CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
Published online 2 July 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1446

Adaptive workflow processing
and execution in Pegasus

Kevin Lee!:* T, Norman W. Paton!, Rizos Sakellariou!,

Ewa Deelman?, Alvaro A. A. Fernandes! and Gaurang Mehta?

LSchool of Computer Science, University of Manchester, Oxford Road, Manchester
M1I3 9PL, U.K.

2University of Southern California, Information Sciences Institute, 4676 Admiralty
Way, Marina Del Ray, CA 90292, U.S.A.

SUMMARY

Workflows are widely used in applications that require coordinated use of computational resources.
Workflow definition languages typically abstract over some aspects of the way in which a workflow is
to be executed, such as the level of parallelism to be used or the physical resources to be deployed.
As a result, a workflow management system has the responsibility of establishing how best to execute
a workflow given the available resources. The Pegasus workflow management system compiles abstract
workflows into concrete execution plans, and has been widely used in large-scale e-Science applications.
This paper describes an extension to Pegasus whereby resource allocation decisions are revised during
workflow evaluation, in the light of feedback on the performance of jobs at runtime. The contributions of
this paper include: (i) a description of how adaptive processing has been retrofitted to an existing workflow
management system; (ii) a scheduling algorithm that allocates resources based on runtime performance;
and (iii) an experimental evaluation of the resulting infrastructure using grid middleware over clusters.
Copyright © 2009 John Wiley & Sons, Ltd.

Received 15 February 2009; Accepted 20 March 2009

KEY WORDS: adaptive; rescheduling; workflows

1. INTRODUCTION

A number of workflow environments have been developed in recent years to provide support
for the specification and execution of scientific workflows. We distinguish scientific workflows

*Correspondence to: Kevin Lee, School of Computer Science, University of Manchester, Oxford Road, Manchester
M13 9PL, UK.
TE-mail: klee@cs.man.ac.uk

Contract/grant sponsor: U.K. Engineering and Physical Science Research Council
Contract/grant sponsor: National Science Foundation; contract/grant numbers: CNS-0615412, OCI-0722019

Copyright © 2009 John Wiley & Sons, Ltd.

1966 K. LEE ET AL. %

(as supported, for example, by Pegasus [1,2], Askalon [3], Taverna [4], Kepler [5] and Triana
[6]), being typically compute and/or data intensive, as opposed to business workflows, which
are typically transactional and are beyond the scope of this paper. Workflow languages are used to
provide a high-level characterization of the pattern of activities that need to be carried out to support
a user task. Workflows written in such languages typically leave open a number of decisions as to
how a workflow is enacted, such as where the workflow is to be run, what level of parallelism is to
be used and what resources are to be made available to the workflow. As a result, a collection of
decisions must be made before a workflow can be enacted, for example by a compilation process
that translates a workflow from an abstract form into a more concrete representation that resolves
various of the details as to how the workflow is to make use of the available resources.

Most existing workflow systems provide static approaches for mapping (e.g. [7,8]) on the basis
of information that provides a snapshot of the state of the computational environment. Such static
decision making involves the risk that decisions may be made on the basis of information about
resource performance and availability that quickly becomes outdated. As a result, benefits may
result either from incremental compilation, whereby resource allocation decisions are made for part
of a workflow at a time (e.g. [1]), or by dynamically revising compilation decisions that gave rise to
a concrete workflow while it was executing (e.g. [9—13]). In principle, any decision that was made
statically during workflow compilation can be revisited at runtime (e.g. [14]). Workflow decisions
can be broadly classified as either mapping or scheduling decisions. Mapping decisions can lead
to adaptations involving changing the mapping of abstract tasks to concrete tasks, increasing or
reducing the abstract task to concrete task numbers and changing the type of service for a mapping.
Scheduling decisions can lead to adaptations that change the levels of parallelism, replace services
or move tasks between execution nodes (see [14] for more opportunities). The focus of this paper
is on scheduling adaptations involving moving concrete tasks between execution nodes.

Proposals that describe adaptive approaches to mapping (e.g. [9]) are often quite intrusive,
in that the adaptive behaviour of their engine exercises fine-grained control over the workflow
engine, implying that significant effort may be required to incorporate such capabilities into
the existing mainstream workflow systems. In contrast, the work described in this paper imple-
ments adaptivity as a separate module, which is loosely coupled with an existing workflow system.
This loosely coupled approach enables experimentation with adaptive strategies that transcend the
specifics of a given execution engine. In this way, one can aim to identify a space of widely use-
ful policies without precluding their later implementation as specific mechanisms inside specific
software artifacts.

This paper describes an approach to adaptive resource allocation and scheduling in the Pegasus
workflow management system [1]. Pegasus already accommodates uncertainty about the runtime
environment by incremental compilation, which both defers certain decisions as to how workflow
activities are mapped to resources and forms the basis for fault tolerance, whereby a workflow
partition, which is the unit of incrementality, can be retried if it fails. In line with [9], our adaptive
system is purely reactive in that it monitors information and reacts to it. Thus, the emphasis is on
adaptations on the basis of specific observable behaviour rather than on mechanisms to predict what
the future behaviour is going to be. Our objectives in this work have been: (i) to dynamically adjust
resource allocation decisions in the light of runtime feedback on the performance of the clusters onto
which workflows are being compiled; and (ii) to obtain that dynamic behaviour through minimal
intervention into the existing Pegasus infrastructure. As a case study for the evaluation of our

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

% ADAPTIVE WORKFLOW PROCESSING AND EXECUTION IN PEGASUS 1967

adaptive system, we consider resource allocation on clusters that might be used by several users at
the same time. This allows us to introduce adaptivity into an environment whose performance is not
well known in advance, and in which there is limited control over the execution of individual jobs;
studies that focus on the evaluation of scheduling heuristics usually require more information about
the environment than is assumed here [11,12,15,16]. Yet, without using sophisticated heuristics,
our adaptive engine yields demonstrable benefits.

