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ABSTRACT

Current instruction fetch policies in SMT processors are ori-
ented towards optimization of overall throughput and/or
fairness. However, they provide no control over how indi-
vidual threads are executed, leading to performance unpre-
dictability, since the IPC of a thread depends on the work-
load it is executed in and on the fetch policy used.

From the point of view of the Operating System (OS), it
is the job scheduler that determines how jobs are executed.
However, when the OS runs on an SMT processor, the job
scheduler cannot guarantee execution time constraints of
any job due to this performance unpredictability.

In this paper we propose a novel kind of collaboration
between the OS and the SMT hardware that enables the
OS to enforce that a high priority thread runs at a specific
fraction of its full speed. We present an extensive evalu-
ation using many different workloads, that shows that this
mechanism gives the required performance in more than 97%
of all cases considered, and even more than 99% for the
less extreme cases. At the same time, our mechanism does
not need to trade off predictability against overall through-
put, as it maximizes the IPC of the remaining low priority
threads, giving 94% on average (and 97.5% on average for
the less extreme cases) of the throughput obtained using
instruction fetch policies oriented toward throughput maxi-
mization, such as icount.
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1. INTRODUCTION

In Simultaneous Multithreaded (SMT) architectures, first
introduced in [11][23][25], several threads® are running to-
gether, sharing resources at the micro-architectural level.
This allows an SMT to increase throughput with a moder-
ate area overhead over a superscalar processor [2][3][13][17].
In an SMT, the front end of a superscalar is adapted in
order to be able to fetch from several threads while the
back end is shared among the threads. A fetch policy, e.g.,
icount [22], decides how instructions are fetched from the
threads, thereby implicitly determining the way internal pro-
cessor resources, like rename registers or IQ entries, are
allocated to the threads. The common characteristic of
many existing fetch policies is that they attempt to increase
throughput and/or fairness [16] by stalling or flushing threads
experiencing L2 misses [4][7][15][21], or reduce the effects of
mispeculation by stalling on hard-to-predict branches [14].
These fetch policies have been quite successful in that they
increase throughput and fairness, or reduce mispeculation.

However, a problem with all the fetch policies proposed
until now is that it is unpredictable what the performance of
a certain thread in a workload actually is. Figure 1 shows the
IPC of the gzip benchmark when it is run alone (full speed)
and when it is run with other threads using two different
fetch policies, icount [22] and flush [21]. As we can see, its
IPC varies much, depending on the fetch policy as well as
characteristics of the other threads running in the context.
For instance, in a 3 thread context, its IPC can be higher
than in a 2 thread context. This is caused by the fact that
management of resources (IQ entries, registers, FUs) is not
explicit. Currently, there is no fetch policy that can enforce
that resources are allocated to a particular thread in such a

In this paper we use the terms job and thread interchange-
ably.
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Figure 1: TPC of gzip for different contexts and dif-
ferent fetch policies

way that this thread would perform similarly regardless its
context.

The key issue is that in traditional SMTs, although the
OS still assembles the workload, it is now the processor that
decides how to execute this workload and hence part of the
traditional responsibility of the OS has “disappeared” into
the processor. The result is that running times of jobs be-
come unpredictable and depend on the characteristics of the
context in which these jobs execute. Hence, the job sched-
uler cannot control how fast threads are executed. One con-
sequence is that the OS may not be able to guarantee time
constraints on the execution of a thread if that thread is
to be run concurrently with other threads, even though the
processor has sufficient resources to do so. The only way out
is that the OS runs time critical applications alone on the
machine so that its knowledge about the execution time of
an application can be exploited to satisfy deadlines. How-
ever, this goes against the spirit of SMT processors and ob-
viously under-utilizes resources. We would like to be able to
run several applications at the same time and still be able
to predict the execution time of at least one application.
To deal with this situation, the OS should be able to ex-
ercise more control over how threads are executed and how
they share the processor’s internal resources. The hardware
should guarantee the OS some kind of Quality of Service
that can be used by the OS to better schedule jobs.

Thus, if we want to be able to control the speed of a par-
ticular thread on an SMT processor, current approaches to
resource management by means of instruction fetch policies
are no longer adequate. Hence, a new paradigm for resource
management inside SMT processors is required.

We would like to have a mechanism that controls the ex-
ecution time of certain threads, independent of the other
threads in the workload, and that enables a much more pow-
erful dialogue between the OS and the SMT hardware. Such
a dialogue and control over resources is needed for general
purpose high performance SMT usage. It might also be par-
ticularly useful in soft real-time and embedded systems, for
which there is a growing interest in using SMT processors
due to their high throughput at low cost [1]. In such applica-
tions, the OS needs to satisfy certain real-time requirements
for the jobs running. The SMT should be in a position to
interact with the OS in order to meet such requirements.

In this paper, we present a new OS/SMT collaboration.
The OS selects a workload consisting of several programs
and indicates to the processor that a certain thread should
be considered as a High Priority Thread (HPT) and must
execute at a certain target IPC that represents a given per-
centage of its full speed. We propose and evaluate a novel
mechanism that uses a dynamic allocation of resources and
that accomplishes the previous goal more than 99% of times,
while allows full use of all internal resources achieving 94%
of the throughput obtained with icount. The solution of
above problem means that we have got execution time pre-
dictability in High Performance SMT Processors and also,
that a capability for full execution control can be offered to
the OS with minimum performance penalty. Hence, we do
not trade off QoS against performance.

