbiosis among threads and thus the
highest performance. The main drawback of this solution
is the prohibitively large number of profiles required. For a
task set of N tasks and a target processor with K contexts,
we have to profile all N!

K!(N−K)!
possible combinations. A

similar solution is proposed in [10].
Finally, in [5][6] we have proposed a hardware mechanism

to run a given thread at a given percentage of its full speed,
IPCalone, in an arbitrary workload. If it is required to run
a thread at a target IPC that is X% of the IPCalone of that
thread, then the IPC of the critical thread is periodically
measured and the mechanism tries to run that thread at
X% of the last measured speed. It has been shown that this
approach can realize an arbitrary required percentage of the
IPCalone of a critical thread in widely different workloads.

A common characteristic of these studies is that they are
IPC based, that is, they require the IPCalone of threads.
By comparing the IPC of a thread in a workload with its

IPCalone, these methods estimate the execution time slow-
down suffered by the critical thread in a given workload. In
this way, previous methods determine if the critical thread
is going to meet its deadline. In this paper, we propose a
different way of approaching the problem. Instead of us-
ing the IPC of applications to drive the solution, we use
resource allocation that normally is implicitly driven by the
instruction fetch policy. Our method makes explicit to the
scheduler the amount of resources used by each thread. The
scheduler adjusts this allocation to guarantee that applica-
tions meet their deadlines.

The advantage of our method is two-fold. First, it is well
known that IPC values can be highly dependent on the in-
put of applications. For some types of real-time applica-
tions, such as multimedia applications, this dependence is
weak [7]: the IPC of such an application is roughly inde-
pendent from the input. But for other types of applications
this is not the case. Our method does not require this in-
formation so that it is applicable to all types of real-time
applications. Second, we achieve a similar or even better
success rate than the approaches discussed above, while im-
proving overall performance.

4. EXPERIMENTAL ENVIRONMENT
In this section, we discuss our baseline architecture used

to run our experiments, the benchmarks we use, and the
metrics we employ to compare the different proposals.

4.1 SMT Simulator
We use a trace driven SMT simulator derived from smt-

sim [11] to evaluate the performance of the different policies.
The simulator consists of our own trace driven front-end and
an improved version of smtsim’s back-end. The simulator al-
lows executing wrong-path instructions by using a separate
basic block dictionary that contains all static instructions.

We use an aggressive configuration, shown in figure 1(a):
many shared resources (issue queues register, functional units,
etc.), out-of-order execution, very wide superscalar, and a
deep pipeline for high clock frequency. These features cause
the performance of the processor to be very unstable, de-
pending on the mix of threads. Thus, this configuration
represents an unfavorable scenario where we evaluate our
proposals. It is clear that, if those proposals work in this
hard configuration, they will work better in narrower pro-
cessors with fewer shared resources.
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Figure 1(b) gives a schematical view of our processor. Our
baseline instruction fetch policy is icount. It determines
from which threads instructions are fetched, implicitly al-
locating internal processor resources. This is a major cause
of performance variability in SMTs: the speed of a thread
highly depends on the context in which it is executed. Next,
instructions are decoded and renamed in order to track data
dependences. When an instruction is renamed, it is allo-
cated an entry in the window or issue queues (integer, float-
ing point and load/store) until all its operands are ready.
Each instruction also allocates one Re-Order Buffer (ROB)
entry and a physical register in the register file. ROB entries
are assigned in program order and instructions wait in this
buffer until all earlier instructions are resolved. When an
instruction has all its operands ready, it reads its operands,
executes, writes its results, and finally commits.

4.2 Benchmarks
We use workloads consisting of two threads. The first

thread is the critical thread (CT) that represents the thread
with the most critical time restriction or the soft real-time
thread. The second thread is a non-critical thread (NCT)
that is assumed either to have less-critical time restrictions
or to have no time restrictions at all. As critical threads
we use programs from the MediaBench benchmark suite,
namely, adpcm, epic, g721, gsm, and mpeg2. We used both
the coder and the decoder of these media applications. Hence,
we use 10 media applications as critical threads. Table 1
shows the inputs for each of the MediaBench benchmarks.

