
Energy-Constrained Provisioning for Scientific
Workflow Ensembles

Ilia Pietri∗, Maciej Malawski †,Gideon Juve ‡, Ewa Deelman ‡, Jarek Nabrzyski §, Rizos Sakellariou∗
∗University of Manchester, School of Computer Science, U.K

†AGH University of Science and Technology, Dept. of Computer Science, Poland
‡ USC Information Sciences Institute, USA

§ University of Notre Dame, Center for Research Computing, USA

Abstract—Large computational problems may often be mod-
elled using multiple scientific workflows with similar structure.
These workflows can be grouped into ensembles, which may be
executed on distributed platforms such as the Cloud. In this
paper, we focus on the provisioning of resources for scientific
workflow ensembles and address the problem of meeting energy
constraints along with either budget or deadline constraints. We
propose and evaluate two energy-aware algorithms that can be
used for resource provisioning and task scheduling. Experimental
evaluation is based on simulations using synthetic data based on
parameters of real scientific workflow applications. The results
show that our proposed algorithms can meet constraints and
minimize energy consumption without compromising the number
of completed workflows in an ensemble.

Keywords—cloud computing; energy efficiency; workflow
scheduling; resource provisioning

I. INTRODUCTION

Cloud computing offers a wide range of options to users to
provision on-demand resources that meet the computational re-
quirements of their applications. As users have more flexibility
in controlling the execution of their applications by specifying
QoS requirements and cost characteristics, many challenges
arise from the provider’s point of view whose goals may be
conflicting. For example, minimizing energy consumption is an
important goal from the provider’s perspective. The amount of
allocated resources affects the makespan of the applications
and the cost incurred by the user, but at the same time it also
affects the energy consumed by the cloud infrastructure. The
provider may postpone the processing of some jobs in order to
avoid low resource utilization or increased number of Virtual
Machines (VMs) and hosts used, when user requirements,
such as deadlines, can still be met. In other cases, more
VMs can be used when host utilization is increased without
requiring new hosts to be powered on, even increasing the
cost incurred by the user (assuming that this is within budget).
Overall, determining the optimal amount of resources in order
to achieve a trade-off between the user requirements and the
provider’s optimization goals is a challenging problem.

Scientific workflows [1] are an important category of cloud
computing applications under study, as the cloud computing
infrastructure offers a dynamic environment to address the
changing resource requirements of workflow-based applica-
tions. In many scientific problems workflows can be grouped
into ensembles. In this paper, we address the problem of
energy-efficient resource provisioning and task scheduling with
energy constraints for ensembles of scientific workflows. In

addition to energy, budget or deadline constraints are also
taken into account. To the best of our knowledge, this is
the first paper in the literature that describes algorithms to
meet energy constraints along with budget or deadline when
planning scientific workflow ensembles. More specifically, the
contributions of this work are:

∙ The development of two algorithms, SPSS-EB and
SPSS-ED, which can be used for scheduling work-
flows in ensembles so that energy and deadline or
energy and budget constraints are met.

∙ An experimental evaluation of the performance of the
algorithms and their behaviour in meeting constraints
at the same time executing as many workflows from
the ensemble as possible.

The rest of the paper is organized as follows. In Section
2 related work is presented. In Section 3 the problem and
the assumptions made are described. The proposed algorithms
are described in Section 4, while the experimental evaluation
follows in Section 5. Finally, Section 6 concludes the paper.

II. RELATED WORK

A significant amount of work has been done on task
scheduling and provisioning of resources for workflows for
both grid [2],[3],[4] and cloud infrastructures [5],[6],[7],[8].
Most of the proposed algorithms focus on optimizing ap-
plication performance, such as reducing the application cost
or makespan. Elastic provisioning of resources for workflows
with deadline requirements is the focus in [6], which extends
Balanced Time Scheduling (BTS), a heuristic algorithm that
achieves the minimum resource capacity required in order to
minimize application cost. Huu and Montagnat [7] propose
cost-based algorithms for workflow-based applications aiming
at minimizing the number of allocated resources and reducing
application makespan. Applications with budget and deadline
constraints are also the focus in [9]. A scalable environment
for the user is provided by choosing proper VM instance types
that allow jobs to be completed within the deadline and reduce
application cost for a particular user request. Algorithms for
workflow ensembles that meet budget and deadline constraints
are proposed in [5]. This paper extends the work in [5]
by including energy constraints. A multi-objective scheduling
framework for workflows is proposed in [3] with energy
consumption being one of the objectives. However, in their
model the energy consumed by a machine is related to its
computational speed.