This paper is structured as follows. We present our novel
approach to the OS/SMT collaboration in section 2. In
Section 3, we give a discussion of the problems addressed
in this paper. Section 4 presents our mechanism to solve
these problems. In section 5, we discuss our experimental
environment. Section 6 shows the experimental results. In
section 7, we discuss related work. Finally, Section 8 is
devoted to conclusions.

2. A NOVEL APPROACH TO COLLABO-

RATION BETWEEN OS AND SMT

It is clear that a hardwired fetch policy that is geared to-
wards one particular goal (e.g., throughput maximization)
cannot solve this problem in the general case. Therefore, we
propose to address it from a different point of view. We con-
sider the SMT as having a collection of sharable resources.
We add a mechanism to control how this sharing is exactly
done. In our view, there is a tight interaction between OS
and processor. The OS gives the processor requests and/or
mandates. The processor, in turn, decides upon how to ful-
fill these requests by assigning resources to threads.

Operating System

Workload Requirements feedback
OS fine
tuning
i
SMT g

Processor

Figure 2: Interaction between OS and architecture
to enforce QoS requirements.

We approach resource sharing for SMT as a Quality of
Service (QoS) problem. Instead of trying to find a policy
that would optimize for a predefined objective, we assume
that there is an OS-processor interaction in which the SMT



processor supports policies that can be tuned by the OS. Our
view is that this can be achieved by having the SMT pro-
cessor provide ‘levers’ through which the OS can fine tune
the internal operation of the processor as needed. A graph-
ical illustration is given in Figure 2. Such levers can include
prioritizing instruction fetch for particular threads, reserv-
ing parts of the resources like 1Q entries, prioritizing issue,
etc. Existing policies do not allow such fine tuning since
they assume that there is a statically predefined objective.
Their orientation towards achieving this objective (whether
this is maximization of total IPC or minimization of power
consumption) does not leave space for much flexibility, when
an application’s needs dictate so.

This approach can in principle be applied in very many
situations. In this paper, we concentrate on one particular
instance of the QoS approach, namely, guaranteeing a re-
quired performance for a High Priority Thread and giving
best effort to the remaining Low Priority Threads, maximiz-
ing their throughput.

3. AQUALITY OF SERVICE PROBLEM

In this paper we focus on general high performance out-
of-order SMT processors. We propose a mechanism that
provides control over the execution speed of a designated
High Priority Thread. At the same time, we want to give
best effort to the remaining Low Priority Threads and max-
imize their throughput.

In traditional general purpose systems, the OS can decide
to give the machine for a certain fraction of the time to a par-
ticular job to meet a deadline, or it can decide the moment
when a job needs to be fired up the latest. The job sched-
uler in the OS can also decide to assemble a particular job
schedule in order to maximize the utilization of peripherals,
etc. Compared to a traditional superscalar processor, there
exists one degree of freedom more in an SMT processor: jobs
can be given a certain share of the available resources. This
gives the OS more freedom in scheduling jobs and allows for
the concurrent execution of other important but not so time
critical jobs. Moreover, in the present approach the total
throughput of the system can actually increase compared to
existing fetch policies like icount, as we show in Section 6.
This mechanism opens a kind of collaboration between the
Operating System and the SMT processor, not addressed
before in the literature. A possible use for such a mecha-
nism can be soft real time systems. Therefore, in this paper
we focus on the following challenge:

Given a workload of N applications® and o High
Priority Thread (HPT) in this workload, find a
resource management policy that ensures that the
HPT runs at (at least) a given target IPC that
represents X% of its IPC when it would run alone
on the machine, while at the same time mazximize
the throughput for the remaining N —1 Low Pri-
ority Threads (LPTs).

Note that a naive option is to run the HPT alone on the
machine. However, in that case, the throughput of the LPTs
would be zero, which is clearly not the maximal throughput
they could achieve. We assume that the OS has some goals

We assume throughout the paper that the workload is
smaller than or equal to the number of hardware contexts
supported by the processor.
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in mind and decides that a certain high priority job needs
a certain percentage of its full speed in order to satisfy this
goal. The OS subsequently instructs the processor to realize
this percentage. We show that our solution indeed is capable
of fulfilling this requirement. Note also that the decision
about which jobs are co-scheduled is still the responsibility
of the OS. The processor simply accepts a workload as given
to it by the OS and, moreover, it accepts a QoS requirement
in the form of a high priority job and a percentage of the
full speed of this job it is required to realize.

4. SOLUTION OF THE QOS PROBLEM

A key point in our mechanism is that programs experience
different phases in their execution in which their IPC varies
significantly. Hence, if we want to realize a certain percent-
age of the full speed of a program, we need to take into
account this variable IPC. We illustrate this by an example.
Figure 3 shows local IPC values for gap for a period of 4.5
million cycles in which each value has been determined over
an interval of 15,000 cycles. Assume that the OS requires
the processor to run this thread at 80% of its full speed. The
solid line is the average IPC for this period and the dashed
line represents the value to be achieved by the processor. It
is easily seen that during some periods it is impossible to
achieve this 80% of the global IPC, even if the thread were
given all the processor resources. Moreover, if the proces-
sor achieves this 80% of the global IPC during the first part
of the interval and subsequently gives all resources to this
thread to achieve full speed during the second part, then the
overall IPC value it would realize would be lower than 80%
of the global IPC.