In this paper, we want to check the efficiency of the re-
source allocator under scenarios where the NCT requires
many resources, and thus, where the performance of the
CT could be more affected. For this reason, we use as non-
critical threads benchmarks from the SPEC2000 integer and
fp benchmark suite that require more resources than media
applications. Each of the ten media applications is executed
with 8 different SPEC benchmarks as non-critical thread.
We have used gzip, mesa, perlbmk, wupwise, mcf, twolf, art
and swim. These benchmarks were selected because they ex-
hibit widely varying behavior. Some are memory bounded,
which means that they generate many cache misses. Others
are not, but consume many computational resources. In our
experiments below, we have used all pairs of media and gen-
eral purpose applications, giving us a total of 80 workloads.

In order to check the efficiency of our Resource Allocator,
we consider three different scenarios that differ in the stress
that is put on our mechanism. The worst-case utilization
Uw is defined as the fraction Uw = WCET

P
where WCET is

the Worst Case Execution Time and P is the period of an
application. If the utilization is low, then WCET is much
smaller than the period and hence it should be relatively
easy to guarantee deadlines. If, on the other hand, the uti-
lization is high, then the critical thread must be given many
or even all resources. In this case, it may happen more fre-
quently that a CT misses a deadline.

In this paper, the WCET of an application is set equal to
its real execution time when it is run in isolation in the SMT
processor, called ExecT imei. We consider three worst-case
utilization factors called low, medium, and high. In the first
case, we model a situation where the job scheduler has to
schedule one task with a low worst-case utilization of 30%:
we establish as a deadline for each task 3.3 × ExecT imei.
Hence, Ui = WCETi

Pi
= ExceTimei

3.3×ExceTimei
= 30%. In the second

Table 1: MediaBench benchmarks we have used.

Benchmark name Media Language input

adpcm speech C clinton.pcm
epic image C test image.pgm
gsm speech C clinton.pcm
g721 speech C clinton.pcm

mpeg2 video C test2.mpeg

scenario, we model a medium utilization of 50% so that for
each task its deadline is 2 × ExecT imei. Finally, in the
worst-case scenario, we use a high utilization of 80%. In
this case, the deadline for each task is 1.25 × ExecT imei.

4.3 Metrics
In all our experiments, we run the CT until completion. If

the NCT finishes earlier, it is started again. When the CT
finishes, we measure three values. First, the success rate
(SR) that indicates the frequency the CT finishes before its
deadline. In typical real-time systems, it is the responsibility
of the OS level job scheduler to provide a high success rate.
In our approach, this responsibility is shared between the job
scheduler and the resource allocator. Second, we measure
the performance of the non-critical thread. We want to give
a minimum amount of resources to the critical thread to
meet its deadline. The remaining resources are given to the
non-critical thread in order to maximize its throughput.

Both these values are required to quantify the efficiency of
our approach. For example, if a given CT has an utilization
of 30% and the scheduler orders the resource allocator to
assign to it 100% of the resources, the thread will obviously
meet its deadline. This provides a success rate of 100%
but it does not provide high throughput nor does it show
the efficiency of the resource allocator. Analogously, if a
thread has an utilization of 90% and the scheduler orders the
allocator to give it 10% of the resources, the thread likely
misses its deadline and we do not know anything about the
efficiency of the resource allocator.

As a third measure, in addition to the success rate, we
measure the extra time required to finalize the CT for those
cases in which the CT misses its deadline. Assume that the
time required to execute the CT in a given workload, de-
noted by ExectimeCT , is larger than its deadline, deadlineCT ,
so that the CT misses its deadline. Then the variance is
computed as: varianceCT = (ExectimeCT −deadlineCT )

deadlineCT
·100%.

For a given policy, we take the five cases in which the vari-
ance is highest and compute the average of these variances.
We call this metric Mean5WorstVariance. If a policy has a
success rate of 1, we have that ExectimeCT ≤ deadlineCT

for each workload and in this case the variance is 0.

5. DYNAMIC RESOURCE PARTITIONING
In this section, we discuss the extensions to the OS level

job scheduler and the SMT hardware for implementing our
scheme.

5.1 Overview of our approach
The basis of our mechanism is to partition the hardware

resources between the critical and the non-critical thread
and to reserve a minimum fraction of the resources for the
CT that enables it to meet its deadline. In this way, we
can also satisfy our second objective, namely, to increase as
much as possible the IPC of the NCT. It is the responsibility
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of the job scheduler to provide the resource allocator with
some information so that it can reserve this fraction for the
critical thread.

