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Abstract

Adaptive query processing generally involves a feedback loop comprising monitoring, assessment and

response. So far, individual proposals have tended to group together an approach to monitoring, a means
of assessment, and a form of response. However, there are many benefits in decoupling these three phases,

and in constructing generic frameworks for each of them. To this end, this paper discusses monitoring of

query plan execution as a topic in its own right, and advocates an approach based on self-monitoring

algebraic operators. This approach is shown to be generic and independent of any specific adaptation

mechanism, easily implementable and portable, sufficiently comprehensive, appropriate for heterogeneous

distributed environments, and more importantly, capable of driving on-the-fly adaptations of query plan

execution. An experimental evaluation of the overheads and of the quality of the results obtained by

monitoring is also presented.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive query processing (AQP) is particularly relevant to settings in which query planning
must take place in the presence of limited or potentially inaccurate statistics for use by the query
optimiser, and where queries are evaluated in environments with rapidly changing computational
properties, such as loads or available memory [12]. As such, the relevance of AQP is growing with
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the prevalence of computing environments that are characterized by a lack of centralised control,
such as the web and the Grid [8]. Such environments are not only inherently more complex to
model, but it is often the case that runtime conditions are sufficiently volatile to compromise the
validity of predictions. As a result, robust cost models are harder to come by, thereby reducing the
likelihood that the optimiser will select a sufficiently efficient execution plan [17,22]. Useful sta-
tistics, like selectivities and histograms (e.g., [4,7,13]), may be inaccurate, incomplete or
unavailable. Adaptivity is likely to prove crucial, and, for that purpose, precise, up-to-date,
efficiently obtainable data about runtime behaviour is essential.

AQP generally involves a feedback loop in which there is monitoring, assessment and response.
The execution of a plan and the execution environment itself are monitored, an assessment is
made relating to the progress of the execution, and a response may be taken that affects the
continuing evaluation of the query. The response may be fine grained (e.g., directing the next tuple
to a particular node) or coarse grained (e.g., rerunning the optimiser over some or all of the
query). In AQP, monitoring is not normally addressed as a topic in its own right. Rather, indi-
vidual proposals either tend to group together an approach to monitoring, a means of assessment,
and a form of response (e.g., [30]); or just take the existence of monitoring for granted (e.g., [27]).
Simply assuming that the monitoring information that drives adaptation is in place justifies both
the necessity and the pertinence of dealing with monitoring separately. On the other hand,
grouping all the phases of adaptivity together has led to many interesting techniques for AQP, but
to date no general framework has been constructed for identifying or composing generic tech-
niques for monitoring, assessment or response. For example, one could envisage a particular
approach to monitoring being used with different forms of assessment and response, or different
categories of response being made in the light of a single approach to monitoring and assessment.

This paper discusses the monitoring of query execution as a topic in its own right. Monitoring
the execution of a query can provide evolving estimates for properties of the query, such as its
completion time and the number of values in its result. Such information can be useful for
providing feedback to users, refining cost models, and suggesting circumstances in which runtime
adaptation of a query plan is likely to yield improved performance, which is the most challenging
task. Three different approaches to monitoring can be identified in the literature: use of an
independent and centralised component within the query processor for monitoring (e.g., [3,19]);
construction of new physical query operators dedicated to statistics collection (e.g., [16]); and
transformation of traditional operators to self-monitoring ones (e.g., [11]). A centralised com-
ponent, apart from requiring significant changes in the architecture of query engines, does not
scale well in parallel or distributed settings, due to the communication overhead incurred. Ded-
icated operators require modifications in the query optimisers, which are responsible for deciding
which monitoring operators are employed for each query and where. Both centralised compo-
nents and dedicated operators suffer from limitations in the scope of the monitoring information
that can be gathered. For example, a dedicated monitoring operator can collect useful informa-
tion about the value distribution of intermediate results, but cannot provide any information
about the time cost of other operators in the query plan, as it can only monitor the data it
processes. On the other hand, a centralised component can observe the behaviour of algebraic
operators and their cost, but cannot monitor data properties like value distribution. Our approach
is based on self-monitoring operators that capture metrics in the form of counters, timings (i.e.,
placing two timestamps and computing their difference), and computations of tuple sizes. In this
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way, modifications are required neither in the engine architecture nor in the optimiser, but only in
the implementation of the operators themselves, which is, in our opinion, less disruptive to the
query compilation and evaluation architecture. This feature, combined with the simple nature of
the metrics (i.e., counters, timings, and size computations), makes the approach portable and
implementable. Moreover, it enables the communication of monitoring information between
nodes in the same way as the data items manipulated by operators are exchanged (e.g., through
the exchange operator [9] in the operator model of parallel execution), and is thus more appro-
priate for multi-node environments like the Grid [25].