2013 IEEE Third International Conference on Cloud and Green Computing

978-0-7695-5114-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CGC.2013.14

34

Existing work in energy efficiency in clouds and clusters
aims at improving load balancing [10] and server consolidation
[11], reducing energy consumption using DVFS techniques
[12] or focusing on thermal management [13]. In our work
we focus on energy savings when planning the execution of
scientific workflows in ensembles, a problem which has not
been considered before.

III. PROBLEM DESCRIPTION AND ASSUMPTIONS

In our model for energy constrained provisioning, the user
has some knowledge of the energy required for the execution
of their applications based on information by the provider
and submits a workflow ensemble for execution specifying
the energy constraints. Provisioning is made so that the total
energy consumption stays within an energy budget limit. More
specifically, a scheduling plan for the ensemble is developed
to execute as many workflows as possible given the energy
constraints. A workflow from the ensemble is accepted and
added to the plan only when the total energy consumption will
not exceed the available energy budget. Different scheduling
schemes can require different amount of energy to be spent for
the execution of the workflows. Note that energy consumption
consists of static and dynamic energy [12]. The static energy
is the energy consumed by the system resources when idle and
the dynamic energy is the amount of energy consumed by the
applications when running. The dynamic energy required by
a workflow can be modelled depending on the resource needs
of the tasks.

a) Application Model: The work focuses on workflow-
based applications where each workflow consists of inter-
related tasks and can be represented as a Directed Acyclic
Graph (DAG) with the nodes being the tasks and the edges
representing data dependencies between them. Hence, for two
tasks 𝑖 and 𝑗, the edge (𝑖, 𝑗) shows that the task 𝑗 can only be
executed when the processing of 𝑖 has finished. All workflows
in the ensemble are submitted at the same time and scheduling
aims at completing as many workflows from the ensemble as
possible under the given constraints. A workflow is admitted
only when all the tasks can be completed without exceeding
the constraints. Finally, the time required for data transfer is
not included in the estimation of task runtime, assuming that
a shared cloud storage system such as Amazon S3 is used.
Hence, task runtime is not affected by the placement decision
on different VMs.

b) Cloud Resources: A model similar to Amazon’s
Elastic Compute Cloud (EC2) is assumed with VMs being
provisioned on demand in a per-hour billing basis with partial
hours being rounded to the full hour. We also assume that jobs
do not run concurrently on a VM, but have exclusive access
to it. Although cloud computing infrastructures offer different
VM instance types to users with various characteristics includ-
ing CPU, memory and disk sizes, a single VM instance type
is used for simplicity, while the hosts are homogeneous with
fixed capacity in VMs. Finally, static scheduling takes place
and migration is not supported.

c) Model for Energy Consumption: Energy consump-
tion is calculated as the integral of the consumed power [14].
The model to measure energy consumption is based on [15]
where the power consumed by a host is linearly related with

host utilization and is given by:

𝑃𝑖 = (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛) ∗ 𝑈𝑖 + 𝑃𝑚𝑖𝑛

where 𝑈𝑖 is the CPU utilization of host 𝑖 at that time, 𝑃𝑚𝑎𝑥 is
the power consumed when the host is fully utilized and 𝑃𝑚𝑖𝑛 is
the minimum power consumed by an active host. Without loss
of generality, 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 can be considered constant, like
in [14], although they may vary in real systems depending on
the application characteristics and resource needs. As the hosts
are assumed to be homogeneous with a fixed capacity of VMs
per host (𝑛) and tasks have exclusive access to VMs consuming
all the capacity, the fraction of the energy consumed by a
running VM can be defined as:

𝐸𝑉𝑀 = (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛) ∗ 1

𝑛
∗ 𝑟

where 𝑟 is the runtime of the VM. Other system resources,
like memory and disk, consume energy, but in most of the
current models energy consumption is mainly determined by
the CPU [14]. Thus, the energy required for data transfer can
be ignored. For each host the time that is required to be
active for the execution of the workflows is determined by
the period between the time the first task assigned to the host
starts until the processing of the last task being scheduled to it
finishes. It is assumed that hosts are exclusively used for the
execution of the workflows in the ensemble for that period;
hence, slots to which no tasks have been assigned remain
idle. In order to increase host utilization the energy consumed
for each host switching on/off can be taken into account.
Many energy-efficient approaches that aim at minimizing the
number of active hosts and reduce energy consumption also use
power on/off operations to shut down under-loaded hosts [10],
[11], [16]. In our work, host switching on/off operations are
considered in the calculation of the total energy consumption
by adding the energy consumption of booting and switching
off each host used.