The remainder of this paper is structured as follows. Section 2 provides the technical context for
this work by describing the Pegasus workflow management system. Section 3 details both what
adaptations are carried out and how these have been integrated with the Pegasus infrastructure.
Section 4 describes the results of experiments conducted using both synthetic and real-world sci-
entific workflows. Section 5 draws some overall conclusions.

2. TECHNICAL CONTEXT
2.1. Overview

The Pegasus workflow management system (Figure 1) consists of the Pegasus workflow mapper [1]
and the directed acyclic graph manager (DAGMan) workflow executor for Condor-G [17]. Pegasus
takes high-level descriptions of complex applications structured as workflows (abstract workflows),
automatically maps them to available cyberinfrastructure resources (concrete workflows) and sub-
mits them to DAGMan for execution.

Pegasus has been used in a wide range of applications including earthquake science and astron-
omy. Using Pegasus, earthquake scientists are able to generate more accurate hazard maps that can
be used by civil engineers to design new constructions in earthquake-prone areas [18]. Astronomers
use Pegasus to generate large-scale (6 and 10 square degree) mosaics of the sky that allow them
to see structures not observed before [19]. Gravitational-wave physicists are using Pegasus to run
sophisticated analyses in the hope of finding gravitational waves [20].

2.2. Compilation

The workflow mapping engine is a compiler that translates (maps) between the high-level specifi-
cations of an abstract workflow and the underlying execution system and optimizes the executables
based on the target architecture. The translation includes finding the appropriate software and com-
putational resources where the execution can take place, as well as finding copies of the data
indicated in the workflow instance. The mapping process can also involve workflow restructuring
geared towards optimizing the overall workflow performance as well as workflow transformation
geared towards data management. The result of the mapping process is an executable or concrete
workflow, which can be executed by a workflow engine that follows the dependencies defined in the
workflow and executes the activities defined in the workflow tasks. DAGMan, the workflow engine
used relies on the resources (compute, storage and network) defined in the workflow to perform
the necessary actions.

Mapping the workflow instance to an executable form involves finding the resources that are avail-
able and can perform the computations, the data used in the workflow and the necessary software.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

1968 K. LEE ET AL.

Compilation

Submission

Execution

Reporting

Abstract

Workflow

Abstract DAX Pegasus

v

Compilation

Dynamic data Static data

Monitoring
and discovery
service

Site Catalog

Replica Catalog

Replica
Location Transformation
Service Catalog

@ncre_te
Workflow

\4

Concrete DAG

Job
Management

Workflow

DAG

DAGMAN

+ Submission Tasks
CONDOR-G

+ Remote Request

+ Submission

Computation
Grid

_Job
Reports

Site

Globus
Interface

B Execution

Site
Globus
Interface

v

Globus
Jobmanager

\

Site Job
Scheduler

v

Condor
Pool

N Execution

Site
Globus
Interface

Globus
Jobmanager

v

Site Job
Scheduler

v

Condor
Pool

Figure 1. Workflow execution using Pegasus.

Copyright © 2009 John Wiley & Sons, Ltd.

Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

% ADAPTIVE WORKFLOW PROCESSING AND EXECUTION IN PEGASUS 1969

We assume that data may be replicated in the environment and that users publish their data products
into some data registry. This registry can be a private or community resource and can be either static
or dynamic (see Figure 1). Some communities, such as Laser Interferometer Gravitational-Wave
Observatory [21] maintain project-wide registries of the data coming off the detectors.

Pegasus uses the logical filenames referenced in the workflow to query the Globus replica location
service (RLS) [22], which is an example of a dynamic data location service, to locate the replicas
of the required data. Given the set of logical filenames RLS returns a corresponding set of physical
file locations. A local replica catalog provides a static source of physical data locations. In order to
be able to find the location of the logical application component names (transformations) defined
in the workflow, Pegasus queries the static Transformation Catalog [23] and obtains the physical
locations of the transformations (on possibly several systems) and the environment variables and
libraries necessary for the proper execution of the software. The executables are transferred to the
remote grid sites along with any input data.

Similar to locating replicas and transformations, Pegasus can find resources for execution from
static and dynamic sources of information. Pegasus can query cyberinfrastructure monitoring ser-
vices (e.g. the Globus monitoring and discovery service (MDS) [24]) or local Site Catalogs to find
the available resources and their characteristics (machine load, scheduler queue length, available
disk space and others). This information is combined with information from the Transformation
Catalog to make scheduling decisions. Schedulers are one of the pluggable components of Pegasus.
Up to now Pegasus included four different scheduling algorithms: random, round-robin, min-min [7]
and HEFT [15]. In this work, we designed and incorporated a new scheduler into Pegasus. As op-
posed to the static nature of the existing four (and the large body of relevant work in the literature,
e.g. [16]), the key feature of our new algorithm is that it takes into account runtime information
(see Section 3).

Pegasus also uses information services to find the location of the data movement services (e.g.
GridFTP [25] or SRB [26]) that can perform wide-area data transfers, job managers [27] that
can schedule jobs on the remote sites, storage locations, shared execution directories, site-wide
environment variables, etc. This information is necessary to produce the executable workflow that
describes the necessary data movement, computation and catalog updates. Registries of code and
data as well as information services allow Pegasus to provide a level of abstraction to the user and
give the freedom to automatically optimize workflow execution.

2.3. Submission

After the abstract workflow has been compiled it is in a concrete or executable form. Pegasus submits
this concrete workflow to the DAGMan workflow executor. DAGMan then uses this workflow
description to determine when to submit jobs to the resources described in the workflow (determined
from the MDS [24] or the local Site Catalog). It then manages the submission of subsequent jobs
using the dependencies in the workflow.

