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Abstract Grids are emerging as a promising solution for resource and computation de-
manding applications. However, the heterogeneity of resources in Grid com-
puting, complicates resource management and scheduling of applications. In
addition, the commercialization of the Grid requires policies that can take into
account user requirements, and budget considerations in particular. This paper
considers a basic model for workflow applications modelled as Directed Acyclic
Graphs (DAGs) and investigates heuristics that allow to schedule the nodes of
the DAG (or tasks of a workflow) onto resources in a way that satisfies a budget
constraint and is still optimized for overall time. Two different approaches are
implemented, evaluated and presented using four different types of basic DAGs.
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1. Introduction

In the context of Grid computing, a wide range of applications can be rep-
resented as workflows many of which can be modelled as Directed Acyclic
Graphs (DAGs) [9, 12, 2, 7]. In this model, each node in the DAG represents an
executable task (it could be an application component of the workflow). Each
directed edge represents a precedence constraint between two tasks (data or
control dependence). A DAG represents a model that helps build a schedule
of the tasks onto resources in a way that precedence constraints are respected
and the schedule is optimized. Virtually all existing work in the literature [1, 8,
10, 11] aims to minimize the total execution time (length or makespan) of the
schedule.

Although the minimization of an application’s execution time might be an
important user requirement, managing a Grid environment is a more complex
task which may require policies that strike a balance between different (and
often conflicting) requirements of users and resources. Existing Grid resource
management systems are mainly driven by system-centric policies, which aim
to optimize system-wide metrics of performance. However, it is envisaged that
future fully deployed Grid environments will need to guarantee a certain level of
service and employ user-centric policies driven by economic principles [3, 0].
Of particular interest will be the resource access cost, since different resources,
belonging to different organisations, may have different policies for charging.
Clearly, users would like to pay a price which is commensurate to the budget
they have available.

There has been little work examining issues related to budget constraints
in a Grid context. The most relevant work is available in [4-5], where it is
demonstrated, through Grid simulation, how a scheduling algorithm can allocate
jobs to machines in a way that satisfies constraints of Deadline and Budget
at the same time. In this simulation, each job is considered to be a set of
independent Gridlets (objects that contain all the information related to a job
and its execution management details such as job length in million instructions,
disk I/O operations, input and output file sizes and the job originator) [4].
Workflow types of applications, where jobs have precedence constraints, are
not considered.

In this paper, we consider workflow applications that are modelled as DAGs.
Instead of focussing only on makespan optimisation, as most existing studies
have done [2, 8, 10], we also consider that a budget constraint needs to be
satisfied. Each job, when running on a machine, costs some money. Thus, the
overall aim is to find the schedule that gives the shortest makespan for a given
DAG and a given set of resources without exceeding the budget available. In
this model, our emphasis is placed on the heuristics rather than the accurate
modelling of a Grid environment; thus, we adopt a fairly static methodology
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in defining execution costs of the tasks of the DAG. However, as indicated by
studies on workflow scheduling [2, 7, 12], it appears that heuristics performing
best in a static environment (e.g., HBMCT [8]) have the highest potential to
perform best in a more accurately modelled Grid environment.

In order to solve the problem of scheduling optimally under a budget con-
straint, we propose two basic families of heuristics, which are evaluated in the
paper. The idea in both approaches is to start from an assignment which has
good performance under one of the two optimization criteria considered (that
is, makespan and budget) and swap tasks between machines trying to optimize
as much as possible for the other criterion. The first approach starts with an
assignment of tasks onto machines that is optimized for makespan (using a
standard algorithm for DAG scheduling onto heterogeneous resources, such as
HEFT [10] or HBMCT [8]). As long as the budget is exceeded, the idea is
to keep swapping tasks between machines by choosing first those tasks where
the largest savings in terms of money will result in the smallest loss in terms
of schedule length. We call this approach as LOss. Conversely, the second
approach starts with the cheapest assignment of tasks onto resources (that is,
the one that requires the least money). As long as there is budget available, the
idea is to keep swapping tasks between machines by choosing first those tasks
where the largest benefits in terms of minimizing the makespan will be obtained
for the smallest expense. We call this approach GAIN. Variations in how tasks
are chosen result in different heuristics, which we evaluate in the paper.