Additional features of the approach presented in this paper are:

(1) It covers a broad range of query execution aspects, although it is based only on counters,
timings, and size computations, as discussed in Section 2. Moreover, it provides monitoring
information that is sufficient to support most AQP proposals to date, as demonstrated in
Section 6.

(2) It is able to collect information that is directly relevant to the assessment process of adap-
tivity by establishing where a plan is deviating from its anticipated behaviour. In other
words, it can provide the necessary background for on-the-fly adaptation, as discussed in
Section 3.

(3) It accommodates different levels of detail in the monitoring information, monitoring fre-
quency and data movement. In particular, the paper discusses instantiations of the approach
in which (i) no monitoring data is passed between the operators of the algebra, (ii) monitoring
data is passed between operators of the algebra only within a single computational node, and
(iii) information is passed between computational nodes in a distributed plan. Thus the ap-
proach is able to trade-off monitoring quality against monitoring overhead, as discussed in
Section 4.

(4) As the cost of monitoring and the quality of the results obtained by monitoring are important,
experiments have been conducted on both these features, which are presented in Section 5. We
cannot describe this cost as low or high as there is no general consensus on these terms, but we
feel that the overheads incurred are reasonable and our results encouraging.
2. The scope of the approach: what can be captured

In many query processors, a declarative query is transformed, after being parsed, into an
operator tree that is also referred to as a query plan. Usually, the query is mapped into a logical
algebra and then into a physical one. This section identifies measurements that can be taken from
physical operators in order to support monitoring tasks, such as accounting, adaptation, and
calibration of the cost model employed. Although the measurements should be able to be ex-
pressed as counters, timings, or sizes, this is not a very restricting limitation as they can cover, as
shown below, a broad range of operator properties. There are two kinds of measurements, cor-
responding to two different levels of monitoring: generic measurements that can be applied to any
physical operator, e.g., index-scan, hash join and so on; and operator-specific measurements that
decompose the operator’s functionality into simpler parts, and that are essential for monitoring at
a finer granularity.
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2.1. Operator-independent information

Table 1 presents quantifiable properties that are common to all physical operators. Such
properties are not related to specific implementations or functionalities of the operators, and
cover the following distinct aspects of their behaviour:

(1) Operator workload and selectivity: the measurements that are useful for that are the number of
tuples consumed njinp, which is equal to the number of tuples processed, and the number of
tuples produced n.

(2) Operator cost: for monitoring the cost of the operator, various timings can be captured. The
time elapsed since the operator’s instantiation t reflects the evaluation time of that operator in
systems where all tuples are first processed by one operator before being sent to another. In
systems that follow a different approach (e.g., the iterator model of query execution [10]),
in the absence of blocking operators, this time may converge for all the operators in a query
plan, and approximate the query execution time. In such systems the time the operator is ac-
tive treal is not the same as the time elapsed since initialisation. At a finer granularity, ttuple gives
the time cost for each data item processed.

(3) Resource requirements: when an operator needs to maintain certain state, it is important to
monitor its memory requirements mem, along with the size s of intermediate results produced,
especially in the case when these have to be kept in main memory or in secondary storage, as
such resources are not always abundant.

(4) Connections with other operators and data stores: as well as obtaining basic measurements,
characteristics of the execution of the part of the query plan below the relevant operator
can be inferred, such as the delivery rate of data sources, and in a distributed setting, potential
points of network failure, by monitoring the time the operator waits for its inputs to deliver
data tjwait.