2.4. Execution

Individual jobs are submitted by DAGMan to remote Globus interfaces representing clusters where
they are executed. These include jobs that set up the remote site, transfer data via GridFTP and

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

1970 K. LEE ET AL. %

execute tasks. The jobs pass through the Globus interfaces to the Globus jobmanagers at each
execution site before finally being executed by the Site Scheduler on the resources. The experiments
in this paper use the Condor-G submission client and Condor clusters though a Globus interface,
as illustrated in Figure 1. During execution, workflow tasks can register the final and intermediate
workflow data products into the various registries. Future Pegasus compilations can easily discover
and use these new data products.

2.5. Reporting

During execution, events are passed back to DAGMan via the Site Scheduler, Globus jobmanager,
Globus interfaces and DAGMan. These events indicate the current status of an individual job’s
execution, e.g. if it is held, queued, executing, completed or failed. This log of the execution
provides a snapshot at any point in the workflow execution. DAGMan uses this information to
determine when jobs can be submitted, which jobs or workflows have failed and when a workflow
is complete.

3. ADAPTIVE PEGASUS

As stated in Section 1, the focus of this paper is on dynamically adjusting resource allocation
decisions in response to feedback on the performance of workflow execution. A wealth of po-
tentially useful performance information is available about the execution of a workflow, however
the characteristics of the machines used for workflow execution yield a specific opportunity. The
environment to which Pegasus is targeted utilizes batch queues to assign jobs to cluster resources.
Experience with workflow executions shows that a major factor in the overall execution time is
the amount of time a job is queued. The batch queue time for a job is dependent on the external
load on the cluster and any load we assign to it. In a grid environment, however, this cannot be
obtained directly because of different ownership of resources so this information must be obtained
by observing the changing queue times on the clusters. The strategy proposed in this section adapts
workflow execution to the varying batch queue times at clusters.

The adaptive strategy used to achieve this is structured around the MAPE functional decompo-
sition [28], which partitions adaptive functionality into four areas, Monitoring, Analysis, Planning
and Execution. The MAPE functional decomposition is a useful framework for the systematic
development of adaptive systems, and can be applied to a wide range of applications, including
different forms of workflow adaptation [14]. The use of MAPE to structure the adaptive strategies
in this paper is illustrated in Figure 2, which shows how it is retrofitted with minimal intervention
to a Pegasus-planned executing workflow.

In the adaptation strategy described in this paper, an executing workflow instance is monitored
for the relevant events at the assigned resources. These events are constantly analysed for patterns,
which may lead to planning. Planning updates the information available to Pegasus, and reruns
Pegasus on the current workflow. The revised plan for the work that remains to be done is compared
with the current plan, and the new plan is adopted if it is predicted to give an improved overall
response time. Changes to the workflow execution proposed by Planning are implemented in an
execution step that removes and replaces the executing workflow. The following paragraphs discuss

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

% ADAPTIVE WORKFLOW PROCESSING AND EXECUTION IN PEGASUS 1971

Abstract

- Workflow

|_Adaptive Pegasus | Instruction to
execute new workflow
| |
| Execution ——|—> Effector
| New | 4 Pegasus
Plan - - o
| - | - ¢ Concrete Workflow
. —
| Planning & | OAGMAN
| | + Submission Tasks
| Replan | CONDOR-G
| | + Remote Request
| AnaIySIS | Computation
Grid
| |
Events

| |
| Monitoring (—l% Sensor — Job
| | Reports

Figure 2. Pegasus adaptive support.

the components in Figure 2 in more detail. The diagram shows how the sensor and effector of the
adaptive software interact with the parts of the Pegasus environment to adapt executing workflows.

Monitoring: To monitor the progress of an executing workflow, job queue, execute and termination
events are tracked. These, respectively, indicate when Condor submits a task to the remote scheduler,
when the remote scheduler indicates that the task has started to execute, and when the remote
scheduler indicates that the task has completed. These are sensed using a LogSensor that polls for
new entries in the DAGMan log file every 100 ms. The DAGMan log file records all events about
the progress of a workflow’s execution. Each entry of the log file is parsed to determine if it contains
an event of interest and passed to Analysis.

Analysis: The role of the analysis step is to establish whether the workflow is performing according
to the expectations when it was compiled. If expectations are not being met, then it may be possible
to improve on the plan that is being pursued. To support the concise and declarative description

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

1972 K. LEE ET AL.

Input Streams:
events :

int timestamp, char event, char job
asstgnments :

char job, char site, int estimate

Queries:

jobqueued :
select timestamp, job from events where event =" ULOG_SUBMIT",;
register stream jobqueued (int timestamp, char job);

jobexecuted :
select timestamp, job from events where event =" ULOG_-EX ECUTE’;
register stream jobexecuted (int timestamp, char job);

queuedtime :
select execute.timestamp — queued.timestamp, execute.job
from jobqueued as queued, jobexecute as execute where queued.job = execute.job;
register stream queuedtime (int queuetime, char job);

queuetimeandestimate :
select queue.timestamp, queue.job, assignment.site, assignments.estimate
from queuetime as queue, jobassignments as assignments where queue.job = assignments.job;
register stream queuetimeandestimate (int timestamp, char job, char site);

Analysis:
select “LongQueue”, site from queuetimeandestimate[Rows 3| where AVG(time — estimate) > threshold,
select “ShortQueue”, site from queuetimeandestimate[Rows 3] where AVG(estimate — time) > threshold;

Figure 3. Filtering monitoring events in CQL.

of patterns in the monitoring data, the continuous query language (CQL) [29] is used to group
and analyse the events produced by monitoring. The CQL queries that implement the analysis are
given in Figure 3. Although the style of the queries is like SQL, it differs in that they operate in
a continuous way. Every time a new tuple arrives in a stream, the queries are evaluated as well as
any output produced. The queries can operate over varying windows of time or number of tuples.
In this case, four intermediate queries operate on the raw input stream or the output of the other
queries to enable a final Analysis query to be evaluated. The queries look for a sustained substantial
increase or decrease in batch queue times per site compared with the job batch queue predictions
created by the scheduler. If there is an output from this analysis, the planner is notified. In addition
to determining if adaptations may be necessary, Analysis also generates average queue times for
each available site for use by the scheduling algorithm. Queue times are derived using relevant
event information from Monitoring.

