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Abstract Grids are emerging as a promising solution for resource and computation de­
manding applications. However, the heterogeneity of resources in Grid com­
puting, complicates resource management and scheduling of applications. In 
addition, the commercialization of the Grid requires policies that can take into 
account user requirements, and budget considerations in particular. This paper 
considers a basic model for workflow applications modelled as Directed Acyclic 
Graphs (DAGs) and investigates heuristics that allow to schedule the nodes of 
the DAG (or tasks of a workflow) onto resources in a way that satisfies a budget 
constraint and is still optimized for overall time. Two different approaches are 
implemented, evaluated and presented using four different types of basic DAGs. 
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!• Introduction 

In the context of Grid computing, a wide range of applications can be rep­
resented as workflows many of which can be modelled as Directed Acyclic 
Graphs (DAGs) [9,12, 2,7]. In this model, each node in the DAG represents an 
executable task (it could be an application component of the workflow). Each 
directed edge represents a precedence constraint between two tasks (data or 
control dependence). A DAG represents a model that helps build a schedule 
of the tasks onto resources in a way that precedence constraints are respected 
and the schedule is optimized. Virtually all existing work in the literature [1,8, 
10, 11] aims to minimize the total execution time (length or makespan) of the 
schedule. 

Although the minimization of an application's execution time might be an 
important user requirement, managing a Grid environment is a more complex 
task which may require policies that strike a balance between different (and 
often conflicting) requirements of users and resources. Existing Grid resource 
management systems are mainly driven by system-centric policies, which aim 
to optimize system-wide metrics of performance. However, it is envisaged that 
future fully deployed Grid environments will need to guarantee a certain level of 
service and employ user-centric policies driven by economic principles [3, 6]. 
Of particular interest will be the resource access cost, since different resources, 
belonging to different organisations, may have different policies for charging. 
Clearly, users would like to pay a price which is commensurate to the budget 
they have available. 

There has been little work examining issues related to budget constraints 
in a Grid context. The most relevant work is available in [4-5], where it is 
demonstrated, through Grid simulation, how a scheduling algorithm can allocate 
jobs to machines in a way that satisfies constraints of Deadline and Budget 
at the same time. In this simulation, each job is considered to be a set of 
independent Gridlets (objects that contain all the information related to a job 
and its execution management details such as job length in million instructions, 
disk I/O operations, input and output file sizes and the job originator) [4]. 
Workflow types of applications, where jobs have precedence constraints, are 
not considered. 

In this paper, we consider workflow applications that are modelled as DAGs. 
Instead of focussing only on makespan optimisation, as most existing studies 
have done [2, 8, 10], we also consider that a budget constraint needs to be 
satisfied. Each job, when running on a machine, costs some money. Thus, the 
overall aim is to find the schedule that gives the shortest makespan for a given 
DAG and a given set of resources without exceeding the budget available. In 
this model, our emphasis is placed on the heuristics rather than the accurate 
modelling of a Grid environment; thus, we adopt a fairly static methodology 
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in defining execution costs of the tasks of the DAG. However, as indicated by 
studies on workflow scheduling [2, 7, 12], it appears that heuristics performing 
best in a static environment (e.g., HBMCT [8]) have the highest potential to 
perform best in a more accurately modelled Grid environment. 

In order to solve the problem of scheduling optimally under a budget con­
straint, we propose two basic families of heuristics, which are evaluated in the 
paper. The idea in both approaches is to start from an assignment which has 
good performance under one of the two optimization criteria considered (that 
is, makespan and budget) and swap tasks between machines trying to optimize 
as much as possible for the other criterion. The first approach starts with an 
assignment of tasks onto machines that is optimized for makespan (using a 
standard algorithm for DAG scheduling onto heterogeneous resources, such as 
HEFT [10] or HBMCT [8]). As long as the budget is exceeded, the idea is 
to keep swapping tasks between machines by choosing first those tasks where 
the largest savings in terms of money will result in the smallest loss in terms 
of schedule length. We call this approach as LOSS. Conversely, the second 
approach starts with the cheapest assignment of tasks onto resources (that is, 
the one that requires the least money). As long as there is budget available, the 
idea is to keep swapping tasks between machines by choosing first those tasks 
where the largest benefits in terms of minimizing the makespan will be obtained 
for the smallest expense. We call this approach GAIN. Variations in how tasks 
are chosen result in different heuristics, which we evaluate in the paper. 