When the WCET of a task is determined, it is assumed
that this task has full access to all resources of the platform
it should run on. However, when this task is executed in
a multithreaded environment together with other tasks, it
uses a certain fraction of the resources. It is obvious that
when the amount of resources given to a thread is reduced,
its performance decreases as well. The relation between the
amount of resources and performance is different for each
program and may vary for different inputs of the same pro-
gram. For the benchmarks used in this paper, we have plot-
ted this relation in Figure 2. This figure shows the relative
IPC 1 of each multi media application when it is executed
alone on the SMT as we vary the amount of window en-
tries and physical registers given to it. This relative IPC
is the percentage of the IPC the application achieves when
executed alone on the machine and given all the resources,
called IPCalone. From this figure, we can see that if we
dedicate 10% of the resources to the epic decoder, we ob-
tain 50% of the speed it would have were it given the entire
machine. Likewise, 10% of the resources dedicated to the
adpcm decoder gives 95% of its IPCalone.

Our proposed method exploits the relation between the
amount of resources given to the critical thread and the
performance it obtains. When the OS level job scheduler
wants to execute a critical thread, given its WCET and
a period P , it simply computes the allowable performance
slow down, S, given by S = P

WCET
. For such a value of S,

each instance of this job finishes before its deadline. Suppose
the real execution time of this instance is Ti. Then, Ti ≤
WCET . Hence, S ·Ti = P

WCET
·Ti ≤ P

WCET
·WCET = P .

Therefore, the value of S is a critical piece of information
needed to establish a resource partitioning.

The following two issues need to be addressed. First, we
need to determine which resources are being controlled by
the resource allocator. Second, we need to decide whether
the job scheduler or the resource allocator determines the
exact amount of resources given to the critical thread. In the
first case, a resource allocation is fixed for the entire period a
critical thread is executing. We call this approach the static
approach. In the second case, the resource allocator can
dynamically vary the amount of resources dedicated to the
critical thread. We call this approach the dynamic approach.

5.2 Resource allocator
The resource allocator controls the amount of resources

that can be used by applications. It consists of a number of
resource usage counters that track the amount of resources
used by each application, one counter per resource. These
counters are incremented each time a thread needs an addi-
tional instance of a resource and they are decremented each
time an instruction releases an instance resource. For each
thread in the SMT, there are also limit registers for each
resource that contain the maximum number of instances
the thread is allowed to use. These limit registers can be
written by either the job scheduler in the static method or
the resource allocator itself in the dynamic method. If an
application tries to use more resources than it is assigned,
its instruction fetch is stalled until resources are freed. We

1Recall that IPC is inverse to performance:
ExecutionT ime = CycleT ime×#Instructions×(1/IPC).
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Figure 2: Relation between the amount of resources
given to a task and its IPC.

would like to emphasize that all added registers are special
purpose registers. They do not belong to the register file.
We discuss the hardware cost of our mechanisms in more
detail in Section 7.

5.3 Resources
The first step in our approach is to determine the set of

shared resources that has to be controlled to provide stabil-
ity. In our architecture, the shared resources are the follow-
ing: the fetch bandwidth, the issue queues, the issue band-
width, the physical registers, the instruction cache, the L1
data cache, the unified L2 cache, and the TLBs. We have
conducted a number of experiments to examine what the
influence on variability is when we partially dedicate each of
these resources to the CT.

5.3.1 Caches and TLBs
Regarding TLBs, on average for all the experiments made

in this paper, the number of data TLB misses per instruction
is 3.6 × 10−4 and the number of instruction TLB misses is
8.2 × 10−7. Hence, the influence on the execution time of
the CT is small. For this reason we do not control TLBs.

Regarding caches, we measured for all multi-media appli-
cations in all 80 workloads the average number of misses in
each cache with respect to the number of committed instruc-
tions, as we vary the amount of resources given to it. The
results are shown in figure 3. We observe that there is an
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Figure 3: Cache interference introduced by the NCT
as we vary the amount of resources given to the CT.

increase in cache miss rate caused by interference by another
application in the workload. We observe as well that this
interference is lower when the amount of resources given to
the CT is higher and vice versa. This is caused by the fact
that if the CT is allowed to use many resources, the NCT
executes slower and hence uses caches less frequently and
thus produces less interference.