IV. SCHEDULING ALGORITHMS

In this section two energy-aware algorithms, SPSS-EB
(Static Provisioning-Static Scheduling under Energy and Bud-
get Constraints) and SPSS-ED (Static Provisioning-Static
Scheduling under Energy and Deadline Constraints) are pro-
posed. The two algorithms take into account energy con-
straints to schedule the tasks and provision cloud resources
for workflow ensembles in addition to budget or deadline
constraints, respectively. Resource provisioning is planned in
two phases: an ensemble planning algorithm, PlanEnsemble,
creates a plan for the task scheduling of the workflows. For
every workflow, PlanEnsemble calls the workflow planning
algorithm, PlanWorkflow, to build a new plan on top of the
current one for each workflow in the ensemble. The returned
plan is accepted when the constraints are met; otherwise, it is
rejected and the procedure continues with the next workflow
in the ensemble. This two-phase approach was initially used in
[5] to develop an algorithm that takes into account only budget
and deadline constraints, which provided an inspiration for the
current work.

A. SPSS under Energy and Budget Constraints (SPSS-EB)

The aim of SPSS-EB is to maximize the number of
completed workflows under energy and budget constraints, by

35

Algorithm 1 SPSS-EB ensemble planning algorithm
Require: 𝑊 : workflow ensemble, 𝑒: energy budget, 𝑏: budget
Ensure: : Schedule as many workflows of 𝑊 as possible given 𝑒 and 𝑏
1: procedure PLANENSEMBLE(𝑊, 𝑒, 𝑏)
2: 𝑃 ← ∅, 𝐴← ∅ ⊳ Current plan, set of admitted DAGs
3: for 𝑤 in 𝑊 in priority order do
4: 𝑃 ′ ← PlanWorkflow(𝑤, 𝑃)
5: if EnergyConsumption(𝑃 ′) ≤ 𝑒 && Cost(𝑃 ′) ≤ 𝑏 then
6: 𝑃 ← 𝑃 ′, 𝐴← 𝐴 + 𝑤 ⊳ Accept plan, admit 𝑤
7: end if
8: end for
9: return 𝑃,𝐴

10: end procedure

Algorithm 2 SPSS-EB workflow planning algorithm
Require: 𝑤: workflow, 𝑃 : current plan
Ensure: Create plan for 𝑤 that minimizes energy consumption
1: procedure PLANWORKFLOW(𝑤, 𝑃)
2: 𝑃 ′ ← copy of 𝑃
3: for 𝑡 in 𝑤 in topological order do
4: 𝑣 ← VM that minimizes energy consumption and start time of 𝑡
5: if 𝑣 already provisioned then
6: Schedule(𝑡, 𝑣)
7: else
8: Provision a new VM 𝑣 and schedule(𝑡, 𝑣)
9: end if

10: end for
11: return 𝑃 ′

12: end procedure

Algorithm 3 basic SPSS-EB workflow planning algorithm
same as Alg.2, but line 4 changes as follows:

4: 𝑣 ← VM that minimizes application cost and start time of 𝑡

minimizing energy consumption. In the ensemble planning
algorithm (Alg.1) the procedure 𝑃𝑙𝑎𝑛𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 calls the
workflow planning algorithm (Alg.2) for each workflow in the
ensemble to build a new plan on top of the current one. The
new plan is accepted in case the energy and cost constraints are
fulfilled and the workflow is admitted. Otherwise, the new plan
is rejected and the algorithm continues to the next workflow.
More specifically, in line 3 of Alg.1 the workflows are sorted
in order to prioritize workflows that consume less energy.
Sorting the workflows by the energy (the estimated dynamic
energy) they consume and choosing the plan that minimizes
energy consumption is a possible way to ensure that as many
workflows from the ensemble as possible will be executed.

When planning a workflow (Alg.2), SPSS-EB schedules
each task of the workflow so that the total energy consumed
is the minimum. Hence, the slot that impacts the energy
consumed the least is chosen. Between slots that affect energy
consumption the same, VMs on running hosts are preferred to
avoid booting a new host. This is because booting up a host is
energy consuming. Otherwise, the slot with the earliest start is
chosen, even if a new VM on a running host is needed to be
switched on. The next criterion is choosing the slot with the
lowest cost. Finally, existing resources are preferred.

In addition to the above algorithm, a basic version of SPSS-
EB was used for comparison purposes. In this basic version we
try to consider application cost first. The algorithm is the same
as above, but workflows are not prioritized in terms of energy
and the key difference is that the decision (line 4 in Alg. 3)
simply prefers slots that minimize application cost. If two VMs
have the same cost, existing VMs are preferred. Otherwise,
slots with earlier start are preferred. This basic version can be