The rest of the paper is organized as follows. Section 2 gives some back­
ground information about DAGs. In Section 3 we present the core algorithm 
proposed along with a description of the two approaches developed and some 
variants. In Section 4, we present experimental results that evaluate the two 
approaches. Finally, Section 5 concludes the paper. 

2. Background 

Following similar studies [2, 12, 9], the DAG model we adopt makes the 
following assumptions. Without loss of generality, we consider that a DAG 
starts with a single entry node and has a single exit node. Each node connects 
to other nodes with edges, which represent the node dependencies. Edges are 
annotated with a value, which indicates the amount of data that need to be 
communicated from a parent node to a child node. For each node the execution 
time on each different machine available is given. In addition, the time to 
communicate data between machines is given. Using this input, traditional 
studies from the literature aim to assign tasks onto machines in such a way that 
the overall schedule length is minimized and precedence constraints are met. 
An example of a DAG and the schedule length produced using a well-known 
heuristic, HEFT [10], is shown in Figure 1. A number of other heuristics could 



192 INTEGRATED RESEARCH IN GRID COMPUTING 

task 
0 
1 
2 
3 
4 
5 
6 
7 

mO 
17 
26 
30 
6 
12 
7 
23 
12 

ml 
28 
11 
13 
25 
2 
8 
16 
14 

m2 
17 
14 
27 
3 
12 
23 
29 
11 

(b) the computation cost of nodes 
on three different machines 

(a) an example graph 

MO M l M2 

machines 
mO- ml 
ml - m2 
m0-m2 

time for a data unit 
1.607 
0.9 
3.0 

(c) communication cost between the 
machines 

node 

0 
1 1 
1 2 

3 
4 
5 
6 
7 

start time 

0 
17 
33.07 
43 
46.07 
48.07 
64.14 
87.14 

finish 
time 
17 
43 
46.07 
49 
48.07 
56.07 
87.14 
99.14 

(e) the start time and finish time of 
each node in (d) 

(d) the schedule derived using the 
HEFT algorithm 

Figure J. An Example of HEFT scheduling in a DAG workflow. 

be used too (see [8], for example). It is noted that in the example in the figure 
no task is ever assigned to machine M2. This is primarily due to the high 
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communication; since HEFT assigns tasks onto the machine that provides the 
earliest finish time, no task ever satisfies this condition. 

The contribution of this paper relates to the extension of the traditional DAG 
model with one extra condition: the usage of each machine available costs 
some money. As a result, an additional constraint needs to be satisfied when 
scheduling the DAG, namely, that the overall financial cost of the schedule does 
not exceed a certain budget. We define the overall (total) cost as the sum of the 
costs of executing each task in the DAG onto a machine, that is, 

TotalCost = J2^iJ^ (^) 

where Cij is the cost of executing task i onto machine j and is calculated as 
the product of the execution time required by the task on the machine that has 
been assigned to, times the cost of this machine, that is, 

Cij = MachineCostj x ExecutionTimeij ^ (2) 

where MachineCostj, is the cost (in money units) per unit of time to run 
something on machine j and ExecutionTimeij is the time task i takes to 
execute on machine j . Throughout this paper, we assume that the value of 
MachineCostj, for all machines, is given. 

3. The Algorithm 
3.1 OutUne 

The key idea of the algorithm proposed is to satisfy the budget constraint by 
finding the best affordable assignment possible. We define the "best assign­
ment" as the assignment whose execution time is the minimum possible. We 
define '̂affordable assignment" as the assignment whose cost does not exceed 
the budget available. We also assume that, on the basis of the input given, the 
budget available is higher than the cost of the cheapest assignment (that is, the 
assignment where tasks are allocated onto the machine where it costs the least 
to execute them); this guarantees that there is at least one solution within the 
budget available. We also assume that the budget available is less than the cost 
of the schedule that can be obtained using a DAG scheduling algorithm that 
aims to minimize the makespan, such as HEFT or HBMCT. Without the latter 
assumption, there would be no need for further investigation: since the cost 
of the schedule produced by the DAG scheduling would be within the budget 
available, it would be reasonable to use this schedule. 