The basis of our mechanism for dynamic resource alloca-
tion rests on the observation that in order to realize X%
of the overall IPC for a given job, it is sufficient to realize
X% of the maximum possible IPC at every instance through
the execution of that job. This is illustrated in Figure 3 by
the bold faced curve labeled “80% of local IPC”. Hence,
the mechanism needs to determine the variations in IPC of
the HPT. In order to do this, we employ two phases in our
proposed mechanism that are executed in alternate fashion.

e During the first phase, the sample phase, all shared
resources are given to the HPT and LPTs are tem-
porarily stopped. As a result, we obtain an estimate
of the current full speed of the HPT during this phase
which we call the local IPC.

e During the second phase, the tune phase, our mecha-
nism dynamically varies the amount of resources given
to the HPT in order to achieve a target IPC that is
given by the local IPC computed in the last sample
period times the required percentage given by the OS.

Obviously, if we are able in the sample and tune phases
to measure and realize a percentage X if the real IPC, then
we obtain an overall IPC for the HPT that is about X%
of the IPC it would have had when executed alone on the
processor. In the next two subsections we discuss the sample
phase and the tune phase in more detail.
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Figure 3: Local IPC of the gap benchmark

4.1 Sample phase: determining the local IPC

of the HPT

During the sample phase, we determine the local IPC of
the HPT by giving it all shared resources and hence suspend-
ing the LPTs momentarily. Note that the longer the sample
phase, the longer the time that the SMT is dedicated to
only one thread, reducing its overall performance and starv-
ing the Low Priority Threads. Hence, we have to determine
the local IPC of the HPT thread as fast as possible. In this
section we show that interference in shared resources renders
determination of the isolated IPC of the HPT difficult and
also propose mechanisms to counteract these interferences.
The resources shared among threads are the following.

Caches the L1 data and instruction caches, and the L2
unified cache.

TLB the data and instruction TLB.

Branch Predictor branch target buffer (BTB) and the di-
rection predictor (PHT).

Other shared resources the issue queues (integer, float-
ing point and, load/store) and the physical registers
(integer and floating point).

Neither the issue queues nor the physical registers present
a problem because both these resources are fully dedicated
to the HPT during the sample phase. However, there is
interference from the LPTs in the other shared resources.
In order to get more insight into this interference, we show
in Figure 4 how many inter-thread conflicts the HPT suffers
during a 100,000 cycle-long sample phase, averaged over the
entire run of a workload consisting of twolf as HPT and mcf,
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equake, and swim as LPTs. We observe that as the sample
phase progresses, the number of conflicts goes towards zero
for the instruction cache, data cache, TLB, and BTB. From
the figure we conclude that after a warm-up period of 50,000
cycles most interference in these shared resources is removed.
The branch predictor (PHT) takes much longer to clear:
we have measured that it takes more than 5,000,000 cycles
before inter-thread misses have disappeared. However, we
have also measured that this interference is mostly neutral,
giving a small loss in the PHT hit rate less than 1%. Hence,
we ignore the interference in the PHT. The interference in
the L2 cache is more serious: it extends for about 1.5 million
cycles and gives rise to a significant performance degradation
(more than 30% for some benchmarks). This high number
of cycles shows that we cannot deal with the interference in
the L2 cache by simply extending the warmup phase. We
address this problem below.

The solution we propose consists of splitting each sample
period into two sub-phases.

e During the first sub-phase, the warmup phase, that
consists of 50,000 cycles, the HPT is given all resources
but its IPC is not yet determined.

e In the second sub-phase, the actual-sample phase, that
consists of 10,000 cycles, the HPT keeps all resources
and moreover its IPC is determined.

The duration of the actual-sample phase is based on obser-
vations in [24]. In this way, we try to re-create as much as
possible the state of the processor as this state would have
been when the processor would have executed the HPT in
isolation.
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Figure 4: Misses suffered by the HPT due to the LPTs interference

Our solution to inter-thread interference in the L2 cache
consists of partitioning this cache into two parts. One part
is dedicated to the HPT and the other part can be used by
the entire workload, LPTs and HPT. In order to meet the
demands for varying workloads and program behavior, we
employ dynamic cache partitioning. We assume that the L2
cache is N-way set associative, where N is not too small:
in our simulator, L2 is 8-way set associative. We use a bit
vector of N bits that indicates which “ways” or elements in
the set are reserved for the HPT. The cache behaves like a
“normal” cache, except in the placement and replacement of
data. The HPT is allowed to use the entire 1.2 and only the
LPTs are restricted to use a restricted subset of all the ways
that exist in a set. An extra, most significant, LRU bit is
required for each way. This bit is set to one for the reserved
ways and to zero for the other ways so that the lines reserved
for the HPT always have a higher access count than the lines
in the shared part of the cache. The replacement algorithm
is the standard LRU replacement algorithm. Hence, when
it is invoked for the LPTs, it always selects a line that is
a member of the shared part of the cache. When the re-
placement algorithm is invoked for the HPT, we mask this
extra bit and, in addition, on a replacement we first select
a victim line that belongs to an LPT, if possible. If there
does not exist such a line, the LRU line of the entire set is
selected as the victim. Note that this extension allows the
cache to be used normally when the SMT does not execute
a workload with a designated HPT. Either all bits are used
in the LRU replacement, or the extra bit is always masked.
In [5] a different cache partitioning technique called column
caching has been proposed. However, this technique ad-
dresses a much more general problem of cache partitioning.
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Therefore, the technique is too heavy weight to be used for
our present purposes where the simply mechanism described
below suffices.