However, more useful and easily exploited monitoring information is aggregate statistics, e.g.,
averages, sums, counts, minimums and maximums. Aggregates can be taken in two ways. In one
approach, a window is assumed and only the measurements that belong to that window are used
for computing the aggregate. Windows can be either overlapping or disjoint, and their widths can
be defined in either time units or the number of most recent tuples. In the second approach, the
Table 1

General measurements on a physical query operator

Symbol Description

n Number of tuples produced so far

njinp Number of tuples received from the jth input

t Time elapsed since the operator was created

treal Time the operator is active

ttuple Time to process a tuple, i.e. time to evaluate the next()

function in the iterator model [10]

s Size of an output tuple

mem Memory used

tjwait Time waiting since last tuple from the jth input
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aggregate is computed over all the values seen. For each of the metrics in Table 1, additional
information can be derived by performing aggregate functions on them. For example, the average
number of result tuples avgðnÞ over a period of time gives the output rate for that period; the sum
of the sizes of each output tuple sumðsÞ equals the size of that intermediate result; and the
minimum time waiting for new tuples from a remote data source minðtjwaitÞ can provide an upper
bound on the data delivery rate.

Orthogonally to the nature of the measurements, there are numerous potential policies with
regard to the frequency of monitoring. Some metrics need to be computed only once during the
lifetime of a particular instance of a physical operator (e.g., the time elapsed since the operator’s
instantiation). Other information is inferred from observing each of the tuples that comprise the
operator’s input separately, or just some of them (e.g., by sampling).

2.2. Operator-specific information

In Section 2.1, the information collected was generic to all operators and independent of their
role in the query plan. However, monitoring at a finer level of granularity may require specific
data from distinct operator instances, according to their functionality. By drawing such distinc-
tions, the set of measurements in Table 1 can be further extended. An important detail is that
operator-specific monitoring cannot be performed using the two alternative approaches to
monitoring, i.e., dedicated monitoring operators or centralised components. Also, note that, as
the functionality of different operators is standardised, monitoring the inner basic functions of
each operator is still generic and implementation-independent. Such monitoring can be crucial for
understanding in depth implementation specific properties like execution time. For instance, we
may experience significant variances in the performance of a hash join that is evaluated completely
in main memory due to the existence of skew in the sizes of the buckets in the hash table. If the
operator is considered to be a black box, such a cause of performance degradation is harder to
identify.

Operator-specific monitoring can be applied to any kind of operator. As the complete set of
operators from the database literature cannot be presented for brevity reasons, therefore a rep-
resentative set of physical operators is chosen to demonstrate this approach as shown in Table 2.
These operators are sufficient for evaluating SQL and OQL queries of the Select-From-Where
form in a parallel or distributed environment. Operation_call [25] is used for method invocation,
i.e., it encapsulates a call to a user-defined function.

An example of operator functionality that is not present in all operators is the predicate
evaluation (see Table 2). A predicate consists of one or more conditions. Table 3 summarises
monitoring information with regard to the evaluation of predicates.

Operators that touch the store include scans and some joins in object-oriented environments.
Because the store format is usually different from the tuple format required by the query pro-
cessor, a mapping between the two formats needs to take place. Monitoring information that is
relevant to this kind of operators is shown in Table 4.

A hash join is executed in two phases. In the first phase, the left input is consumed and par-
titioned into buckets by hashing on the join attribute of each tuple in it. In the second phase, the
same hash function is used to hash the tuples in the right input. The tuples of the right input are
concatenated with the corresponding tuples of the left input by probing the hash table.