The algorithm starts with an initial assignment of the tasks onto machines 
(schedule) and computes for each reassignment of each task to a different ma­
chine, a weight value associated with that particular change. Those weight 
values are tabulated; thus, a weight table is created for each task in the DAG 
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and each machine. Two alternative approaches for computing the weight val­
ues are proposed, depending on the two choices used for the initial assignment: 
either optimal for makespan (approach called LOSS — in this case, the initial 
assignment would be produced by an efficient DAG scheduling heuristic [10, 
8]), or cheapest (approach called GAIN — in this case, the initial assignment 
would be produced by allocating tasks to the machines where it costs the least 
in terms of money; we call this as the cheapest assignment); the two approaches 
are described in more detail below. Using the weight table, tasks are repeatedly 
considered for possible reassignment to a machine, as long as the cost of the 
current schedule exceeds the budget (in the case that LOSS is followed), or, until 
all possible reassignments would exceed the budget (in the case of GAIN). In 
either case, the algorithm will try to reassign any given pair of tasks only once, 
so when no reassignment is possible the algorithm will terminate. We illustrate 
the key steps of the algorithm in Figure 2. 

3.2 The LOSS Approach 

The LOSS approach uses as an initial assignment the output assignment of 
either HEFT [10] orHBMCT[8] DAG scheduling algorithms. If the available 
budget is bigger or equal to the money cost required for this assignment then 
this assignment can be used straightaway and no further action is needed. In 
all the other cases that the budget is less than the cost required for the initial 
assignment, the LOSS approach is invoked. The aim of this approach is to make 
a change in the schedule (assignment) obtained through HEFT or HBMCT, so 
that it will result in the minimum loss in execution time for the largest money 
savings. This means that the new schedule has an execution time close to the 
time the original assignment would require but with less cost. In order to come 
up with such a re-assignment, the LOSS weight values for each task to each 
machine are computed as follows: 

LossWeight(i, m) = ^'"^_ ^"^^ (3) 

where Toid is the time to execute task i on the machine assigned by HEFT 
or HBMCT, Tnew is the time to execute Task i on machine m. Also, Coid is 
the cost of executing task i on the machine given by the HEFT or HBMCT 
assignment and Cnew is the cost of executing task i on machine m. If Coid is 
less than or equal to Cnew the value of LossWeight is considered zero. The 
algorithm keeps trying re-assignments by considering the smallest values of the 
LossW eight for all tasks and machines (step 4 of the algorithm in Figure 2). 
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Input: A DAG (workflow) G with task execution time and communication 
A set of machines with cost of executing jobs 
A DAG scheduhng algorithm H 
Available Budget B 

Algorithm: (two options: LOSS and GAIN) 
1) If LOSS 

then generate schedule S using algorithm H 
else generate schedule S by mapping each task onto the cheapest machine 

2) Build an array A[number_of_tasks][number_of-machines] 
3) for each Task in G 

for each Machine 
if, according to Schedule S, Task is assigned to Machine 

then A [Task] [Machine] ^ 0 
else Compute the Weight for A [Task] [Machine] 

endfor 
endfor 

4) if LOSS 

then condition ^— (Cost of schedule S > B) 
else condition <— (Cost of schedule S < B) 

While (condition and not all possible reassignments have been tried) 
if LOSS 

then find the smallest non-zero value from A, A[i][j] 
else find the biggest non-zero value from A, A[i][j] 

Re-assign Task i to Machine j in S and calculate new cost of S. 
if (GAIN and cost of S > B) 

then invalidate previous reassignment of Task i to Machine j . 
endwhile 

5) if (cost of schedule S > B) 
then use cheapest assignment for S. 