Based on this cache partitioning scheme, we propose an
iterative method that dynamically varies the number of ways
reserved for the HPT.

e During each sampling period, every time the HPT suf-
fers an inter-thread miss a counter is incremented.

e At the end of the sampling period, if the value of the
counter is higher than a threshold of 8, the number of
ways reserved for the HPT is increased by 1. The value
of this threshold has been determined empirically.

e If, on the other hand, the counter is lower than the
threshold, this number is decreased by 1.

In this way, if the HPT experiences few L2 misses, we reduce
the number of ways reserved for it. Likewise, if it experiences
many misses, then we increase the number of reserved ways.

4.2 Tune phase: realizing the target IPC

After every sample phase (60,000 cycles), there is a tune
phase of 1.2 million cycles where we try to achieve the re-
quired percentage of the local IPC measured in the previous
sample period. This required percentage of the local IPC is
called the local target IPC. This is accomplished by giving
priority to the HPT in the utilization of the fetch and the
issue bandwidth, and dividing each resource in two parts: a
part reserved for the HPT and the remaining part that is
dedicated to the LPTs. The amount of resources dedicated
to the HPT is dynamically varied in order achieve the local
target IPC, as follows.



e Each tune phase is split in sub-phases of 15,000 cycles.

e At the end of every sub-phase, the average IPC of the
HPT is computed.

e If this IPC is lower than the local target IPC, then the
amount of resources given to the HPT is increased.

e Otherwise, if this IPC is higher than the local target
IPC, then the amount of resources given to the HPT
is decreased.

This increase and decrease is by a fixed amount that depends
on the type of resource and the number of its instances. We
divide this number by a granularity factor of 8 to obtain the
change amount. The value of the granularity factor has been
determined empirically. This change amount is used in the
algorithm above for decreasing and increasing the amount
of resources dedicated to the HPT.

Until now, in each sub-phase of the tune phase the only
target is to achieve the given percentage of the local IPC
measured in the last sample phase. However, these sampled
local IPC values are sometimes lower than they should be
due to interference from LPTs. In order to counteract this
effect, we also must take into account the global IPC' of the
HPT: at the end of each sub-phase we check whether the
total IPC of the HPT up to this cycle is lower than the
target IPC given by the OS. We introduce a compensation
term for this effect.

e This term is initially zero.

e If the total IPC is smaller than the target IPC, we
increase the compensation term by 5. This value of 5
has been determined empirically.

e On the other hand, if the total IPC is larger than the
target IPC, we decrease this term by 5.

However, we stipulate that the compensation term is not
smaller than zero. Also, X plus the compensation term
saturates at 100. Hence, the local target IPC to achieve is
given by (where X is the target percentage of the full speed)

(X + compensation term)
100

5. EXPERIMENTAL SETUP

To evaluate the performance of our mechanism, we use
a trace driven SMT simulator derived from SMTSIM [23].
The simulator consists of our own trace driven front-end and
an improved version of SMTSIM’s back-end. The simulator
allows executing wrong path instructions by using a separate
basic block dictionary that contains all static instructions.
Table 1 shows the main parameters of the simulated pro-
cessor, which has a 12-stage pipeline. We use a 2.8 fetch
mechanism, which means that we can fetch 8 instructions
per cycle from up to two threads. First, we fetch instruc-
tions from the HPT and if there is some unused fetch band-
width, we fetch instructions from the LPTs, breaking ties
with icount.

local target IPC = X local IPC

Traces are collected of the most representative 300 mil-
lion instruction segment, following the idea presented in [18].
The workloads consist of all programs from the SPEC2000
integer benchmark suite. Each program is executed using
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Table 1: Baseline configuration

Processor Configuration
Fetch /Issue /Commit Width 8
Fetch Policy ICOUNT 2.8

Queues Entries 32 int, 32 fp, 32 1d/st

Execution Units 6 int, 3 fp, 4 1d/st
Physical Registers 320 int, 320 fp
ROB Size / thread 256 entries

Branch Predictor Configuration

Branch Predictor 16K entries gshare
Branch Target Buffer 256 entry, 4-way associative
RAS 256 entries

Memory Configuration

64K bytes, 4-way, 8-bank,
64-byte lines, 1 cycle access
512K bytes, 8-way, 8-banks,
10 cycles lat., 64-byte lines
100 cycles
160 cycles