The absolute number of misses per committed instruction
is low: lower than 2×10−4 for the instruction cache, 7×10−3

for the data cache, and 4 × 10−3 for the L2 cache. We
can draw two conclusions from these figures. First, in the
icache there is almost no interference between the CT and
the NCT. Second, the interference introduced in the caches
by a non-critical thread in a workload is so small that we
expect that this only slightly affects the execution time of
multimedia applications. As a result, we do not need to
control how caches are shared between the threads.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Fetch Control Fetch, IQs & Regs Control

IP
C

 o
f 

th
e 

g
sm

 d
ec

o
d

er

(a) IPC when we control the fetch (gray bars),
and the fetch, the IQs and regs. (black bars).

0

5

10

15

20

25

30

35

40

45

50

no
 co

nt
ro

l

Fet
ch

 (F
)

Que
ue

s (
Q)

Q &
 F

Reg
ist

er
s(

R) 
R&F

R&Q

R&Q&F
A

ve
ra

ge
 (

A
ve

ra
ge

 A
bs

ol
ut

e 
D

ev
ia

tio
n 

/ M
ea

n)

90%
80%
70%
60%
50%
40%
30%
20%
10%

 

(b) Average of the fraction
(Standard Deviation / Mean).

Figure 4: Variability in CT’s IPC in different work-
loads as we vary the resources under control.

5.3.2 Other resources
We systematically measured the effect of controlling re-

sources other than the caches. We looked at the following
resource partitions. Nothing means that we do not control
any resource inside the SMT. Resources are implicitly shared
as determined by the default fetch policy. Fetch means that
we prioritize the CT when fetching instructions from the in-
struction cache. Queues and Registers mean that we give a
fixed amount of entries of that resource to the CT. Further-
more, we made all combinations of these resources 2.

In Figure 4(a), we show for the gsm decoder benchmark
its actual IPC values when it is executed with each of the
eight SPEC CPU benchmarks shown in Section 4.2. These
benchmarks are indicated as 1, 2, ..., 8 in Figure 4(a). IPC
values are shown for two possible ways to partition resources:
when we prioritize instruction fetch and when we partition
the registers and the issue queues. From this figure, it is im-
mediately clear that controlling the instruction fetch alone
gives little control over the speed of the CT and the variabil-
ity in IPC is large. On the other hand, controlling queues,
registers and fetch does give much control over the speed of
the CT and hence the variability is low.

In order to measure the sensitivity of the variability to
resource partitioning more systematically, we proceed as
follows. We used all pairs of media benchmarks as CT

2The issue bandwidth provides small variations in the re-
sults. For this reason we do not show its results.
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Figure 5: Different performance/resources functions

and spec2000 benchmarks as NCT. We measured execu-
tion times of the CT. For each CT from the MediaBench
suite, we obtained 8 numbers, one for each spec benchmark.
We computed the mean and the standard deviation of these
numbers, and the fraction deviation/mean. In this way, we
obtain a measure of the variability in execution time of a CT
as we change the NCT, expressed relative to the average ex-
ecution time. This allows us to average these values over
all possible critical threads. This final average is the overall
measure of variability used in this study. In Figure 4(b) we
show these results. We can immediately observe that when
we do not control resource allocation, we get a high variabil-
ity of 40%. This can be interpreted as that in many cases
the difference in execution time of a CT in an arbitrary con-
text can be as high as 40% of the total execution time or
even higher. If we only prioritize the instruction fetch of the
CT, this variability is hardly reduced. The most important
resources to control are the registers and the issue queue
entries. The best results are obtained when we control ev-
erything: we give the CT priority in the fetch stage and
reserve a certain amount of registers and issue queue entries
for it. By controlling these resources we do not eliminate
interference completely but we are able to reduce them to
a great extent. These are the resources controlled by our
Resource Allocator below.

Regarding the percentage of resources given to the CT,
we show that as we decrease this amount the variability
increases. For low percentages (10 or 20%) variability is
even higher than when no control is carried out. This is
mainly because when the CT uses few resources, the NCT
executes more instructions, causing more interferences. In
addition, every time the CT misses in the cache, it has not
enough resources to hide this latency, even for L1 data cache
misses. Hence, we conclude that if we give less than 20% of
resources to the CT, its deadline could be compromised.