Planning: When analysis detects a sustained change in batch queue times for a site, rescheduling
may need to be performed. To examine this, the Pegasus planner is called to propose an alternative
schedule taking into account recent queue times.

To ensure that jobs are not unnecessarily repeated, the replica catalogues used by Pegasus to share
results within and between workflows are updated with results already produced by the workflow.
This is because each job in a concrete workflow outputs its results as intermediate data in the form
of a file. The relevant folders on the execution sites are scanned for intermediate results, which are
added to the replica catalogue.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

% ADAPTIVE WORKFLOW PROCESSING AND EXECUTION IN PEGASUS 1973

Input:
Workflow W
List of Sites S
List of Average Queue Times SQ

1. Calculate PSs the proportion of the workflow each site s should process.
for Sites € S

PSs = (1/5Qs)/ > 2ies(1/5Qi)

2. Calculate Nums the number of jobs each site s should process.
for Sitese€ S
Numgs = PSs * size(W)

3. Create AS a queue of assignable sites.
for Sites € S
for Int i =1 to Nums
AS.push_back(s)

4. Randomise the list of assignable sites.
AS.randomise()

5. Create Aj, the job to site assignment list.
for Jobje W
Aj = AS.pop_front()

Figure 4. Adaptive scheduling algorithm.

As discussed in Section 2.2, Pegasus currently has four different schedulers, which it uses to
assign jobs to resources. However, these were designed to schedule statically using limited (or
statically estimated) information about the performance characteristics of execution resources. To
enable adaptive behaviour, a scheduling algorithm is needed that takes account of information
gleaned by Monitoring. To this end, we implemented a new scheduler, which uses data collected
about the average queue times of each available site to decide where to schedule each job in the
workflow. Figure 4 shows this scheduling algorithm that enables adaptivity.

The scheduler depends on the presence of historic data containing the average queue times
for each available site. This is generated by Amnalysis; when no prior data on average site
queue times are available a default value of O is used. The scheduler allocates work to each
site in inverse relation to the average queue time since the start of the execution of the workflow.
It is as follows: Step I calculates the proportion of a workflow (in number of tasks) that
should be assigned to each site, based on average batch queue times. Step 2 calculates the number
of jobs each site should process, by multiplying the number of jobs of the workflow by the
proportion each site should be assigned. Steps 3 and 4 create a randomized list of sites based
on the number of jobs each site should be assigned from Step 2. Step 5 creates the final job-to-site
assignment list.

Not every new schedule proposed by the scheduler is deployed; new schedules are compared
with the existing executing schedule to see if they are predicted to improve on the current plan. The
cost of adaptation (recorded from previous adaptations) is also taken into account when deciding

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

1974 K. LEE ET AL. %

whether or not to deploy a new schedule. If it is decided to deploy it, the next component, execution,
is called. In addition to returning a list of job assignments to sites, the scheduler also generates a
list of predicted batch queue times for each job on each site. These predictions are later used by
Analysis to detect substantial deviations from the actual running times. The predicted batch queue
time is the average queue time for the site to which the job has been assigned. These are made
available to Analysis in the form of the assignments input stream in Figure 3.

A possible further improvement to the scheduling strategy proposed here is to use a
previous schedule from our scheduler as the basis of the schedule for the next workflow to
be deployed. This would result in a possibly better initial schedule, however there is also a
potential for an incorrect schedule if the cluster queue times changed drastically between workflow
executions.

Execution: At the stage that execution is called, there is a currently executing workflow. Execution
stops the executing workflow and deploys the new one using Pegasus commands.

4. EXPERIMENTAL EVALUATION
4.1. Experiment setup

The aim of the experimental evaluation is to explore the effect of the adaptive approach on response
time in a range of scenarios. The experiments use two abstract workflow styles. The first type is
a linear workflow, which is simply a DAG were each subsequent task is dependent on the file
created by the previous task, and may contain any number of tasks. With these dependencies
present, the tasks in the workflow will execute in series. In our experiments we considered an
instance with 50 tasks.

The second workflow type is that of a Montage workflow, which creates a large mosaic image
from many smaller astronomical images [1]. These can be of varying sizes depending on the size of
the area of sky of the mosaic. A simple Montage workflow is illustrated in Figure 5. The numbers
represent the level of each task in the overall workflow. This corresponds to the size used in our
experiments (25 tasks, equivalent to a 0.2 degree area).

For these experiments two clusters were used, which we designate Cluster 1 and Cluster 2.
Cluster 1 has as submission site a 2.4 Ghz Xeon with 2 GB of RAM, and eight worker nodes each
with a 2.4 Ghz Xeon with 2 GB of RAM connected together by Gigabit Ethernet. Cluster 2 has as
submission site a 2 Ghz dual core Opteron with 4 GB RAM, and 112 worker nodes each with a
dual core 1 Ghz P3 with 4 GB RAM connected together by 100 Megabit Ethernet. All jobs are set
up and submitted from the Cluster 1 submission site.

For each of the experiments, we submitted two workflows in parallel, a non-adaptive one and
an adaptive one. The non-adaptive workflow uses simple round-robin scheduling, whereas the
adaptive workflow uses the adaptive scheduling mechanism described in Section 3. If no historic
data are available, the scheduling of the adaptive workflow should be equivalent to that of the
non-adaptive workflow.