Algorithm 4 SPSS-ED ensemble planning algorithm
Require: 𝑊 : workflow ensemble, 𝑒: energy budget, 𝑑: deadline
Ensure: Schedule as many workflows of 𝑊 as possible given 𝑒 and 𝑑
1: procedure PLANENSEMBLE(𝑊, 𝑒, 𝑑)
2: 𝑃 ← ∅, 𝐴← ∅ ⊳ Current plan, set of admitted DAGs
3: for 𝑤 in 𝑊 in priority order do
4: 𝑃 ′ ← PlanWorkflow(𝑤, 𝑃, 𝑑)
5: if EnergyConsumption(𝑃 ′) ≤ 𝑒 && Makespan(𝑃 ′) ≤ 𝑑 then
6: 𝑃 ← 𝑃 ′, 𝐴← 𝐴 + 𝑤 ⊳ Accept new plan, admit 𝑤
7: end if
8: end for
9: return 𝑃,𝐴

10: end procedure

Algorithm 5 SPSS-ED workflow planning algorithm
Require: 𝑤: workflow, 𝑃 : current plan, 𝑑: deadline
Ensure: Create plan for 𝑤 that minimizes energy consumption and meets deadline 𝑑
1: procedure PLANWORKFLOW(𝑤, 𝑃, 𝑑)
2: 𝑃 ′ ← copy of 𝑃
3: DEADLINEDISTRIBUTION(𝑤, 𝑑)
4: for 𝑡 in 𝑤 sorted by DL(t) do
5: 𝑣 ← VM that minimizes energy consumption and start time of 𝑡
6: if FinishTime(𝑡, 𝑣) < DL(𝑡) then
7: Schedule(𝑡, 𝑣)
8: else
9: Provision a new VM 𝑣 and schedule(𝑡, 𝑣)

10: end if
11: end for
12: return 𝑃 ′

13: end procedure

Algorithm 6 basic SPSS-ED workflow planning algorithm
same as Alg.5, but line 5 changes as follows:

5: 𝑣 ← VM that minimizes application cost and start time of 𝑡

considered as a baseline version that is based on a budget-
deadline heuristic [5], which does not attempt to allocate for
energy, but simply checks if the energy constraint is met.

B. SPSS under energy and deadline constraints (SPSS-ED)

The aim of SPSS-ED is to maximize the number of
completed workflows under energy and deadline constraints,
by minimizing energy consumption. In line 3 (Alg.4) the
workflows are sorted in priority order depending on the energy
consumption they require.

When planning a workflow (Alg.5), SPSS-ED schedules
each task of the workflow so that the energy consumed is the
minimum. Firstly, each task is given a sub-deadline, 𝐷𝐿(𝑡),
being a fraction of the slack time of the workflow, 𝑆𝑇 (𝑤),
the difference between the critical path from the deadline, as
in [5]. More specifically in line 4, the tasks are divided into
levels according to the length of their longest path from the
entry task of the workflow and a portion of the slack time of
the workflow, 𝑆𝑇 (𝑙), is given to each level depending on the
number of tasks, 𝑁(𝑙), and the total task runtime of the level,
𝑅𝑇 (𝑙):

𝑆𝑇 (𝑙) = 𝑆𝑇 (𝑤)

[(
𝛼
𝑁(𝑙)

𝑁(𝑤)

)
+

(
(1− 𝛼)

𝑅𝑇 (𝑙)

𝑅𝑇 (𝑤)

)]

Levels with many tasks are given a larger portion of the slack
time (𝛼 = 0.7) to avoid processing many tasks in parallel that
would require a large amount of resources. The sub-deadline
of the task is

𝐷𝐿(𝑡) = 𝐿𝑆𝑇 (𝑡) +𝑅𝑇 (𝑡) + 𝑆𝑇 (𝐿𝑒𝑣𝑒𝑙(𝑡)),

36

where 𝐿𝑆𝑇 (𝑡) is determined by the sub-deadline of its prede-
cessors:

𝐿𝑆𝑇 (𝑡) =

{
0, if 𝑃𝑟𝑒𝑑(𝑡) = ∅
max𝑝∈𝑃𝑟𝑒𝑑(𝑡) 𝐷𝐿(𝑝), otherwise.

When the deadline is smaller than the critical path, the
workflow cannot finish before the deadline and is rejected.
For each task sorted by deadline, the decision (line 5) is made
so that VMs that impact energy consumption at the minimum
are chosen, with VMs on running hosts being preferred. In
case two slots have the same effect on energy consumption,
the slot with the earliest start is preferred in order to minimize
application makespan if possible. Otherwise, the slot with the
minimum cost is chosen so that application cost is reduced.
The last criterion in the decision making is that existing VMs
are preferred so that new VMs are not switched on.

Same as before, a basic version of SPSS-ED was used. This
is the same as above, but the decision (line 5 in Alg.6) is made,
as in [5], without taking into account energy consumption; slots
that minimize application cost are preferred. If two VMs have
the same cost, existing VMs are preferred. Otherwise, slots
with earliest start are preferred.