5.4 Static approach
In this section, we discuss our static approach to resource

partitioning. In this approach, the job scheduler computes
a priori the resource partitioning that is used throughout
the entire period of the critical thread. In Figure 2, we have
plotted the relation between the amount of resources dedi-
cated to the CT and the performance it obtains. It clearly
follows that, for all benchmarks considered in this paper,

the relation between performance and amount of dedicated
resources is super-linear. That is, if we dedicate X% of the
resources, we obtain more than X% of IPCalone and in some
cases much more. Since the job scheduler knows the WCET
of the critical thread and the period, P , in which it should
execute, it knows the slow down the CT can suffer: the slow
down factor S = P

WCET
discussed above. Hence, given this

fraction S of the performance of the CT, it needs to compute
a function f(1/S) = Y to determine that the CT needs Y %
of the resources to obtain this performance. We call such
a function a performance/resource function or p/r function.
These p/r functions can be considered to be approximations
to the inverse of the curves shown in Figure 2. Hence, when
the job scheduler assembles a workload with a certain ap-
plication as critical thread, it computes the value of S and
determines the corresponding value Y = f(1/S) for a p/r
function f . Then it instructs the resource allocator to re-
serve Y % of the resources for this critical thread. In the
next subsection, we discuss performance/resource functions
in more detail.

5.4.1 Performance/resource functions
Figure 5(a) shows the actual p/r relation of each thread

and several p/r functions that approximate this actual p/r
relation, which can be used by the job scheduler. These
functions are plotted as circles in the figure. We show sev-
eral functions that are given by r = f(p) = p1/value for
value equal to 1 (linear), 0.7, and 0.4. For lower values,
the amount of resources given to the CT is reduced and
the actual p/r relation is better approximated. This may
be positive since we allow the NCT to use more resources.
However, this may also compromise the success rate.

For our experiments discussed in the next section, we use
the p/r functions described above. We moreover use an-
other p/r function that is more directly based on the graphs
shown in Figure 2, called the empirical function. In order to
construct this function, we empirically determine for each
Multimedia Benchmark and for each possible value of p, the
value of r that leads to a good success rate and achieves
high NCT performance. We may consider this function as
the upper bound of our static method. Figure 5(b) shows
an example of how the function empirical is determined.
The diamonds show the actual p/r relation for the gsm d
benchmark. The circles show the approximation we used.
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Note that this approximation is slightly larger than the cor-
responding value in the curve in Figure 2 in order to take
into account interference by the NCT, mainly for low per-
centages of p.

5.5 Dynamic approach
In this approach, the resource allocator dynamically de-

termines the amount of resources given to the critical thread.
The main advantage of this method is that it adapts to pro-
gram execution phases, increasing overall performance. In
the next section, we show that the dynamic approach pro-
vides better results than the static approach but it is only
applicable if the application under consideration has a num-
ber of characteristics that we discuss in more detail below.
The main advantage of the static approach is that it can be
used always.

The mechanism is based on the observation that in order
to realize X% of the overall IPC for a given job, it is suffi-
cient to realize X% of the maximum possible IPC at every
instant throughout its execution. In the present case, if we
want to slow down an task with a factor S, it is sufficient to
slow it down with a factor S at every instant. The dynamic
approach that exploits this observation is a simplification
of the method we proposed in [5][6], called Predictable Per-
formance or PP. The resource allocator distinguishes two
phases that are executed in alternate fashion. We briefly
describe these phases below. For more information, please
consult [5]. During the first phase, the sample phase, all
resources under control are given to the CT and the NCT
is temporarily stopped. As a result, we obtain an estimate
of the current IPCalone of the CT which we call the local
IPCalone. The sample phase starts with a warm up period
of 50,000 cycles to remove pollution by the NCT from the
shared resources. Next, we measure the IPCalone of the
critical thread in an actual-sample phase of 10,000 cycles.

During the second phase, the tune phase, the NCT is al-
lowed to run as well. Our mechanism dynamically varies the
amount of resources given to the CT to achieve an IPC that
is equal to the local IPCalone×1/S. The tune phase, which
lasts 300,000 cycles, is divided in periods of 15,000 cycles
during which the realized IPC of the CT is measured. If this
measured value is lower than required, the CT is assigned
more resources. If it is higher than required, resources are
taken away from the CT and given to the NCT.

The main difference between the present dynamic ap-
proach and the Predictable Performance mechanism from [5][6]
is that in PP the real value of IPCalone of the CT is used to
compute resource allocations in the tune phase. This value
has to be provided by the OS, in contrast to the present
approach that does not require this value. Moreover, the
present approach controls fewer resources. In particular, we
do not exercise control over the caches, in contrast to PP
in which L2 cache miss rates of the critical thread are mon-
itored and this information is used to dedicate part of the
L2 cache exclusively to the critical thread.