The rest of the paper is organized as follows. Section 2 gives some back-
ground information about DAGs. In Section 3 we present the core algorithm
proposed along with a description of the two approaches developed and some
variants. In Section 4, we present experimental results that evaluate the two
approaches. Finally, Section 5 concludes the paper.

2.  Background

Following similar studies [2, 12, 9], the DAG model we adopt makes the
following assumptions. Without loss of generality, we consider that a DAG
starts with a single entry node and has a single exit node. Each node connects
to other nodes with edges, which represent the node dependencies. Edges are
annotated with a value, which indicates the amount of data that need to be
communicated from a parent node to a child node. For each node the execution
time on each different machine available is given. In addition, the time to
communicate data between machines is given. Using this input, traditional
studies from the literature aim to assign tasks onto machines in such a way that
the overall schedule length is minimized and precedence constraints are met.
An example of a DAG and the schedule length produced using a well-known
heuristic, HEFT [10], is shown in Figure 1. A number of other heuristics could
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(d) the schedule derived using the
HEFT algorithm

task | mO | ml | m2
0 17 | 28 17
1 26 11 14
2 30 13 | 27
3 6 25 3
4 12 2 12
5 7 8 23
6 23 16 | 29
7 12 14 11

(b) the computation cost of nodes
on three different machines

machines | time for a data unit
mO0 - ml 1.607

ml - m2 09

m0 - m2 3.0

(¢) communication cost between the

machines
node start time | finish
time
0 0 17
1 17 43
2 33.07 46.07
3 43 49
4 46.07 48.07
5 48.07 56.07
6 64.14 87.14
7 87.14 99.14

(e) the start time and finish time of
each node in (d)

Figure . An Example of HEFT scheduling in a DAG workflow.

be used too (see [8], for example). It is noted that in the example in the figure
no task is ever assigned to machine M2. This is primarily due to the high
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communication; since HEFT assigns tasks onto the machine that provides the
earliest finish time, no task ever satisfies this condition.

The contribution of this paper relates to the extension of the traditional DAG
model with one extra condition: the usage of each machine available costs
some money. As a result, an additional constraint needs to be satisfied when
scheduling the DAG, namely, that the overall financial cost of the schedule does
not exceed a certain budget. We define the overall (total) cost as the sum of the
costs of executing each task in the DAG onto a machine, that is,

TotalCost = ZCU’ (1)

where C;; is the cost of executing task ¢ onto machine j and is calculated as
the product of the execution time required by the task on the machine that has
been assigned to, times the cost of this machine, that is,

Ci; = MachineCost; x ExecutionTime;, (2)

where MachineCost;, is the cost (in money units) per unit of time to run
something on machine 7 and ExecutionTime;; is the time task ¢ takes to
execute on machine j. Throughout this paper, we assume that the value of
MachineCost;, for all machines, is given.

3.  The Algorithm
3.1  Outline

The key idea of the algorithm proposed is to satisfy the budget constraint by
finding the best affordable assignment possible. We define the “best assign-
ment” as the assignment whose execution time is the minimum possible. We
define “affordable assignment” as the assignment whose cost does not exceed
the budget available. We also assume that, on the basis of the input given, the
budget available is higher than the cost of the cheapest assignment (that is, the
assignment where tasks are allocated onto the machine where it costs the least
to execute them); this guarantees that there is at least one solution within the
budget available. We also assume that the budget available is less than the cost
of the schedule that can be obtained using a DAG scheduling algorithm that
aims to minimize the makespan, such as HEFT or HBMCT. Without the latter
assumption, there would be no need for further investigation: since the cost
of the schedule produced by the DAG scheduling would be within the budget
available, it would be reasonable to use this schedule.