V. EXPERIMENTAL EVALUATION

A. Methodology

The simulator [17] that is based on CloudSim [18] was used
in order to implement and evaluate the proposed algorithms.
The simulator, also used in other studies [5], was modified
in order to incorporate the model for the energy consumption
and develop the proposed algorithms. Static VM allocation
without migration is assumed for simplicity with hosts being
powered on when a new VM has to be switched on and there
is no space in the active hosts. Each host is assumed to be
switched on when the execution of the first assigned task
starts and it is switched off when the last task running on
it finishes. Single-core VMs were used in the implementation
so that only one task is running on it each time. One instance
type of VMs is used with CPU capacity of 1 MIPs and hourly
price of $1. Hosts are homogeneous with a capacity of 4 VMs.
For the calculation of the consumed energy, the parameters
used in the experiments were based on [19]: 𝑃𝑚𝑎𝑥 = 255𝑊 ,
𝑃𝑚𝑖𝑛 = 217𝑊 , power for host booting-up 𝑃𝑏𝑜𝑜𝑡 = 288𝑊 and
switching-off 𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑜𝑓𝑓 = 213𝑊 while it is assumed that
170 secs and 20 secs are needed to boot up and power off a
host, respectively.

Data from three real scientific applications, namely
LIGO [20], SIPHT [5], [20] and Montage [5] were used in
order to assess the performance of the algorithms. LIGO is
an example of a scientific workflow-based application, where
gravitational waves in the universe are detected. LIGO reads
and writes a significant amount of data while the most compu-
tationally intensive jobs consume most of its total runtime. One
of the job categories can be executed in parallel [21]. SIPHT
is an application used to search for sRNA encoding genes for
bacterial replicons. SIPHT can be characterized as a CPU-
intensive workflow with most of the jobs having high CPU
utilization [21]. Finally, Montage is another case of workflow-
based application that generates image mosaics of the sky, in
which several jobs spend most of their time on I/O operations

[21]. Synthetic data were generated using information from
real scenarios to create the ensemble of the workflows. The
code for the workflow generator can be found in [22]. An
ensemble of 50 workflows was generated for each of these
applications. Each workflow had a fixed size of 100 tasks.

For the experiments, three values were used for each of
the three constraints (deadline D in sec, budget B in $, energy
E in kWh) to create a total of 9 scenarios. In each case, the
energy and budget or energy and deadline values represent
requirements that must be met by the algorithms. The values
used for each workflow were the following. In the case of
LIGO: E is 12, 30 or 48 kWh, B is $114, 285 or 456 and
D is 2573, 11579 or 20584 secs. In the case of SIPHT: E is
9, 23, 36 kWh, B: $83, 208, 332 and D: 7865, 35393, 62920
secs. In the case of Montage: E is 2, 5, or 8 kWh, B is $6, 15,
or 24 and D is 139, 626, 1112 secs. The values used in each
scenario are shown on the x-axis in the graphs that follow. For
example, in Fig. 1, E:12 - B:114 represents the scenario in
which the total energy consumption should not exceed 12kWh
and the total cost should be less than $114. In Fig. 1b and 1d
these constraints are met. In the case of energy and deadline
constraints, the 9 scenarios represent combinations of energy
and deadline requirements to be met. For example, in Fig. 4,
E:12 - D:2573 represents the scenario in which the total energy
consumption should be less than 12kWh and the deadline is
2573 secs. In Fig. 4b and 4c these constraints are met.

B. Results

Energy-Budget Constraints: The results for the perfor-
mance of the algorithms for energy and budget constraints
are presented in Fig.1, 2, 3 for LIGO, SIPHT and Montage,
respectively. When the constraints are tight a smaller number
of workflows is completed so that the energy and budget
requirements of the ensemble can be met. SPSS-EB reduces
significantly the total energy consumption in comparison with
the basic version. This can be explained by the fact that the
total makespan decreases while host utilization is increased by
using all the available VMs. As more VMs in the host are used,
the total cost incurred by the user is increased but remains
within the budget limits. In the case of LIGO, the reduction
in energy consumption is larger than in SIPHT and Montage,
as the makespan of the ensemble is reduced more. This may
be explained by the different characteristics and structure of
the applications. Overall, SPSS-EB increases server utilization
by exploiting all the VMs of the host to execute tasks in
parallel, reducing total makespan and energy consumption. On
the other hand, the basic algorithm uses a smaller number of
VMs to reduce application cost resulting in longer makespans.
However, it is less energy-efficient as it has low host utilization.