The main difficulty in our dynamic method is to measure
accurately the local IPCalone of the CT, due to the pollu-
tion created by the NCT in the shared resources. As we
have shown in [5][6], the main source of interaction among
the CT and the NCT is the L2 cache. This pollution stays
for a long time, up to 5 million cycles. We have analyzed the
pollution caused by the NCT in this resource in detail. We

found that for multi media applications the measured value
of the IPCalone is 1% lower than the real value. For SPEC
benchmarks used in [5][6], it is 8% lower. The main reason
for this is that media applications have a smaller working
set than spec benchmarks. For this reason, an NCT does
not interfere as much with media applications as with spec
benchmarks. As a result, we can use a more simple resource
partitioning algorithm for media applications than the al-
gorithm from [5][6] that is geared toward general purpose
applications.

We conclude that, if applications under consideration have
a small working set in comparison with the L2 cache size,
then they are unlikely to be affected by a NCT with a much
larger working set. As a result, the IPC measured in the
sample phase is closer to the actual IPCalone, what allows
us to leave the L2 miss rate out of consideration, thereby
considerably simplifying the mechanism. If this condition is
not satisfied, the dynamic approach cannot be applied and
we have to resort to either the static approach discussed
above or to the expensive PP mechanism described in [5][6].

To summarize, in the dynamic approach, the job sched-
uler provides the value 1/S to the resource allocator. Next,
the resource allocator determines the IPCalone of that in-
stance of the task during a sample phase and reduces its
IPC by a factor of 1/S during the subsequent tune phases.
This implies that the CT can meet its deadline and that we
minimize the amount of resources given to the CT, enabling
high performance of the NCT.

6. SIMULATION RESULTS
In this section, we present the results of the static and dy-

namic approaches. Moreover, we show the results obtained
using the Predictable Performance mechanism we presented
in [5][6] and a fetch control like mechanism based on [2][10].

6.1 Static method
Figure 6 shows the success rate and the performance for

the different p/r functions used in the static method. In
figure 6(a), bars show the success rate and are measured on
the left y-axis. Lines show the Mean5WorstVariance and are
measured on the right y-axis.

In figure 6(a), we can see that the linear p/r function pro-
vides the best success rate. We also observe that when the
p/r function is more aggressive, the success rate decreases.
This is intuitively clear, since we reduce the amount of re-
sources given to the CT. All functions, except the function
f(p) = p1/0.4, achieve a good success rate and Mean5Worst-
Variance. As we move from high to low utilization scenar-
ios, the success rate improves. On average, the success rate
is 0.987, 0.979, and 0.671 for the linear, f(p) = p1/0.7, and

f(p) = p1/0.4 functions, respectively. For the empirical func-
tion the success rate is 0.975. The Mean5WorstVariance is
1%, 2.6%, and 87% and 2.4%, respectively.

Figure 6(b) shows the average IPC of the NCT, averaged

over all experiments. We see that the function f(p) = p1/0.4

achieves the best performance results. However, this is at
the cost of success rate. Hence, we conclude that this func-
tion is too aggressive. We observe that as we increase the
aggressiveness of the p/r function, we obtain more perfor-
mance for the NCT. This is because more aggressive p/r
functions provide the CT with fewer resources.

We conclude that the empirical performance/resource func-
tion performs best. If this function is too difficult to ob-
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Figure 6: Success Rate and throughput as we change the p/r relation
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Figure 7: Success Rate and throughput of our approach and previous approaches

tain in some circumstances, the p/r function f(p) = p1/0.7

performs only slightly worse. Recall that a p/r function is
computed by the OS level job scheduler and hence is im-
plemented in software. Hence we can easily use complex
functions like the functions discussed above.

6.2 Dynamic method
In this section, we present the results of the dynamic

method and moreover compare this mechanism with pre-
vious approaches. For this experiment, we have also con-
sidered the Predictable Performance mechanism proposed
in [5][6] and a prioritization-aware fetch policy [2][10] which
we call fetch control in this section. This mechanism always
prioritizes the CT when fetching instructions. We also com-
pare our results with the empirical p/r function for the static
method.

Figure 7(a) shows the success rate for the different ap-
proaches. If we just control fetch, we see that we obtain
a low success rate and a high Mean5WorstVariation, even
for the low utilization scenario. The predictable perfor-
mance approach obtains a success rate of 1, and hence a
Mean5WorstVariation of 0. This is mainly due to the fact
that this policy uses knowledge of the IPCalone of each CT
that allows it to compute dynamically how far the current
IPC of the CT is from the target IPC. In this way, this mech-
anism converges to the target IPC. Our mechanism does not
require this information but nevertheless achieves a success
rate of 0.987. It also has a low Mean5WorstVariance of
1.63%. In the static method using the empirical p/r func-
tion, the SR is 0.975 and the Mean5WorstVariance is 2.4%.