It should be noted that the resources, as detailed above, are not dedicated to the experiments
in this paper, so they may be influenced by submissions from other users. However, in order to
test the effect of the adaptivity strategy better, in some experiments we also introduced additional

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

% ADAPTIVE WORKFLOW PROCESSING AND EXECUTION IN PEGASUS 1975

Figure 5. A simple montage workflow [1].

(controlled) loads to the clusters. Thus, we group the results of the experiments according to the
model for additional external load considered:

e No additional external load: For the purposes of the experiment, no external load is applied; the
clusters are still, however, subject to third-party external load.

o Constant additional external load: For the duration of the experiment, additional linear workflows
are submitted to a cluster. This has the effect of providing a constant additional external load
above any third-party load on the clusters.

e Temporary additional external load: For a period of time specified in each experiment, linear
workflows of a specified size and number are submitted to a cluster creating a temporary increase
in load.

At the end of each experiment, the log files were parsed to produce the results. In order to
illustrate long waiting times in the queue for individual jobs of a workflow, the graphs plot both
the queue time and execution time for each job separately; even though this distinction may not be
immediately obvious in the case of experiments using workflows with a relatively large number of
tasks, the graphs still indicate trends. The vertical axis of the graphs shows wall-clock time in the
form hours:minutes:seconds. For each experiment, graphs for non-adaptive and adaptive workflow
execution are plotted side-by-side to allow comparison.

4.2. No additional external load
Experiment 1: The objective of this experiment is to compare the adaptive and non-adaptive ap-

proaches where no additional external load has been submitted to the clusters and there is no
historical information on the cluster performance. Adaptive and non-adaptive linear workflows

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

1976 K. LEE ET AL.

non-adaptive non-adaptive non-adaptive
03:30:00 F 7 7 el T T T T "1 02:45:00 — T Kely T T T 00:30:00 T K.ey T T T
Job Queued m—— 02:30:00 [Job Queued m— 00:27:00 | Job Queued mm— -
-00: L ing E— . i i
03:00:00 Job Executing 02:15:00 Job Executing s E 002400 | Job Executing s 1
02:30:00 | 3 02:00:00 A 0021:00 | i
s | 45 - |
02:00:00 01:45:00 00:18:00 | I
@ :00:! F 1 o 01:30:00 F 1 2
E E E 00:15:00 | B
01:15:00 [3 -
01:30:00 |] 00:12:00 |]
01:00:00 F E I
01:00:00 [b 00:45:00 E 3 00:09:00 [I]
00:30:00 F 3 00:06:00 | m
o000 |] e
00:15:00 F E 00:03:00 [1
00:00:00 L1 1 1 1 1 1 | 00:00:00 B 111 1 1 11 00:00:00 _—I—I—I—L
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25
Job ID Job ID Job ID
Experiment la Experiment 2a Experiment 3a
Adaptive Adaptive Adaptive
i 02:45:00 F T T T T T T T T T3 00:30:00 T T T T T
03 3:”}0 T T T K;*‘ T T T T T Key Key
E Job Queved m— 02:30:00 F Job Queued mm— 00:27:00 |- Job Queued m— b
Azo000 ? Job Execuing e 3 02:15:00 Job Executing s E 002400 | Job Executing s E
F s
023000 - J_,-"' + 02:00:00 F E 00:21:00 | l
5 . 45+ E E
St f_.f‘ 01:45:00 .-.-_. oo:18:00 I
2 E 7 @ 01:30:00 F 4 o
E = £ £ 00:15:00 | 4
= C F otis00 F iF -
01:2000 £ E 00:12:00 | E
£ - 01:00:00 F E I
010000 4 00:45:00 [E 00:09:00 |- I]
o .30 E 3 00:06:00 | -
00:3000 00:30:00 —
E 00:15:00 F E 00:03:00 1
000000 Bl Ll 00:00:00 s 00:00:00 -—t—t—t—h

E 10 15 20 25 30 35 40 45

5 10 15 20 25 30 35 40 45 5 10 15 20 25
Jeb D
Job ID Job ID
Experiment 1b Experiment 2b Experiment 3b

Figure 6. Results of experiments with no additional external load.

(50 tasks each) are submitted in parallel, with access to Clusters 1 and 2, with no additional ex-
ternal load. The results of Experiment 1 are presented in Figure 6, which shows that the adaptive
workflow (1b) performs less well than the non-adaptive one (1a). This is because it has to build
up knowledge about execution that can form the basis for informed adaptations. When enough
knowledge has been gained, an adaptation is performed, which is visible on the graph as a gap in
the linear workflow execution. The point in time when, as a result of an adaptation, a new schedule
is applied is denoted with a black horizontal line in the graph. The adaptive workflow adapts twice.
The gains that result from the adaptation are too modest to make up for the cost of adapting. This
is because the clusters are performing similarly and consistently across the execution, and thus the
original non-adaptive schedule is efficient.

Experiment 2: The objective of this experiment is to compare the adaptive and non-adaptive
approaches where no additional external load has been submitted to the clusters and historical
information about the cluster performance is available. The same workflows are submitted as in

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

% ADAPTIVE WORKFLOW PROCESSING AND EXECUTION IN PEGASUS 1977

Experiment 1. With prior knowledge about the environment (from Experiment 1), the results of
Experiment 2 are as shown in Figure 6. No adaptations are carried out for this run, and the non-
adaptive (2a) and adaptive (2b) workflows perform similarly.

Experiment 3: The objective of this experiment is to compare the adaptive and non-adaptive
approaches with no additional external load in the presence of historical information with a more
complex workflow. Adaptive and non-adaptive Montage workflows are submitted in parallel, with
access to Clusters 1 and 2, with no additional external load. Prior knowledge is available about
the environment (from Experiment 1). The results of Experiment 3 are shown in Figure 6, which
indicates that the clusters act as expected and no adaptations are carried out for this run for either
the non-adaptive (3a) or adaptive (3b) execution. Where tasks are run in parallel, this reflects the
inherent parallelism of Montage (see Figure 5).