Icache, Dcache

L2 cache

Main Memory latency
TLB miss penalty

Table 2: Cache behavior of threads and classification
based on this behavior

L2 miss rate | Thread type
mcf 29.6 -
twolf 2.9 MEM L2 miss rate | Thread type
vpr 1.9 art 18.6
parser 1.0 swim 11.4 MEM
gap 0.7 lucas 747
vortex 0.3 equake 4.72
gce 0.3 apsi 0.9
perlbmk 0.1 ILP wupwise 0.9 ILP
bzip2 0.1 mesa 0.16
crafty 0.1 fma3d 0.01
gzip 0.1
eon 0.0

the reference input set and compiled using the DEC Al-
pha AXP-21264 C/C++ compiler with the -O2 -non_shared
options. Programs are divided into two groups based on
their cache behavior (see Table 2): those with an L2 cache
miss rate higher than 1% are considered memory bounded
(MEM). The others are considered ILP.

We consider combinations where the High Priority Thread
is ILP or MEM, and where the Low Priority Threads are ILP
or MEM. The simulation ends when the HPT thread ends.
Any LPT in the workload that finishes earlier is re-executed.
A workload is identified by three parameters: the type of the
HPT, the type of the LPTs, and the number of threads. For
example, a workload of type IM3 means that the HPT is
ILP, the LPTs are MEM and that it contains 3 threads (one
HPT and two LPTs). For each workload type, we create
four different sets of threads to avoid that our results are
biased toward a specific set of threads by taking all possible
combinations from Table 3. In the result section we present
average results for each group in each workload.

We do not include workloads with more than 4 threads for
several reasons. First, several studies [9][10][23] have shown
that for workloads with more than 4 contexts, performance
saturates or even degrades. This situation is counter produc-

3The L2 and L1 miss rate are calculated with respect to the
number of dynamic loads



Table 3: Workloads

HPT LPTs
gzip eon
ILP bzip2 | gcc, wupw1se
mesa | gap, apsi, crafty
fma3d
twolf | art
MEM mcf twolf, mcf :
art mcf, equake, swim
lucas

tive because cache and branch predictor conflicts counteract
the additional ILP provided by the additional threads. Sec-
ond, the feasibility of implementing future SMT processors
with more than 4 contexts is unclear [8].

Regarding the length of the phases, we use 50,000 cy-
cle warm-up phases, 10,000 cycle actual-sample phases, and
1,200,000 cycle tune phases that are split in sub-phases of
15,000 cycles each. Hence, the time dedicated for running in
isolation the HPT represents 5% of the total execution time.
Furthermore, the maximum number of reserved ways of the
L2 cache for the HPT is 4. This value has been determined
empirically.

6. RESULTS

In this section we show the results obtained from our strat-
egy, focusing on two main points. First, we show the average
performance obtained for the HPT for each workload type.
Second, we show the performance obtained for the LPTs.

6.1 HPT performance

In Figure 5 we show, for the different workloads and dif-
ferent target percentages, the overall percentage of full pro-
gram speed that we have obtained using our mechanism.
On the z-axis, the target percentage of the full speed of the
HPT is given, ranging from 10% to 90%. For each size of
the workload (2, 3, or 4 threads) the achieved IPC for the
High Priority Thread as a percentage of its full IPC is given.
We see that over the entire range of different workloads and
target percentages, we achieve this target or a little bit more
(approximately 3%). Only on the two extreme ends of the
range of targets, we are somewhat off target. We discuss the
discrepancies for the 10 and 90% cases, since they give most
insight in how our mechanism works.

If the target IPC should be 10% of the full speed, we
achieve percentages between 13 and 21. To explain this,
first consider the I12 workload in which two ILP threads
are running. Suppose both threads have a full speed of 4
IPC. Then, in 5% of the time during the sample phase, the
HPT reaches this full speed. During the remaining 95%
of the time, it reaches 0.4 IPC. Hence, in total it reaches
0.05 x 4+ 0.95 x 0.4 = 0.58 IPC which is 15% of its full
speed of 4 IPC. Hence, the sample phase that takes 5% of
the total running time of the program causes the resulting
total throughput of the HPT to be larger than it should
be. From Figure 5 it is also clear that for the workloads 113
and I14 the achieved percentage is closer to 10. This can be
explained because, as the number of threads increases, the
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IPC value of the HPT in the sampling period is lower due
to more interference of the other threads. As a result, the
overall IPC of the HPT drops a little.

Next, consider the IM workload. In this case, the mem-
ory bounded LPTs causes L2 cache pollution, more than is
the case for the II workloads. Hence, the measured IPC of
the HPT during the sample phase is lower than it should
be and during the tune phases the HPT also suffers from
interference. Therefore, the effects described for the II case
above do not show up as profoundly in the MI case and the
overall throughput is closer to 10% as it should be.

For the MI workload, the mcf benchmark has a full speed
of 0.15 IPC. Hence, 10% of this full speed is only 0.015
IPC. Due to the duration of the sample phase, we reach a
slightly higher overall IPC than this. However, the absolute
numbers are so small that such a minimal deviation causes
a high relative error: we measured a 30% deviation. Hence,
the error in the IPC of mcf dominates the average results
shown in the figure and therefore the large difference is due
to this benchmark. Moreover, in general MEM benchmarks
have low IPC values and when they are used as HPT, small
differences in their IPCs again cause large relative errors.