Table 3

Measurements for operators that evaluate predicates

Symbol Description

ncond Number of conditions evaluated per predicate

tpred Time to evaluate a predicate

Table 4

Measurements for operators that touch the store

Symbol Description

tconn Time to connect to source

npages Number of pages read

tpage Time to read a page

tmap Time to map store format into evaluation format

Table 2

The signatures of the physical operators examined

Name Signature

Sequential scan seq_scan(table name, predicate)

Hash join hash_join(left input, right input, predicate)

Project project(input, list of fields)

Unnest unnest(input, collection attribute, new field)

Operation call operation_call(input, parameters, predicate)

Exchange exchange (input, list of consumers, list of producers, data distribution policy)

Each operator except scan has either one or two child operators as input.
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Subsequently, the predicate is applied over the resulting tuple. The optimiser needs to ensure that
the smallest input is placed as the left input. Table 5 presents metrics that are particular to hash
joins.

The unnest operator takes as input a tuple with a n-valued attribute (or relationship), and
produces n single-valued tuples. The cardinality of the collection attribute or relationship Cardcol

can be monitored (Table 6).
The exchange operator encapsulates parallelism in multi-node environments. It performs two

functions concurrently. It packs tuples into buffers and sends these buffers to consumer proces-
Table 5

Hash-join-specific measurements

Symbol Description

si Size of a tuple in the ith input

Si Size of the ith bucket

Ni Cardinality of the ith bucket

Mi Number of tuples in the right input that correspond to the ith bucket

thash Time to hash a tuple

tconc Time to concatenate two tuples



Table 6

Unnest-specific measurements

Symbol Description

Cardcol Cardinality of multi-valued attribute

Table 7

Exchange-specific measurements

Symbol Description

si Size of input tuple

nbuffers sent i Number of buffers sent to the ith consumer

nbuffers received i Number of buffers received from the ith producer

tpack Time to pack a tuple

tunpack Time to unpack a tuple
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sors, while receiving packed tuples from buffers sent by producers and unpacking them. The
monitoring information for exchanges is given in Table 7.

From the above, it is evident that operator-specific measurements for a specific operator are
defined solely on the basis of the distinctive functions that this operator performs. This ensures
that the measurements are common in any of its implementations, and provides the criterion for
defining the measurements of operators not included in Table 2.
3. Enabling adaptations through local operator monitoring

Traditionally, database systems use optimisers that rank candidate query plans on their pre-
dicted cost and, typically, select a plan on the basis of its low predicted cost. If the cost of the
selected plan is substantially different from that predicted by the cost model, this may indicate that
the chosen plan is not in fact the most suitable. Thus there needs to be an association between the
information collected during monitoring and the cost model for the algebra. The cost metrics can
be indirect (e.g., size of intermediate results), or direct (e.g., execution time). It is often the case
that not only the complete query plan, but also the operators that comprise it can be annotated
with performance predictions. Monitoring the cost of the operators can thus inform the cali-
bration of the cost model used in estimation based on a post-mortem analysis. However, iden-
tifying erroneous estimates that refer to the final state of the operator at runtime, which is a
monitoring task directly related to dynamic query execution, may be non-trivial. To this end, the
monitor mechanism should be enhanced (i) with the capability to predict the final cost of query
plan, or subplan, based on monitoring information that has become available up to that point;
and/or (ii) with the capability to identify operation states that will prevent the system from
reaching the expected performance.

In this section, the monitoring framework is applied to the operators in Table 2, which include
some of the main physical operators evaluated by both parallel and non-parallel query processors.
More specifically, it is verified that a deviation from initial expectations can be not simply de-
tected, but also predicted on-the-fly. It is first examined if this can be achieved through local
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monitoring, i.e., without passing monitoring information between operators, then, in Section 4,
this constraint is relaxed. The reasons why one would choose to perform local monitoring are
threefold: firstly, one might not want any extra communication overhead regardless of the po-
tential benefits; secondly, the query plan could be executed using blocking operators or materi-
alisation points, which means that, effectively, only one operator is active at any time; and thirdly,
initial estimates may only be available for particular operators or particular properties of oper-
ators, as is commonly the case for heuristic-based optimisation.