Energy-Deadline Constraints: In the case of energy and
deadline constraints, SPSS-ED performs better than basic
SPSS-ED as far as energy efficiency is concerned (Fig.4b, 5b,
6b). In the case of LIGO (Fig.4), the makespan of the ensemble
is the same for both of the compared algorithms. Energy
consumption is reduced in the case of the SPSS-ED algorithm
by increasing host utilization and reducing the average number
of hosts required over time. In the case of SIPHT (Fig.5),

37

 0

 10

 20

 30

 40

 50

 60

E:12-B:114

E:12-B:285

E:12-B:456

E:30-B:114

E:30-B:285

E:30-B:456

E:48-B:114

E:48-B:285

E:48-B:456

W
or

kf
lo

ws
Co

m
pl

et
ed

SPSS-EB
basic SPSS-EB

(a) WorkflowsCompleted

 0

 10

 20

 30

 40

 50

 60

E:12-B:114

E:12-B:285

E:12-B:456

E:30-B:114

E:30-B:285

E:30-B:456

E:48-B:114

E:48-B:285

E:48-B:456

En
er

gy
Co

ns
um

ed

SPSS-EB
basic SPSS-EB

(b) Energy

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

E:12-B:114

E:12-B:285

E:12-B:456

E:30-B:114

E:30-B:285

E:30-B:456

E:48-B:114

E:48-B:285

E:48-B:456

M
ak

es
pa

n

SPSS-EB
basic SPSS-EB

(c) Makespan

 0

 50

 100

 150

 200

 250

 300

 350

E:12-B:114

E:12-B:285

E:12-B:456

E:30-B:114

E:30-B:285

E:30-B:456

E:48-B:114

E:48-B:285

E:48-B:456

Ap
pC

os
t

SPSS-EB
basic SPSS-EB

(d) AppCost

Fig. 1: Results for LIGO under energy and budget constraints

 0

 10

 20

 30

 40

 50

 60

E:9-B:83

E:9-B:208

E:9-B:332

E:23-B:83

E:23-B:208

E:23-B:332

E:36-B:83

E:36-B:208

E:36-B:332

W
or

kf
lo

ws
Co

m
pl

et
ed

SPSS-EB
basic SPSS-EB

(a) WorkflowsCompleted

 0

 5

 10

 15

 20

 25

 30

 35

 40

E:9-B:83

E:9-B:208

E:9-B:332

E:23-B:83

E:23-B:208

E:23-B:332

E:36-B:83

E:36-B:208

E:36-B:332

En
er

gy
Co

ns
um

ed

SPSS-EB
basic SPSS-EB

(b) Energy

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

E:9-B:83

E:9-B:208

E:9-B:332

E:23-B:83

E:23-B:208

E:23-B:332

E:36-B:83

E:36-B:208

E:36-B:332

M
ak

es
pa

n

SPSS-EB
basic SPSS-EB

(c) Makespan

 0

 50

 100

 150

 200

 250

 300

 350

E:9-B:83

E:9-B:208

E:9-B:332

E:23-B:83

E:23-B:208

E:23-B:332

E:36-B:83

E:36-B:208

E:36-B:332

Ap
pC

os
t

SPSS-EB
basic SPSS-EB

(d) AppCost

Fig. 2: Results for SIPHT under energy and budget constraints

38

 0

 10

 20

 30

 40

 50

 60

E:2-B:6

E:2-B:15

E:2-B:24

E:5-B:6

E:5-B:15

E:5-B:24

E:8-B:6

E:8-B:15

E:8-B:24

W
or

kf
lo

ws
Co

m
pl

et
ed

SPSS-EB
basic SPSS-EB

(a) WorkflowsCompleted

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

E:2-B:6

E:2-B:15

E:2-B:24

E:5-B:6

E:5-B:15

E:5-B:24

E:8-B:6

E:8-B:15

E:8-B:24

En
er

gy
Co

ns
um

ed

SPSS-EB
basic SPSS-EB

(b) Energy

 0

 10000

 20000

 30000

 40000

 50000

 60000

E:2-B:6

E:2-B:15

E:2-B:24

E:5-B:6

E:5-B:15

E:5-B:24

E:8-B:6

E:8-B:15

E:8-B:24

M
ak

es
pa

n

SPSS-EB
basic SPSS-EB

(c) Makespan

 0

 5

 10

 15

 20

 25

E:2-B:6

E:2-B:15

E:2-B:24

E:5-B:6

E:5-B:15

E:5-B:24

E:8-B:6

E:8-B:15

E:8-B:24

Ap
pC

os
t

SPSS-EB
basic SPSS-EB

(d) AppCost

Fig. 3: Results for MONTAGE under energy and budget constraints

 0

 10

 20

 30

 40

 50

 60

E:12-D:2573

E:12-D:11579

E:12-D:20584

E:30-D:2573

E:30-D:11579

E:30-D:20584

E:48-D:2573