For the MM workload, the same explanation holds as for
the MI workload.

On the other end of the spectrum, when the required per-
centage is 90, the realized percentage is 2 to 5 percent lower
than it should be. To explain these differences, if the LPTs
are memory bounded, then they cause much pollution in the
L2 cache. Hence, the IPC of the HPT we measure during
the sample phases is lower than it should be. Moreover,
during the tune phase, memory bounded LPTs cause much
interference in the L2 cache also. Therefore, the relative
IPC of the IM workloads is lower than the IPC of the II
workloads. Therefore, during the tune phase we achieve an
IPC value that is too low also. However, in case the LPTs
are ILP, this pollution is much less and therefore, achieved
IPC values are higher than for the previous case. We can
conclude that when the required percentage is 90 it can be
more preferable to run the HPT in isolation and reach 100%
of its full speed.

These observations show that it can be profitable, espe-
cially for the extreme ends of the spectrum, to use a dynamic
adjustment of the duration of the sample and tune phases
based on the required target percentages and the character-
istics of the workloads. We are currently working on this
issue. In more common situations where target percentages
range from 30 to 80, we already achieve these percentages
almost exactly, being less than 1% over target on average
and hence in these case no dynamic adjustment is needed.

6.2 LPTs performance

In order to discuss the performance of the Low Priority
Threads, we compare their throughput to the throughput
the workload obtains under the icount fetch policy that we
consider to be the base case. Consider Table 4 where we give
a schematic picture of the throughput under both policies.
Under icount, we reach a total throughput of = + y. Under
QoS, the throughput of the HPT, z’, is enforced by the

0OS. Hence, we want to maximize y’. That is, we like the
z'+y’

fraction to be as large as possible. If it is 1, or 100%,
we achieve the same throughput. This fraction is shown in
Figure 6. Secondly, we show the fraction % in Figure 7 to
indicate how the LPTs on their own fare in our policy.
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Figure 6: Total IPC for each workload relative to the total IPC of that workload under icount.The x-axis

shows the target percentage of full speed of the HPT and size of the workloads.

represent the four different types of workload discussed in Section 5
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Figure 7: Relative IPC for LPTs with respect to the total IPC of the LPTs when the entire workload runs
using icount. The z-axis shows the target percentage of full speed of the HPT and size of the workloads. The
four different bars represent the four different types of workload discussed in Section 5

| | icount | QoS |

HPT T '
LPs y Y
[total | a4y [ 2"+ |

Table 4: Schematic view of IPC values for icount
and QoS

Distinguishing the different types of the workloads, we can
make the following observations. First, if the workload is of
type 11, the total throughput delivered by icount is always
larger than the throughput delivered by our QoS mecha-
nism as can be seen in Figure 6. This is to be expected
because icount is geared toward throughput maximization
of ILP workloads. There are few cache misses and instruc-
tions from each thread stay in the pipeline only a short time.
If we disrupt this behavior by reserving L2 cache lines for
one particular thread and dedicate the entire machine to
it during the sample phases, it is to be expected that the
low priority threads suffer. This loss is higher for 2-thread
workloads and when the HPT is executed at extreme (10%
or 90%) target percentages because in these cases many re-
sources are given to an ILP thread that, in fact, does not
use all of them. Nevertheless, on average we only lose less
than 15% in throughput while at the same time being able
to provide QoS service.

Second, if the workload is of type IM, if we need to realize
a high percentage of the full speed of the high priority ILP
thread, then the low priority MEM threads suffer because of
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lack of resources. Nevertheless, due to the high throughput
of the HPT, the total throughput of the entire workload is
larger than for icount. For a 3 thread IM workload, this
improvement can be as much as 78% for the 90% case. The
key observation is that under icount, the MEM threads tend
to occupy resources for a long time when they experience L2
misses causing the ILP thread to suffer. This effect is greatly
diminished when we impose a high target percentage for the
ILP thread. Also, because the MEM threads have a low IPC
value of their own, if they reach only a fraction of this value,
the absolute value of the total IPC is not affected strongly.
On the other hand, if we achieve a low percentage of the
full speed of the high priority ILP thread, we give many
resources to the low priority MEM threads. This causes
these MEM threads to reach a high relative speed (Figure 7)
but since their throughput is low, the total throughput is less
than it is for icount since the ILP thread is running slowly.

Third, if the workload is of type MI, effects opposite to
the IM case occur. If we require a low percentage of the
full speed of the high priority MEM thread, there are many
resources available to the low priority ILP threads. Hence
throughput is as good or better than it is under icount since
the low priority LPT can have more access to shared re-
sources than under icount. The relative speed of the LPTs
is much better than it is under icount (see Figure 7). Since
part of the resources are reserved for the LPTs, the harm-
ful effect that a MEM thread occupies many resources for
a long time due to L2 misses, is reduced and even for high
target percentages the relative speed of the low priority ILP
threads is over 100%. This can be seen in particular for the
MI2 case, where total IPC is 100% or more of icount even



for target percentages of 70 and 80.