The algorithm starts with an initial assignment of the tasks onto machines
(schedule) and computes for each reassignment of each task to a different ma-
chine, a weight value associated with that particular change. Those weight
values are tabulated; thus, a weight table is created for each task in the DAG
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and each machine. Two alternative approaches for computing the weight val-
ues are proposed, depending on the two choices used for the initial assignment:
either optimal for makespan (approach called LOSS — in this case, the initial
assignment would be produced by an efficient DAG scheduling heuristic [10,
81), or cheapest (approach called GAIN — in this case, the initial assignment
would be produced by allocating tasks to the machines where it costs the least
in terms of money; we call this as the cheapest assignment); the two approaches
are described in more detail below. Using the weight table, tasks are repeatedly
considered for possible reassignment to a machine, as long as the cost of the
current schedule exceeds the budget (in the case that L.OsS is followed), or, until
all possible reassignments would exceed the budget (in the case of GAIN). In
either case, the algorithm will try to reassign any given pair of tasks only once,
so when no reassignment is possible the algorithm will terminate. We illustrate
the key steps of the algorithm in Figure 2.

3.2  The rLoss Approach

The LOss approach uses as an initial assignment the output assignment of
either HEFT [10] or HBMCT [8] DAG scheduling algorithms. If the available
budget is bigger or equal to the money cost required for this assignment then
this assignment can be used straightaway and no further action is needed. In
all the other cases that the budget is less than the cost required for the initial
assignment, the LOSS approach is invoked. The aim of this approach is to make
a change in the schedule (assignment) obtained through HEFT or HBMCT, so
that it will result in the minimum loss in execution time for the largest money
savings. This means that the new schedule has an execution time close to the
time the original assignment would require but with less cost. In order to come
up with such a re-assignment, the LOSS weight values for each task to each
machine are computed as follows:

LossWeight(i,m) = %—’f—‘“——‘—f-@ 3)
old — L“new

where T4 is the time to execute task ¢ on the machine assigned by HEFT
or HBMCT, T, is the time to execute Task ¢ on machine m. Also, Cyq is
the cost of executing task ¢ on the machine given by the HEFT or HBMCT
assignment and Cy,,, is the cost of executing task 4 on machine m. If Cpy is
less than or equal to Chey the value of LossWeight is considered zero. The
algorithm keeps trying re-assignments by considering the smallest values of the
LossW eight for all tasks and machines (step 4 of the algorithm in Figure 2).
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3.3

Input: A DAG (workflow) G with task execution time and communication

A set of machines with cost of executing jobs
A DAG scheduling algorithm H
Available Budget B

Algorithm: (two options: LOSS and GAIN)
1) If LOSS
then generate schedule S using algorithm H

else generate schedule S by mapping each task onto the cheapest machine

2) Build an array A[number.of tasks]{number_of_machines]
3) for each Task in G
for each Machine
if, according to Schedule S, Task is assigned to Machine
then A[Task}[Machine] « O
else Compute the Weight for A[Task][Machine]
endfor
endfor
4) if LOSS
then condition « (Cost of schedule S > B)
else condition « (Cost of schedule S < B)
While (condition and not all possible reassignments have been tried)
if LOSS
then find the smallest non-zero value from A, Ali][j]
else find the biggest non-zero value from A, A[i][j]
Re-assign Task i to Machine j in S and calculate new cost of S.
if (GAIN and cost of S > B)
then invalidate previous reassignment of Task i to Machine j.
endwhile
5) if (cost of schedule S > B)
then use cheapest assignment for S.
6) Return S