6) Return S 

Figure 2. The Basic Steps of the Proposed Algorithm 

3.3 The GAIN Approach 

The GAIN approach uses as a starting assignment the assignment that requires 
the least money. Each task is initially assigned to the machine that executes 
the task with the smallest cost. This assignment is called the Cheapest Assign­
ment. In this variation of the algorithm, the idea is to change the Cheapest 
Assignment by keeping re-assigning tasks to the machine where there is go­
ing to be the biggest benefit in makespan for the smallest money cost. This is 
repeated until there is no more money available (budget exceeded). In a way 
similar to Equation 3, weight values are computed as follows. It is noted that 
tasks are considered for reassignment starting with those that have the largest 
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GainWeight value. 

GainWeight{i^m) = -^ ^^^^ (4) 

where TOM, Tnew, Cnew^ Cold have exactly the same meaning as in the LOSS 

approach. Furthermore, if Tnew is greater than Toid or Cnew is equal to Coid 
we assign a weight value of zero. 

3.4 Variants 
For each of the two approaches above, we consider three different variants 

which relate to the way that the weights in Equations 3 and 4 are computed; 
these modifications result in slightly different versions of the heuristics. The 
three variants are: 

• LOSSl and GAINI: in this case, the weights are computed exactly as 
described above. 

• L0SS2 and GAIN2: in this case, the values of Toid, Tnew^ and Cnew^ CQU 
in Equations 3 and 4 refer to the benefit in terms of the overall makespan 
and the overall cost for the schedule and not the benefit associated with 
the individual tasks being considered for reassignment. 

• L0SS3 and GAIN3: in this case, the weights, computed as shown by 
Equations 3 and 4, are recomputed each time a reassignment is made by 
the algorithm. 

4. Experimental Results 

4.1 Experiment Setup 
The algorithm described in the previous section was incorporated in a tool 

developed at the University of Manchester, for the evaluation of different DAG 
scheduling algorithms [8-9]. In order to evaluate each version of both ap­
proaches we run the algorithm proposed in this paper with four different types 
of DAGs used in the relevant literature [8-9]: FFT, Fork-Join (denoted by FRJ), 
Laplace (denoted by LPL) and Random DAGs, generated as indicated in [13, 8]. 
All DAGs contain about 100 nodes each and they are scheduled on 3 different 
machines. We run the algorithm proposed in the paper 100 times for each type 
of DAG and both approaches and their variants, and we considered the average 
values. In each case, we considered nine values for the possible budget, B, as 
follows: 

B = Ccheapest + k X {CDAG " Ccheapest)-) (5) 

where Co AG is the total cost of the assignment produced by the DAG schedul­
ing heuristic used for the initial assignment (that is, HEFT or HBMCT) when 



Scheduling Workflows with Budget Constraints 197 

the LOSS approach is considered and Ccheapest is the cost of the cheapest as­
signment. The value of A: varies between 0.1 and 0.9. Essentially, this approach 
allows us to consider values of budget that lie in ten equally distanced points 
between the money cost for the cheapest assignment and the money cost for the 
schedule generated by HEFT or HBMCT. Clearly, values for budget outside 
those two ends are trivial to handle since they indicate that either there is no 
solution satisfying the given budget, or HEFT and/or HBMCT can provide a 
solution within the budget. 

4.2 Results 

Average Normalized Difference metric: In order to compare the quality of 
the schedule produced by the algorithm for each of the six variants and each type 
of DAG, and since 100 experiments are considered in each case, we normalize 
the schedule length (makespan) using the following formula: 

-'•value ~ -^cheapest z^x 
Tj^ 7^ ) (6) 
J-DAG ~ -i-cheapest 

where Tyaiue is the makespan returned by our algorithm, Tcheapest is the makespan 
of the cheapest assignment and TJJAG is the makespan of HEFT or HBMCT. As 
a general rule, the makespan of the cheapest assignment, Tcheapesu is expected 
to be the worst (longest), and the makespan of HEFT or HBMCT, TDAG, the 
best (shortest). As a result, the formula above is expected to return a value 
between 0 and 1 indicating how close the algorithm was to each of the two 
bounds (note that since HEFT or HBMCT are greedy heuristcs, occasional 
values which are better than the values obtained by those two heuristics may 
occur). Hence, for comparison purposes, larger values in Equation 6 indicate a 
shorter makespan. Since for each case we take 100 runs, the average value of 
the quantity above produces the Average Normalized Difference (AND) from 
the worst and the best, that is, 