Fourth, if the workload is of type MM, the results are com-
plementary to the II case. Resources are used in much the
same way by both HPT and LPTs. Hence, if we assign more
resources to the HPT, the LPTs suffer to about the same
degree as the LPT benefits. The net result is that total IPC
remains fairly close to the total IPC obtained using icount.
The differences that we observe in Figure 6 are mostly due
to the behavior of the mcf benchmark.

Summarizing, we conclude that our QoS mechanism is ca-
pable of realizing a target IPC for a particular High Priority
Thread within an error margin of less than 1% for realis-
tic situations. At the same time, it maximizes throughput
for the remaining Low Priority Threads, achieving relative
IPC of over 80% for these threads compared to their speed
under icount and a total throughput that is 94% of the to-
tal throughput when using icount and for target percentages
ranging from 30 to 80% we even reach 97.5% of the through-
put of icount.

7. RELATED WORK

In [22] it is observed that the total throughput of an SMT
processor is highly sensitive to the instruction fetch policy.
Other researchers have suggested policies to improve the us-
age of SMT resources in cases where a thread is stalled as a
result of a cache miss or a mispredicted branch [4][7][15][19]
[21]. All these fetch policies try to optimize total IPC and/or
reduce energy consumption. They do not allow control of
how threads are executed to meet particular requirements,
in contrast to the approach adopted in this paper.

To the best of our knowledge, there does not exist much
work on real time constraints for SMT architectures. Jain
et al. [12] study soft real time scheduling for SMT, but they
look at how specific workloads can be assembled from a pool
of tasks that is larger than the number of available con-
texts. Therefore, they address the so-called co-scheduling
problem for SMT processors. In contrast, this paper con-
centrates on how internal resources of the processor should
be allocated to a given workload in order to guarantee a cer-
tain required performance for a High Priority Thread, the
so-called resource sharing problem. Dorai and Yeung [6]
propose transparent threads, which is a mechanism that al-
lows background threads to use resources that a foreground
thread does not require for running at almost full speed.
Their proposal does not allow the foreground thread to run
at a given percentage of its full speed as is the case in our
proposal. In a certain sense, this work addresses the prob-
lem of job prioritization from the opposite side as we do:
whereas we propose mechanisms to assign resources to the
High Priority Thread in order to meet constraints, they pro-
pose mechanisms to utilize resources by background threads
that are left over by the foreground thread. Since they only
solve the problem of running a foreground thread at its full
speed, their approach is much less flexible than ours. In [20],
Snavely et al. propose several OS level job schedulers to en-
force priorities. Mostly, these schedulers find co-schedules
from a pool of runnable jobs that is larger than the num-
ber of hardware contexts. Their SOS policy runs jobs alone
on the machine to determine their full speed, runs several
job mixes in order to determine the best mix that exhibits
symbiosis, and finally runs jobs alone in order to meet pri-
orities. This approach obviously under-utilizes the machine
resources since in many time frames jobs are running alone,

442

in contrast to our approach in which the mix almost always
runs together. Next, they propose an extension to the icount
fetch policy by including handicap numbers that reflect the
priorities of the jobs. This approach suffers from the same
shortcomings as the standard icount policy, namely, that
resource management is implicitly done by the fetch policy.
Therefore, running times of jobs are still hard to predict,
rendering this approach unsuited for real time constraints.
For example, high priority memory bounded threads will
clog the pipeline after L.2 misses, even more than is the case
in standard icount. Their approach can be considered as a
way of interacting between one goal and one policy. Instead,
the view adopted in this paper is that the OS-processor in-
teraction would need to support different policies as well as
different goals, which should be satisfiable by the policies.

8. CONCLUSION

In this paper, a mechanism for SMT processors that en-
ables us to satisfy a QoS criterion has been proposed for
the first time. This mechanism consists of designating a
High Priority Thread in a workload and the requirement
that this thread runs at a given percentage of throughput
that it would obtain when run in isolation on the machine.
In turn, this mechanism enables SMT processors for use in
a real time environment. The mechanism basically consists
of two recurring phases: a sample phase in which the local
IPC of the HPT is determined, and a tune phase in which
the actual IPC of the HPT in the context of a number of
Low Priority Threads is measured and shared resources are
dynamically allocated to the HPT in order to obtain the
given target percentage for the HPT.

We have shown that we indeed can realize target per-
centages ranging from 10 to 90% for HPTs that are high
ILP as well as memory bounded, in contexts of 1, 2, or
3 other threads that can be high ILP as well as memory
bounded also. This wide range of behavior of studied work-
loads as well as the wide range of target percentages shows
that our proposal is extremely robust and likely to per-
form well in a wide spectrum of cases. At the same time,
we have shown that the performance of the LPTs suffers
minimally. This ensures that the primary purpose of using
SMTs, namely, very fine grained resource sharing in order
to maximize throughput for collections of applications, is
maintained when our QoS mechanism is added: we reach on
average 94% of the throughput of icount and even 97.5% on
average for the range from 30 to 80% of required full speed.
This means that our QoS mechanism enables SMTs to meet
real time constraints while, at the same time, it continues
to execute many applications concurrently, thereby maxi-
mizing exploitation of all available resources.