Regarding throughput, we can see that our dynamic me-
thod achieves the same performance as Predictable Perfor-
mance. Our static method achieves 9% less performance,
but still much more performance than the fetch control me-
thod, up to 56% more in the low utilization scenario.

7. IMPLEMENTATION
Our two proposals require some hardware to control the

amount of resources given to the CT and NCT. In this sec-
tion, we present the hardware changes in our baseline ar-
chitecture to provide such functionality. Finally, we show
how the OS and the hardware collaborate to deal with time
requirements.

7.1 Hardware to control resource allocation
The objective of this hardware is to ensure that the CT

is allowed to use at least a given amount of each shared
resource. The hardware requirements needed to implement
this functionality are similar to the hardware requirements
to implement the mechanism we proposed in [3]. The tasks
done by this hardware are: track, compare, and stall.

Track: We need a resource usage counter for each re-
source under control, both for the CT and the NCT. Each
counter tracks the number of slots that each thread has of
that resource. Figure 8 shows the counters required for a 2-
context SMT if we track the physical registers. Resource us-
age counters are incremented in the decode stage (indicated
by (1) in Figure 8). Register usage counters are decremented
when the instruction commits (2). We also control the oc-

174



Decode
1

Fetch Rename

CT’s limit registers
CT’s usage

counters

NCTs’ usage

counters

CMP

CMP

CMP

CMP

OR OR

Instruction
Cache

PCs

int

fp

int

fp

int

fp

int

fp

Decode
2

Instr.
Que
ues

(1)

(2)(3)

(4)

(3)

Instruction is committed

NCT’s limit registers

U
pd

at
e

d 
by

 t
he

 O
S

 (
d

yn
a

m
ic

 a
p

pr
oa

ch
) 

o
r

th
e 

R
es

o
ur

ce
 A

llo
ca

to
r 

(s
ta

tic
 a

pp
ro

ac
h

)

...

Figure 8: Hardware required to implement our mechanism

cupancy of the IQs. Hence, 3 queue usage counters are re-
quired, one for each queue. Queue usage counters are decre-
mented when instructions are issued from the issue queues.
All added registers are special purpose registers. They do
not belong to the register file. The design of the register file
is left unchanged with respect to the baseline architecture.
The implementation cost of these counters depends on the
particular architecture. However, we believe that it is low
due to the fact that current processors have tens of perfor-
mance and event counters e.g, the Intel Pentium4 has more
than 60 performance and event counters [1].

Compare: We also need two registers, limit registers,
that contain the maximum number of entries that the CT
and NCT are entitled to use. These registers are modified ei-
ther by the OS in the dynamic approach and by the resource
allocator in the static approach. In the example shown in
Figure 8, we need 4 counters: one for the fp registers and one
for the integer registers for both the CT and NCT. Every
cycle we compare the resource usage counters of each thread
with the limit registers (3). If a threads is using more slots
than given to it, then a signal is sent to the fetch stage to
stall instructions fetch from this thread (4).

Stall: If this signal is activated the fetch mechanism does
not fetch instruction from that thread until the number of
entries used for this thread decreases. Otherwise, the thread
is allowed to compete for the fetch bandwidth as determined
by the fetch policy.

7.2 OS/hardware collaboration
For the static approach, the OS only has to update the

values of the (special purpose) limit registers in order to ac-
complish with the tasks’ deadlines. When the OS schedules
a task for execution, it also sets the value of these registers 3.

For the dynamic approach, the OS sets the percentage of
the IPCalone of the CT that the hardware has to achieve.
This requires the addition of one register. In addition to the
hardware discussed in the previous section, we use a Finite
State Machine (FSM) to dynamically change the resource
allocation to converge to the target IPC. This FSM is quite
simple and can be implemented with 4 counters and simple

3Note that, if the limit registers of the CT and the NCT
are set to the maximum number of resources, no thread is
stalled. That is, we would have a standard SMT processor
guided by the fetch policy.

control logic. The FSM starts by giving all resources to the
CT (sample phase). This is done by simply setting the limits
registers of the CT to the maximum number of resources,
and resetting the entries of the NCT. Next, at the end of
the warm-up phase, we begin to compute the IPC of the
CT. At the end of the actual-sample phase, we compute the
local target IPC and set the resource allocation to converge
to the local target IPC. At the end of each tune sub-phase,
we vary the resource allocation so that the IPC of the CT
converges to the target IPC.