. 100 /rpi _rpi \ 
A ]\T j-^ ^ V"^ ( value cheapest \ .^^ 

1 0 0 ^ T^ ^ T ^ ' ^ ^ 
^^^ i=l \^DAG -^cheapest/ 

where the superscript i denotes the i-th run. 
Results showing the AND for each different type of DAG, variant, and budget 

available (shown in terms of the value of A: — see Equation 5) are presented in 
Figures 3, 4 and 5. Each figure groups the results of a different approach: LOSS 
starting with HEFT, LOSS starting with HBMCT, and GAIN (in the latter case, 
a DAG scheduling heuristic would not make any difference, since the initial 
schedule is built on the basis of assigning tasks to the machine with the least 
cost). The graphs show the difference of the two approaches. The LOSS variants 
have a generally better makespan than the GAIN variants and they are capable of 
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Figure 3. Average normalized difference for the three variants of LOSS when HEFT is used to 
generate the initial schedule. 

performing close to the baseline performance of HEFT or HBMCT (that is, the 
value 1 in Figures 3 and 4) for different values of the budget. This is due to the 
fact that the starting basis of the LOSS approach is a DAG scheduling heuristic, 
which already produces a short makespan. Instead, the GAIN variants starts 
from the Cheapest Assignment whose makespan is typically long. However, 
from the experimental results we notice that in a few, limited, cases where the 
budget is close to the cheapest budget, the AND of the first variant of the GAIN 
approach is higher than the AND of the LOSS approaches. 

Running Time for the Algorithm: To evaluate the performance of each ver­
sion of the algorithm, using both the LOSS and GAIN approaches, we extracted 
from the experiments we carried out before, the running time of the algorithm. 
It appears that the results have little difference between different types of DAGs, 
so we include here only the results obtained for FFT graphs. Two graphs are 
presented in Figure 6; one graph assumes that the starting point for LOSS is 
HEFT and the other graph assumes that the starting point for LOSS is HBMCT. 
Same as before, the execution time is the average value from 100 runs. It can be 
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Figure 6. Average running time for each variant of the algorithm, using FFT DAGs. 

seen that the GAIN approaches, generally, take longer than the LOSS approaches 
(the exception seems to arise in cases where the budget is close to the cheapest 
assignment and the GAIN approaches are quick in identifying a solution). Also, 
as expected, the third variant of LOSS, which involves re-computation of the 
weights after each reassignment of tasks, takes longer than the other two. 

Summary of observations: The above experiments indicate that the algo­
rithm proposed in this paper is able to find affordable assignments with better 
makespan when the LOSS approach is applied, instead with the GAIN approach. 
The LOSS approach applies re-assignment to an assignment that is given by a 
good DAG scheduling heuristic, whereas in the GAIN approach the cheapest 
assignment is used to build the schedule; this may have the worst makespan. 
However, in cases where the available budget is close to the cheapest budget, 
GAiNl gives better makespan than LOSSl or LOSS2. This observation can 
contribute to the optimization in the performance of the algorithm. 

Regarding the running time, it appears that the LOSS approach takes more 
time as we move towards a budget close to the cost of the cheapest assignment; 
the opposite happens with the GAIN approach. This is correlated with the 
starting basis of each of the two approaches. 

5. Conclusion 

We have implemented an algorithm to schedule DAGs onto heterogeneous 
machines under budget constraints. Different variants of the algorithm were 
modelled and evaluated. The main conclusion is that starting from an optimized 
schedule, in terms of its makespan, pays off when trying to satisfy the budget 
constraint. As for future work: (i) other types of DAGs that correspond to 
workflows of interest in the Grid community could be considered (e.g., [2, 12]); 
(ii) more sophisticated models to charge for machine time could be incorporated 
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(although relevant research in the context of the Grid is still in its infancy); and, 
(iii) more dynamic scenarios and environments for the execution of the DAGs 
and the modelling of the machine time could be considered (e.g., [9]). 
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