Acknowledgments

This work was supported by an Intel fellowship, by the EC
IST programme (contract HPRI-CT-2001-00135), and by
the Ministry of Science and Technology of Spain under con-
tract TIC-2001-0995-C02-01, and under grant FP-2001-2653
(Francisco J. Cazorla). The authors would like to thank
Oliverio J. Santana, Fernando Latorre and Ayose Falcén
for their comments and work in the simulation tool. The
authors also would like to the reviewers for their valuable
comments.



9.
[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(15]

REFERENCES

D. Alpert. Will microprocessors become simpler?
Microprocessor Report, Nov. 2003.

J. Burns and J.-L. Gaudiot. Quantifying the SMT
layout overhead- does SMT pull its weight?
Proceedings of the 6th Intl. Conference on High
Performance Computer Architecture, pages 109—120,
Jan. 2000.

J. Burns and J.-L. Gaudiot. SMT layout overhead and
scalability. IEEE Transactions on Parallel and
Distributed Systems, 13(1):142-155, Feb. 2002.

F. J. Cazorla, E. Fernandez, A. Ramirez, and

M. Valero. Improving memory latency aware fetch
policies for SMT processors. Proceedings of the 5th
International Symposium on High Performance
Computing, Oct. 2003.

D. Chiou, P. Jain, S. Devadas, and L. Rudolph.
Dynamic cache partitioning via columnization.
Proceedings of Design Automation Conference, June
2000.

G. K. Dorai and D. Yeung. Transparent threads:
Resource sharing in smt processors for high
single-thread performance. Proceedings of the 11th
Intl. Conference on Parallel Architectures and
Compilation Techniques, pages 30—41, Sept. 2002.

A. El-Moursy and D. Albonesi. Front-end policies for
improved issue efficiency in SMT processors.
Proceedings of the 9th Intl. Conference on High
Performance Computer Architecture, Feb. 2003.

P. N. Glaskowsky. IBM previews Power5.
Microprocessor Report, Sept. 2003.

M. Gulati and N. Bagherzadeh. Performance study of
a multithreaded superscalar microprocessor.
Proceedings of the 2nd Intl. Conference on High
Performance Computer Architecture, pages 291-301,
Feb. 1996.

S. Hily and A. Seznec. Contention on 2nd level cache
may limit the effectiveness of simultaneous
multithreading. Technical Report 1086, IRISA, Feb.
1997.

H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An
elementary processor architecture with simultaneous
instruction issuing from multiple threads. Proceedings
of the 19th Annual Intl. Symposium on Computer
Architecture, pages 136-145, May 1992.

R. Jain, C. Hughes, and S. Adve. Soft real-time
scheduling on simultaneous multithreaded processors.
Proceedings of the 5th International Symposium on
Real-Time Systems Symposium, pages 134—145, Dec.
2002.

R. Kalla, B. Sinharoy, and J. Tendler. SMT
implementation in POWER 5. Hot Chips, 15, Aug.
2003.

P. Knijnenburg, A. Ramirez, J. Larriba, and

M. Valero. Branch classification for SMT fetch gating.
Proceedings of the 6th Workshop on Multithreaded
Ezecution, Architecture, and Compilation, pages
49-56, 2002.

C. Limousin, J. Sebot, A. Vartanian, and

N. Drach-Temam. Improving 3D geometry
transformations on a simultaneous multithreaded

443

(16]

(17]

(18]

(19]

20]

23]

(24]

SIMD processor. Proceedings of the 15th Intl.
Conference on Supercomputing, pages 236—245, May
2001.

K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in SMT processors.
Proceedings of the International Symposium on
Performance Analysis of Systems and Software, pages
164-171, Nov. 2001.

D. T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty,
J. A. Miller, and M. Upton. Hyper-threading
technology architecture and microarchitecture. Intel
Technology Journal, 6(1), Feb. 2002.

T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and
simulation points in applications. Proceedings of the
10th Intl. Conference on Parallel Architectures and
Compilation Techniques, Sept. 2001.

R. Shin, S.-W. Lee, and J. L. Gaudiot. Dynamic
scheduling issues in smt architectures. Proceedings of
the International Parallel and Distributed Processing
Symposium, Apr. 2003.

A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job
scheduling with priorities for a simultaneous
multithreaded processor. Proceedings of the 9th Intl.
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 234-244,
Nov. 2000.

D. Tullsen and J. Brown. Handling long-latency loads
in a simultaneous multithreaded processor.
Proceedings of the 34th Annual ACM/IEEE Intl.
Symposium on Microarchitecture, Dec. 2001.

D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting choice: Instruction fetch and
issue on an implementable simultaneous
multithreading processor. Proceedings of the 23th
Annual Intl. Symposium on Computer Architecture,
pages 191-202, Apr. 1996.

D. Tullsen, S. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism.
Proceedings of the 22th Annual Intl. Symposium on
Computer Architecture, 1995.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. SMARTS: accelerating microarchitecture
simulation via rigorous statistical sampling.
Proceedings of the 30th Annual Intl. Symposium on
Computer Architecture, pages 84—97, June 2003.

W. Yamamoto and M. Nemirovsky. Increasing
superscalar performance through multistreaming.
Proceedings of the 4th Intl. Conference on Parallel
Architectures and Compilation Techniques, pages
49-58, June 1995.