Summary: Once the adaptive infrastructure has been primed with current information about
the environment, it correctly refrains from performing adaptations where none are required. The
remainder of the experiments assume the availability of historical information about the clusters.

4.3. Constant additional external load

Experiment 4: The objective of this experiment is to compare the adaptive and non-adaptive ap-
proaches with constant additional external load on the smaller cluster. The same linear workflows
are submitted as in Experiment 1, with additional constant external load supplied by the submis-
sion of 50 linear workflows (100 tasks each) to Cluster 1 at the start. The results are presented in
Figure 7, which shows that the adaptive workflow (4b) changes its schedule early in the workflow
execution, leading to a significant improvement in the response time of the adaptive workflow
compared with the non-adaptive (4a) workflow. The adaptive response time is 17% less than that
in the non-adaptive case.

Experiment 5: The objective of this experiment is to compare the adaptive and non-adaptive
approaches with constant additional external load on the larger cluster. The same linear workflows
are submitted as in Experiment 4, with additional constant external load supplied by the submission
of 50 linear workflows (100 tasks each) to Cluster 2 at the start. The results are presented in
Figure 7, which shows that the adaptive workflow (5b) changes its schedule once, early in the
workflow execution. In this case, the adaptive workflow completes within 1 min of the non-adaptive
workflow (5a) despite having performed an adaptation. This can be explained because the larger
cluster can accommodate more load before its queue times increase, leading to adaptations that
have less effect.

Experiment 6: The objective of this experiment is to compare adaptive and non-adaptive
approaches with constant additional external load on a small cluster with a complex workflow.
Adaptive and non-adaptive Montage workflows are submitted in parallel to Clusters 1 and 2, with
additional constant external load supplied by submitting 50 linear (100 task each) workflows to
Cluster 1 at the start. The results are presented in Figure 7, which shows that the adaptive work-
flow (6b) changed the schedule early on in the workflow execution, leading to a significant improve-
ment in the performance when compared with the non-adaptive workflow (6a). By moving work
away from the heavily loaded Cluster 1, long queue times have been avoided, especially for the jobs
with Job Id 10, 11, 14 and 15. The adaptive response time is 38% less than that in the
non-adaptive case.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

1978 K. LEE ET AL.

non-adaptive non-adaptive non-adaptive
— T T T T T T T T 02:45:00 — T T T T T T T T 00:30:00 T T T T T
Key Key Key
03:30:00 | Job Queued m— - 02:30:00 F Job Queued m— E 00:27:00 | Job Queued m—
- Job Executing s 02:15:00 E Job Executing = E 002400 | Job Executing s
03:00:00 [E
02:00:00 | E 00:21:00 | I]
02:30:00 E 4500 E E
01:45:00 00:18:00 | -]
01:30:.00 F E
2 oz20000 f 1 2 2 oo1s00 i]
= F o1:15:00 F E 5
20:00 E E 00:12:00 | E
01:30:00 01:00:00 F E
01:00:00 [E 00:45:00 | E 000900]
00:30:00 [E 00:06:00 |]
00:30:00 E 001500 | E 00:03:00 |]
00:00:00 TR 00:00:00 TR Y RS 00:00:00 m—l—l—l—l-
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25
Job ID Job ID Job ID
Experiment 4a Experiment 5a Experiment 6a
Aclapd ve Az fve Adaptive
T T T 7T T T T s T T T T T T T T3 (03000 n T T T T T
r kay E Kay E Ky
03:30400 Job Qusued m— B 022000 ot Queusd — * O0:E7 00 Job Qususd — B
F .Job Essculing s F Job Exscuiing s .{‘ E Job Esacwing s
o 021500 F E O0:2400 - |
030000 F 3 E - E
E 020000 F 3 oozt o0 F 1
023000 F 4 g E E| C
£ 014500 | o0-1800 F]
i F o 013000 F 4 o C
E 020000 1 E E E 00500
b o F omson 1 = e
01:3000 £ 01:0000 F 3 3 : E —]
010000 E 00:4800 £ E 000600 B I.]
E 0030 00 1 000600 = . I l]
BRI 1 00:1500 Eo’ E 00,0300]
00000 B 1 4 s 4 000000 Bl b4 0G:0000 “ i
5 10 15 20 25 30 35 40 45 5 10 156 20 25 30 35 40 45 5 10 15 m 26
Job 1D Job IO Jiob ID
Experiment 4b Experiment 5b Experiment 6b

Figure 7. Results of experiments with constant additional external load.

Summary: The constant external load is handled well by the adaptive scheduling scheme; few
adaptations are required, but these provide lasting benefits, and significant response time improve-
ments are observed.

4.4. Temporary additional external load

Experiment 7: The objective of this experiment is to compare adaptive and non-adaptive
approaches with temporary external load on the small cluster with a linear workflow. The same
workflows are used as in Experiment 1, with a temporary external load supplied by submitting
50 linear (10 tasks each) workflows to Cluster 1 at 60 min into the experiment. The results of the
experiment are shown in Figure 8, in which one adaptation is performed just after 60 min and an-
other when the temporary workflows complete after 120 min. The adaptation has reduced average
queue times during the time of additional load by moving jobs away from the heavily loaded cluster.
The adaptive workflow (7b) response time is 7% less than that in the non-adaptive case (7a).
Experiment 8: The objective of the experiment is to compare adaptive and non-adaptive ap-
proaches with temporary external load on the large cluster with a linear workflow. The same