E:48-D:11579

E:48-D:20584

W
or

kf
lo

ws
Co

m
pl

et
ed

SPSS-ED
basic SPSS-ED

(a) WorkflowsCompleted

 0

 5

 10

 15

 20

 25

 30

E:12-D:2573

E:12-D:11579

E:12-D:20584

E:30-D:2573

E:30-D:11579

E:30-D:20584

E:48-D:2573

E:48-D:11579

E:48-D:20584

En
er

gy
Co

ns
um

ed

SPSS-ED
basic SPSS-ED

(b) Energy

 0

 5000

 10000

 15000

 20000

 25000

E:12-D:2573

E:12-D:11579

E:12-D:20584

E:30-D:2573

E:30-D:11579

E:30-D:20584

E:48-D:2573

E:48-D:11579

E:48-D:20584

M
ak

es
pa

n

SPSS-ED
basic SPSS-ED

(c) Makespan

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

E:12-D:2573

E:12-D:11579

E:12-D:20584

E:30-D:2573

E:30-D:11579

E:30-D:20584

E:48-D:2573

E:48-D:11579

E:48-D:20584

Ap
pC

os
t

SPSS-ED
basic SPSS-ED

(d) AppCost

Fig. 4: Results for LIGO under energy and deadline constraints

39

 0

 10

 20

 30

 40

 50

 60

E:9-D:7865

E:9-D:35393

E:9-D:62920

E:23-D:7865

E:23-D:35393

E:23-D:62920

E:36-D:7865

E:36-D:35393

E:36-D:62920

W
or

kf
lo

ws
Co

m
pl

et
ed

SPSS-ED
basic SPSS-ED

(a) WorkflowsCompleted

 0

 5

 10

 15

 20

 25

E:9-D:7865

E:9-D:35393

E:9-D:62920

E:23-D:7865

E:23-D:35393

E:23-D:62920

E:36-D:7865

E:36-D:35393

E:36-D:62920

En
er

gy
Co

ns
um

ed

SPSS-ED
basic SPSS-ED

(b) Energy

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

E:9-D:7865

E:9-D:35393

E:9-D:62920

E:23-D:7865

E:23-D:35393

E:23-D:62920

E:36-D:7865

E:36-D:35393

E:36-D:62920

M
ak

es
pa

n

SPSS-ED
basic SPSS-ED

(c) Makespan

 0

 50

 100

 150

 200

 250

 300

 350

 400

E:9-D:7865

E:9-D:35393

E:9-D:62920

E:23-D:7865

E:23-D:35393

E:23-D:62920

E:36-D:7865

E:36-D:35393

E:36-D:62920

Ap
pC

os
t

SPSS-ED
basic SPSS-ED

(d) AppCost

Fig. 5: Results for SIPHT under energy and deadline constraints

 0

 10

 20

 30

 40

 50

 60

E:2-D:139

E:2-D:626

E:2-D:1112

E:5-D:139

E:5-D:626

E:5-D:1112

E:8-D:139

E:8-D:626

E:8-D:1112

W
or

kf
lo

ws
Co

m
pl

et
ed

SPSS-ED
basic SPSS-ED

(a) WorkflowsCompleted

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

E:2-D:139

E:2-D:626

E:2-D:1112

E:5-D:139

E:5-D:626

E:5-D:1112

E:8-D:139

E:8-D:626

E:8-D:1112

En
er

gy
Co

ns
um

ed

SPSS-ED
basic SPSS-ED

(b) Energy

 0

 200

 400

 600

 800

 1000

 1200

 1400

E:2-D:139

E:2-D:626

E:2-D:1112

E:5-D:139

E:5-D:626

E:5-D:1112

E:8-D:139

E:8-D:626

E:8-D:1112

M
ak

es
pa

n

SPSS-ED
basic SPSS-ED

(c) Makespan

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

E:2-D:139

E:2-D:626

E:2-D:1112

E:5-D:139

E:5-D:626

E:5-D:1112

E:8-D:139

E:8-D:626

E:8-D:1112

Ap
pC

os
t

SPSS-ED
basic SPSS-ED

(d) AppCost

Fig. 6: Results for MONTAGE under energy and deadline constraints

40

SPSS-ED exploits the spare time in order to reduce the average
number of hosts used. Higher utilization of the hosts explains
better the results. In the case of Montage (Fig.6), SPSS-ED
reduces the average number of hosts needed for the execution
of the workflows. However, the makespan of the ensemble
is significantly increased, as shown in Fig.6c, leading to low
energy savings. The changes in the makespan and the number
of hosts used explain why the compared algorithms lead to
similar total application cost (Fig.6d).