Figure 2. The Basic Steps of the Proposed Algorithm

The cain Approach

195

The GAIN approach uses as a starting assignment the assignment that requires
the least money. Each task is initially assigned to the machine that executes
the task with the smallest cost. This assignment is called the Cheapest Assign-
ment. In this variation of the algorithm, the idea is to change the Cheapest
Assignment by keeping re-assigning tasks to the machine where there is go-
ing to be the biggest benefit in makespan for the smallest money cost. This is
repeated until there is no more money available (budget exceeded). In a way
similar to Equation 3, weight values are computed as follows. It is noted that
tasks are considered for reassignment starting with those that have the largest
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GainWeight value.
Told - Tnew

GainWeight(i,m) = T
new — “old

4)
where T4, Thews Cnew> Colg have exactly the same meaning as in the LOSS
approach. Furthermore, if T,eq, is greater than Tyg or Chey is equal to Cpig
we assign a weight value of zero.

34 Variants

For each of the two approaches above, we consider three different variants
which relate to the way that the weights in Equations 3 and 4 are computed;
these modifications result in slightly different versions of the heuristics. The
three variants are:

w L0SS1 and GAIN1: in this case, the weights are computed exactly as
described above.

» 105882 and GAIN2: in this case, the values of Ty;4, Thew, and Crew, Cold
in Equations 3 and 4 refer to the benefit in terms of the overall makespan
and the overall cost for the schedule and not the benefit associated with
the individual tasks being considered for reassignment.

® 10SS3 and GAINJ: in this case, the weights, computed as shown by
Equations 3 and 4, are recomputed each time a reassignment is made by
the algorithm.

4. Experimental Results
4.1  Experiment Setup

The algorithm described in the previous section was incorporated in a tool
developed at the University of Manchester, for the evaluation of different DAG
scheduling algorithms [8-9]. In order to evaluate each version of both ap-
proaches we run the algorithm proposed in this paper with four different types
of DAGs used in the relevant literature {8-9]: FFT, Fork-Join (denoted by FRIJ),
Laplace (denoted by LPL) and Random DAGs, generated as indicated in [13, §].
All DAGs contain about 100 nodes each and they are scheduled on 3 different
machines. We run the algorithm proposed in the paper 100 times for each type
of DAG and both approaches and their variants, and we considered the average
values. In each case, we considered nine values for the possible budget, B, as
follows:

B = Ccheapest +k x (CDAG - Ccheapest)a &)
where Cp 4¢ is the total cost of the assignment produced by the DAG schedul-
ing heuristic used for the initial assignment (that is, HEFT or HBMCT) when
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the LOSS approach is considered and Cepeqpes; 18 the cost of the cheapest as-
signment. The value of & varies between 0.1 and 0.9. Essentially, this approach
allows us to consider values of budget that lie in ten equally distanced points
between the money cost for the cheapest assignment and the money cost for the
schedule generated by HEFT or HBMCT. Clearly, values for budget outside
those two ends are trivial to handle since they indicate that either there is no
solution satisfying the given budget, or HEFT and/or HBMCT can provide a
solution within the budget.

4.2 Results

Average Normalized Difference metric: In order to compare the quality of
the schedule produced by the algorithm for each of the six variants and each type
of DAG, and since 100 experiments are considered in each case, we normalize
the schedule length (makespan) using the following formula:

Tvalue - Tcheapest 6
T T ? ( )
DAG — 4 cheapest

where 7,44 is the makespan returned by our algorithm, Tt eqpes: 1S the makespan
of the cheapest assignment and T 4¢ is the makespan of HEFT or HBMCT. As
a general rule, the makespan of the cheapest assignment, T peapest, 1 expected
to be the worst (longest), and the makespan of HEFT or HBMCT, Tp 4, the
best (shortest). As a result, the formula above is expected to return a value
between O and 1 indicating how close the algorithm was to each of the two
bounds (note that since HEFT or HBMCT are greedy heuristcs, occasional
values which are better than the values obtained by those two heuristics may
occur). Hence, for comparison purposes, larger values in Equation 6 indicate a
shorter makespan. Since for each case we take 100 runs, the average value of
the quantity above produces the Average Normalized Difference (AND) from
the worst and the best, that is,

1 100 i e — Tih ;
AND = — S ) , )
100 ; <TLZ)AG - Tclheapest

where the superscript ¢ denotes the ¢-th run.