8. DISCUSSION
In this section, we briefly summarize the results presented

above and discuss some other issues, namely, the cost and
the applicability of the mechanisms discussed above.

Concerning the cost of the different mechanisms, the fetch
control mechanism used in [10] only prioritizes the fetch of
the critical thread and hence has lowest cost. Our static
mechanism needs to keep track of how many resources are
used by each thread and hence is more expensive. However,
the cost for doing this is not high, as is shown in section 7.
Since the required percentage that the critical thread should
receive is provided by the job scheduler, the base resource
allocator is enough to implement our static method. Our
dynamic method is more complex. Apart from the resource
allocator that is required to monitor that threads do not
exceed their share of the resources, a mechanism in hardware
is required to sample the IPCalone of the critical thread
during the sample phase and to periodically determine the
IPC of this tread during the tune phase. Moreover, logic is
required to suspend the NCT during the sample phase and
to adjust resource allocation during the tune phase. Finally,
Predictable Performance requires all this plus extra logic
to monitor the L2 cache. Moreover, the logic required to
determine resource allocation after the sample phase is more
complex than the logic required by our dynamic mechanism
proposed in the present paper.

Concerning the applicability of the various approaches,
both fetch control and our static method can be used for all
applications. Our dynamic method requires that the non-
critical thread does not interfere too much with the critical
thread in the L2 cache. Predictable Performance requires
that all instances of an application have more or less the
same IPC. Fortunately, it has been shown [7] that media
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Table 2: Comparing approaches shown in this paper

Metric fetch control static dynamic PP

Success rate -- (<75%) ++ (>95%) ++ ++

Throughput NCT -- + ++ ++

Applicability ++ ++ + -

Cost -- - + ++

applications have these properties so that PP can be applied.
Hence we can summarize all aspects in table 2. In this table,
we use the following symbols: ++ (very high), + (high), -

(low), and -- (very low).
Depending on the properties of applications that need to

run on the system, the amount of hardware available to
provide soft real-time functionality, and the required success
rate, a designer of an embedded, real-time system can choose
one of the alternatives discussed in this paper. If there is
hardly any room to implement a real-time mechanism, fetch
control can be used which has a poor success rate but costs
next to nothing. If there is a modest amount of real estate
available and the success rate must be reasonably high, our
static method is best suited. If, on the other hand, the
success rate must be 1 then Predictable Performance can be
used, at the cost of a complex implementation. In situations
in between, our dynamic method may be a good candidate.

9. CONCLUSIONS
In this paper, we have proposed two novel approaches to

the problem of enabling SMT processors for soft-real time
systems. The main problem of using SMT processors in
real-time systems is that in an SMT processor threads share
almost all hardware resources. This may may cause interfer-
ence between threads which implies that the speed a thread
obtains in one workload can be very different from the speed
it has in another workload [4]. In contrast to previous ap-
proaches, our methods do not require any knowledge be-
yond information that is traditionally used by the OS level
job scheduler, namely, Worst Case Execution Time and the
Period of the time-critical thread. Neither do our methods
require extensive profiling of candidate workloads like some
other methods do [8][10]. Our methods are based on re-
source partitioning, in contrast to previous approaches that
are IPC based, reserving a minimum fraction of all resources
for the critical thread so that it can just reach its deadline.
In this way, the non-critical threads also receive as many
resources as possible so that their throughput is maximized
at the same time. In the first method, the job scheduler
determines the fraction of resources dedicated to the critical
thread and this fraction is fixed during the entire period.
In the second method, the SMT hardware extension of a re-
source allocator dynamically adjusts the amount of resources
for the critical thread, thereby adapting to program phases
which increases the throughput of the non-critical threads
even more. We have compared our approaches to two pre-
viously published mechanisms, namely, fetch control [2][10]
and Predictable Performance [5][6]. We have shown that
we significantly outperform fetch control and are almost as
good as Predictable Performance using a much less complex
mechanism. On average, the critical thread meets its dead-
line in 98% of the cases considered. We have discussed the
pros and cons of all 4 mechanisms to explore the design space
of real-time enabled SMT processors in detail.
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