C. Summary of Observations

With energy and budget constrained provisioning, a cost-
based approach uses a small number of VMs so that all the
nodes are fully utilized for the hours the user is charged. On
the other hand, in an energy efficient approach, the planning
is made so that the servers utilize all their available VMs for
the time they are required. In both approaches, booting a large
number of VMs to be used is avoided. Another interesting
observation is that pricing schemes can be improved to trade-
off between energy and cost, as high energy savings can be
achieved at the expense of the higher cost. In the case of
energy and deadline provisioning, the parallelism of tasks can
be exploited to reduce the achieved makespan and meet the
deadline. However, when it is not required to execute a large
number of tasks in parallel in order to meet the deadline,
the execution of some tasks can be serialized to avoid using
a large number of VMs and wasting energy when the hosts
are not fully utilized. Assigning sub-deadlines to tasks allows
to make the resource planning so that energy consumption
is reduced without exceeding the deadline. Finally, planning
the provisioning of resources for the ensemble and not each
workflow independently allows better resource utilization by
filling idle slots with tasks of other workflows.

VI. CONCLUSIONS

In this paper we considered the problem of resource plan-
ning under energy constraints for workflow ensembles with
budget or deadline requirements. Two algorithms, SPSS-EB
and SPSS-ED, were proposed to deal with energy constraints
along with budget or deadline constraints and take into account
energy consumption in the decision making. The performance
of the algorithms was evaluated based on simulation. The
results show that the proposed algorithms can achieve energy
savings when compared with the cost-based schemes, by
reducing the average number of hosts required over time
and increasing host utilization. Depending on the application,
the total cost incurred by the user may be increased when
compared to the basic version, but remains within the limits
in the case of applications with budget constraints. Also, the
goal of maximizing the number of completed workflows in
the ensemble under the given constraints is achieved. Future
work can investigate the effect of: workflow structures, pro-
visioning delays and data transfer costs on the performance
of the algorithms. Finally, extending the current approach
for heterogeneous hosts with different VM instance types is
another future direction.

REFERENCES

[1] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 528–540, 2009.

[2] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-driven Scheduling
of Grid Workflows Using Partial Critical Paths,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 8, pp. 1400–1414, 2012.

[3] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer, “A
Multi-objective Approach for Workflow Scheduling in Heterogeneous
Environments,” in 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012, pp. 300–309.

[4] R. Prodan and M. Wieczorek, “Bi-Criteria Scheduling of Scientific Grid
Workflows,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 7, no. 2, pp. 364–376, 2010.

[5] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and
Deadline-Constrained Provisioning for Scientific Workflow Ensembles
in IaaS Clouds,” in IEEE Supercomputing, 2012, pp. 10–16.

[6] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost optimized
provisioning of elastic resources for application workflows,” Future
Generation Computer Systems, vol. 27, no. 8, pp. 1011–1026, 2011.

[7] T. T. Huu and J. Montagnat, “Virtual Resources Allocation for
Workflow-Based Applications Distribution on a Cloud Infrastructure,”
in 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, 2010, pp. 612–617.

[8] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy
in scientific cloud workflows,” Future Generation Computer Systems,
vol. 26, no. 8, pp. 1200–1214, 2010.

[9] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline
and budget constraints,” in 11th IEEE/ACM International Conference
on Grid Computing, 2010, pp. 41–48.

[10] L. Lefèvre and A.-C. Orgerie, “Designing and evaluating an energy
efficient cloud,” The Journal of Supercomputing, vol. 51, no. 3, pp.
352–373, 2010.

[11] C. Mastroianni, M. Meo, and G. Papuzzo, “Self-economy in Cloud Data
Centers: Statistical Assignment and Migration of Virtual Machines,” in
Euro-Par, 2011, pp. 407–418.

[12] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware Provisioning of
Cloud Resources for Real-time Services,” in 7th International Workshop
on Middleware for Grids, Clouds and e-Science, 2009, pp. 1–6.

[13] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper:
Black-box and gray-box resource management for virtual machines,”
Computer Networks, vol. 53, no. 17, pp. 2923–2938, 2009.

[14] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for Cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[15] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of resources
in cloud computing systems,” The Journal of Supercomputing, vol. 60,
no. 2, pp. 268–280, 2012.

[16] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement
of HPC applications,” in 22nd International Conference on Supercom-
puting, 2008, pp. 175–184.

[17] Cloud Workflow Simulator, https://github.com/malawski/
cloudworkflowsimulator.

[18] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
2011.

[19] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and Performance Management of Virtualized Computing Envi-
ronments Via Lookahead Control,” Cluster Computing, vol. 12, no. 1,
pp. 1–15, 2009.

[20] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of Scientific Workflows,” in 3rd Workshop
on Workflows in Support of Large-Scale Science, 2008, pp. 1–10.

[21] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682–692, 2013.

[22] Workflow Generator, https://confluence.pegasus.isi.edu/display/pegasus/
WorkflowGenerator.

41