Results showing the AND for each different type of DAG, variant, and budget
available (shown in terms of the value of £ — see Equation 5) are presented in
Figures 3, 4 and 5. Each figure groups the results of a different approach: 1.0ss
starting with HEFT, L0sS starting with HBMCT, and GAIN (in the latter case,
a DAG scheduling heuristic would not make any difference, since the initial
schedule is built on the basis of assigning tasks to the machine with the least
cost). The graphs show the difference of the two approaches. The LOSS variants
have a generally better makespan than the GAIN variants and they are capable of
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Figure 3. Average normalized difference for the three variants of LOSS when HEFT is used to
generate the initial schedule.

performing close to the baseline performance of HEFT or HBMCT (that is, the
value 1 in Figures 3 and 4) for different values of the budget. This is due to the
fact that the starting basis of the LOSS approach is a DAG scheduling heuristic,
which already produces a short makespan. Instead, the GAIN variants starts
from the Cheapest Assignment whose makespan is typically long. However,
from the experimental results we notice that in a few, limited, cases where the
budget is close to the cheapest budget, the AND of the first variant of the GAIN
approach is higher than the AND of the LOSS approaches.

Running Time for the Algorithm: To evaluate the performance of each ver-
sion of the algorithm, using both the LOSS and GAIN approaches, we extracted
from the experiments we carried out before, the running time of the algorithm.
It appears that the results have little difference between different types of DAGs,
so we include here only the results obtained for FFT graphs. Two graphs are
presented in Figure 6; one graph assumes that the starting point for LOSS is
HEFT and the other graph assumes that the starting point for LOss is HBMCT.
Same as before, the execution time is the average value from 100 runs. It can be
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Figure 6. Average running time for each variant of the algorithm, using FFT DAGs.

seen that the GAIN approaches, generally, take longer than the LOSS approaches
(the exception seems to arise in cases where the budget is close to the cheapest
assignment and the GAIN approaches are quick in identifying a solution). Also,
as expected, the third variant of LOSS, which involves re-computation of the
weights after each reassignment of tasks, takes longer than the other two.

Summary of observations: The above experiments indicate that the algo-
rithm proposed in this paper is able to find affordable assignments with better
makespan when the LOSS approach is applied, instead with the GAIN approach.
The LOSS approach applies re-assignment to an assignment that is given by a
good DAG scheduling heuristic, whereas in the GAIN approach the cheapest
assignment is used to build the schedule; this may have the worst makespan.
However, in cases where the available budget is close to the cheapest budget,
GAIN1 gives better makespan than 1.0SS1 or 1,08S2. This observation can
contribute to the optimization in the performance of the algorithm.

Regarding the running time, it appears that the LOSS approach takes more
time as we move towards a budget close to the cost of the cheapest assignment;
the opposite happens with the GAIN approach. This is correlated with the
starting basis of each of the two approaches.

5. Conclusion

We have implemented an algorithm to schedule DAGs onto heterogeneous
machines under budget constraints. Different variants of the algorithm were
modelled and evaluated. The main conclusion is that starting from an optimized
schedule, in terms of its makespan, pays off when trying to satisfy the budget
constraint. As for future work: (i) other types of DAGs that correspond to
workflows of interest in the Grid community could be considered (e.g., [2, 12]);
(ii) more sophisticated models to charge for machine time could be incorporated

ana
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(although relevant research in the context of the Grid is still in its infancy); and,
(iii) more dynamic scenarios and environments for the execution of the DAGs
and the modelling of the machine time could be considered (e.g., [9]).
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