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

ADAPTIVE WORKFLOW PROCESSING AND EXECUTION IN PEGASUS 1979

Unadaptive non-adaptive non-adaptive
024500 T T T 1T T T T T T3 02:30:00 T T T T T T T T T 30:00 T T T T T
Key Key Key
02:30:00 F Job Queued m— 02:15:00 [Job Queued m— B 27:00 | Job Queued m— B
02:15:00 F Job Executing messsss 3 02:00:00 E Job Executing s E 2a00 b Job Executing s .
02:00:00 [] E 01:45:00 F E 21:00 [l'
-45: E o E
01:45:00 01:30:00 E E 18:00 | 1
01:30:00 F E
.GE) _ﬂé 01:15:00 7 .g 15:00 [- B
= 01:15:00 F 4 - =
01:00:00 [E 12:.00 | I .
01:00:00 F E r I
00:45:00 E 00:45:00 | s E 09:00 f]
0030:00 F E 00:30:00 E 06:00 |]
00:15:00 F 4 00:15:00 F E 03:00 m
00:00:00 P S S S R T R 00:00:00 P T S S R T T 00:00 L L L L
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25
Job ID Job ID Job ID
Experiment 7a Experiment 8a Experiment 9a
Adaptiva Adaptive Adaptive
G20 T T T T T T T T T g 023000 T T T T T T T T 0000 T T T T T
Kay Ky A Kay
02:3000 & Job Qusued — 9 021500 Job Qusnsd S] 27400 - Job Cuwe ped I -
Job Execiing . E Job Execulng s Job Execiling mmmm
021500 A ozm000 F)__J" 3 zam |]
020000 F -._‘.r 01:4500 E 7 3 zi00 []
M ABOE {1 oumoog _,l‘f {1 smf l.
@ 013000 & 4 2 [
E G .-".r E 011500 F __.-‘* E E 150 -
) - 01:00100 1200 - 1
01:0000 & E .‘u‘
oo E E 00:4800 F .{._,. 3 000]
00:3000 £ 3 003000 E 0el] - _ b
001500 E E 001500 & E 000 .
oo i i i s e v o] gl cias o] o R o o o
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 om 2E
Job 1D Job D Job D
Experiment 7b Experiment 8b Experiment 9b

Figure 8. Results of experiments with temporary additional external load.

workflows are used as in Experiment 1, with a temporary external load supplied by submitting
50 linear (10 tasks each) workflows to Cluster 2 at 60 min into the experiment. The results for
the adaptive (8b) and non-adaptive (8a) workflows for this experiment are shown in Figure 8. In
this case, the adaptive workflow performs an adaptation at 60 min into the experiment, at the time
that additional load is detected on Cluster 2. A further adaptation is performed at around 105 min
into the experiment, after the temporary workflows have completed. Both workflows finish at a
remarkably similar time (within 10s), this can be attributed to the load having a minimal overall
effect on Cluster 2.

Experiment 9: The objective of the experiment is to compare adaptive and non-adaptive ap-
proaches with temporary external load on a small cluster with a complex workflow. Adaptive (9b)
and non-adaptive (9a) Montage workflows are submitted in parallel to Clusters 1 and 2, with tem-
porary external load supplied by submitting 50 linear (10 task) workflows to Cluster 1 at 10 min
into the experiment. The results of the experiment are shown in Figure 8. The results show that an
adaptation is performed once, after 3 min. The adaptive workflow jobs are then subject to shorter
queue times than the non-adaptive ones. Even after the temporary workflows are complete, no more

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

1980 K. LEE ET AL.

adaptations are performed due to the jobs performing well on Cluster 2. The adaptive response time
is 21% less than that in the non-adaptive case.

Summary: A temporary external load impedes the progress of a static workflow less than one that
is present all the time, so the potential improvements available from the adaptive techniques are
reduced compared with the constant external load case. However, adaptation takes place when the
temporary external load is introduced, and in one case when it is removed, providing significantly
reduced response times.

5. CONCLUSIONS

We have presented an approach to adaptive workflow processing that: (i) adds adaptive scheduling
to an existing workflow infrastructure with minimal intrusion; (ii) illustrates the use of the MAPE
functional decomposition from the autonomic computing community in a new setting, including
the use of stream queries for identifying patterns of interest in monitoring events; and (iii) demon-
strates significant performance improvements in experiments involving different forms of imbalance
and workflows, even though the environment provides limited fine-grained control over the execu-
tion timing of individual jobs. Adaptive workflow processing promises to provide a more robust
performance in uncertain environments. Our experiments also indicate that workflows with a higher
degree of inherent parallelism, such as Montage, may benefit more from adaptation. Finally, our
work has demonstrated that effective adaptation can be added to an established grid workflow
infrastructure at modest development cost, making use of the existing facilities for monitoring and
control.

ACKNOWLEDGEMENTS

We are pleased to acknowledge the support of the U.K. Engineering and Physical Science Research Council.
The ISI work was supported by the National Science Foundation under grants: CNS-0615412 and OCI-0722019.

REFERENCES

1. Deelman E, Singh G, Sa M, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman G, Good J, Laity A, Jacob J,
Katz D. Pegasus: A framework for mapping complex scientific workflows onto distributed systems. Scientific Programming
2005; 13(3):219-237.

2. Deelman E, Gannon D, Shields M, Taylor I. Workflows and e-Science: An overview of workflow system features and
capabilities. Future Generation Computer Systems 2008; 25(5):528-540.

3. Fahringer T, Prodan R, Duan R, Hofer J, Nadeem F, Nerieri F, Podlipnig S, Qin J, Siddiqui M, Truong H, Villazon A,
Wieczorek M. Askalon: A development and grid computing environment for scientific workflows. Workflows for eScience,
Scientific Workflows for Grids. Springer: Berlin, 2007; ISBN: 978-1-84628-519-6.

4. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T, Glover K, Pocock M, Wipat A, Li P. Taverna:
A tool for the composition and enactment of bioinformatics workflows. Bioinformatics 2004; 20(17):3045-3054.

5. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler: An extensible system for design, execution
of scientific workflow. 16th International Conference on Scientific and Statistical Database Management (SSDBM’04),
Santorini Island, Greece, 21-23 June 2004.

6. Taylor I, Shields M, Wang I, Harrison A. The triana workflow environment: Architecture and applications. Workflows
for e-Science 2007; 320-339.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981
DOI: 10.1002/cpe

ADAPTIVE WORKFLOW PROCESSING AND EXECUTION IN PEGASUS 1981

10.

11.

12.

14.

15.

16.

17.

18.

20.

21.

23.

24.

25.

26.
217.

28.
29.

. Blythe J, Jain S, Deelman E, Gil Y, Vahi K, Mandal A, Kennedy K. Task scheduling strategies for workflow-based

applications in grids. IEEE Symposium on Cluster Computing and the Grid, Cardiff, U.K., 2005.

. Wieczorek M, Prodan R, Fahringer T. Scheduling of scientific workflows in the askalon grid environment. SIGMOD

Record 2005; 34(3):56—62.

. Heinis T, Pautasso C, Alonso G. Design, evaluation of an autonomic workflow engine. 2nd International Conference on

Autonomic Computing. IEEE Computer Society: Silver Spring, MD, 2005; 27-38.

Duan R, Prodan R, Fahringer T. Run-time optimisation of grid workflow applications. Proceedings of the International
Conference on Grid Computing. IEEE Press: New York, 2006; 33-40.

Lee JH, Chin SH, Lee HM, Yoon T, Chung KS, Yu HC. Adaptive workflow scheduling strategy in service-based grids.
GPC. Springer: Berlin, 2007; 298-309.

Yu Z, Shi W. An adaptive rescheduling strategy for grid workflow applications. /PDPS. IEEE Press: New York, 2007;
1-8.

. Sakellariou R, Zhao H. A low-cost rescheduling policy for efficient mapping of workflows on grid systems. Scientific

Programming 2004; 12(4):253-262.

Lee K, Sakellariou R, Paton NW, Fernandes AAA. Workflow adaptation as an autonomic computing problem. Proceedings
of 2nd Workshop on Workflows in Support of Large-scale Science, Monterey Bay, U.S.A., 2007; 29-34.

Topcuoglu H, Hariri S, Wu MY. Performance-effective and low-complexity task scheduling for heterogeneous computing.
IEEE Transactions on Parallel and Distributed Systems 2002; 13(3):260-274.

Zhao H, Sakellariou R. Advance reservation policies for workflows. Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP) (Lecture Notes in Computer Science, vol. 4376). Springer: Berlin, 2006; 47-67.

Frey J, Tannenbaum T, Livny M, Foster IT, Tuecke S. Condor-G: A computation management agent for multi-institutional
grids. HPDC, San Francisco, U.S.A., 2001; 55-63.

Deelman E, Callaghan S, Field E, Francoeur H, Graves R, Gupta N, Gupta V, Jordan T, Kesselman C, Maechling P,
Mehringer J, Mehta G, Okaya D, Vahi K, Zhao L. Managing large-scale workflow execution from resource provisioning
to provenance tracking: The cybershake example. Proceedings of the Second IEEE International Conference on e-Science
and Grid Computing. IEEE Computer Society: Washington, DC, U.S.A., 2006.

. Berriman GB, Deelman E, Good J, Jacob J, Katz DS, Kesselman C, Laity A, Prince TA, Singh G, Su M. Montage: A

grid enabled engine for delivering custom science-grade image mosaics on demand. Proceedings of the SPIE Conference
on Astronomical Telescopes and Instrumentation, Glasgow, U.K., June 2004.

Brown DA, Brown D, Brady P, Dietz A, Cao J, Johnson B, McNabb J. A case study on the use of workflow technologies
for scientific analysis: Gravitational wave data analysis. Workflows for e-Science. Springer: Berlin, 2006.

Barish BC, Weiss R. LIGO and the detection of gravitational waves. Physics Today 1999; 52:44-50.

. Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, Kesselman C, Kunszt P, Ripeanu M, Schwartzkopf B,

Stockinger H, Stockinger K, Tierney B. Giggle: A framework for constructing sclable replica location services. Proceedings
of Supercomputing 2002 (SC2002), Baltimore, U.S.A., November 2002.

Deelman E, Kesselman C, Mehta G. Transformation catalog design for griphyn. Technical Report, GriPhyN-2001-17,
2001. Available at: www.griphyn.org [10 September 2001].

Czajkowski K, Fitzgerald S, Foster I, Kesselman C. Grid information services for distributed resource sharing. Proceedings
of the Tenth IEEE International Symposium on High-Performance Distributed Computing (HPDC-10). IEEE Press:
San Francisco, U.S.A., August 2001.

Allcock B, Bester J, Bresnahan J, Chervenak AL, Foster I, Kesselman C, Meder S, Nefedova V, Quesnel D, Tuecke S.
Data management and transfer in high-performance computational grid environments. Parallel Computing Journal 2002;
28(5):749-771.

Baru C, Moore R, Rajasekar A, Wan M. The SDSC storage resource broker. CASCON’98, Toronto, Canada, 1998.
Czajkowski K, Foster I, Karonis N, Kesselman C, Martin S, Smith W, Tuecke S. A Resource Management Architecture
for Metacomputing Systems (Lecture Notes in Computer Science, vol. 1459). Springer: Berlin, 1998; 62-82.

Kephart J, Chess D. The vision of autonomic computing. IEEE Computer 2003; 36(1):41-50.

Arasu A, Babu S, Widom J. The CQL continuous query language: Semantic foundations and query execution. The VLDB
Journal 2006; 15(2):121-142.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1965-1981

DOI: 10.1002/cpe