Regarding the predictions, this work does not seek to propose accurate formulas for all the
possible cases, implementations, system configurations, value distributions, etc., but rather to
demonstrate that such a generic monitoring approach is suitable as a basis for prediction
mechanisms. For this reason, the signatures of the prediction formulas are more important than
the formulas themselves, as they depict more explicitly the monitoring information required to
predict whether there will finally be a deviation from the expected performance or not. It is
important to notice that this section is complemented by Section 6. There, it is demonstrated how
the monitoring framework presented here can be applied to other adaptive query processing
techniques and support different approaches to feedback assessment and response, some of which
may not use prediction mechanisms at all.

The cost of operators is estimated according to the detailed cost model described in in time
units [23]. Here, the focus will be on three aspects of operator execution: the selectivity r, as it
determines the workload for the remainder of the query plan and is hard to predict accurately at
compile time when no statistics are available; the size of the result S; and the completion time T ,
which defines the operator’s cost.

In the rest of the paper the following additional notations are used: For each property x being
monitored at runtime, x̂ is its static value, either known or estimated at compile time. Each
operator is annotated at compile time with expected selectivity r̂, result size bS , input cardinalitydnjinp , input size dSj

inp , and time cost bT . Table 8 summarises the additional notations.

3.1. Detecting deviations

Spotting deviations from the expected selectivity r̂, result size bS and completion time bT is
supported by the framework in a straightforward manner. From Table 1 we have:
Table 8

Symbols denoting additional operator properties

Symbol Description

r Monitored selectivity

S Monitored size of result set

Sj
inp Monitored size of the jth input

T Monitored completion time

r̂ Selectivity as known at compile timebS Size of result set as known at compile timedSj
inp Size of the jth input as known at compile timebT Completion time as known at compile time
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r ¼

n
n1inp � n2inp

for binary operators

n
n1inp

otherwise

8>><
>>: ð1Þ

S ¼ sumðsÞ

T ¼
sumðttupleÞ or

treal

� ð2Þ
After the operator has finished its execution, these values can then be compared against the
initials estimates, i.e., br, bS and T̂ , respectively, in order to assess their accuracy.
3.2. Predicting deviations

If the overall goal is to predict, rather than simply detect deviations, the monitoring framework
should provide the necessary input to the prediction mechanism. Table 9 gives examples of
prediction formulas that use the monitoring information and can be applied for that purpose. The
focus here, as explained earlier, is on the nature of parameters used, rather than on the validity of
the formulas; ascertaining the latter is out of the scope of this paper.

The prediction formulas about the final output size belong to two categories: firstly, when the
operator does not change the size of the tuple (i.e., the average size of the input tuples is equal to
the average output size) and the initial estimate of the input size is correct; and, secondly, when
the size does change or the initial estimate is inaccurate. For the final time cost, we have con-
sidered three approaches: firstly, to decompose the operator function into subfunctions, such as
those in the cost model used (if this is possible), and to use cost information about these sub-
functions obtained up to that point, which implies the most detailed measurements; secondly, to
build the prediction on the cost of the operator up to that point assuming that the elapsed time is
proportional to the number of input tuples, which, intuitively, cannot perform well when system
parameters change; and thirdly, to base the prediction on the cost of the last tuple (or of the n last
tuples) processed, which, again intuitively, can adapt better to load fluctuations, but may be
unduly affected by temporary load changes.

3.2.1. Monitoring sequential scans
Based on the measured cardinalities of the input and output at a given point in the execution,

the final selectivity can be estimated, e.g., as in Table 9. A new estimate for the final cardinality of
the result can be obtained by multiplying the monitored selectivity by the known cardinality of the
stored extent dn1inp . The total size of result can be predicted in both ways mentioned in the previous
paragraph. For the estimation of the total execution time, all three ways considered in the pre-
vious paragraph can be applied. In the first one, which requires the identification of simpler
operator subfunctions, we can follow the approach of [23], where the cost can be divided into the
cost for transforming the format of the tuples (if necessary), evaluating the predicates, and reading
the pages T ¼ tpage � npages þ ðtmap þ tpredÞ � n1inp. All these parameters can be monitored as shown in
Tables 3 and 4. Different implementations are expected to vary significantly as to their cost, and



Table 9

Prediction formulas exemplifying how the monitoring information can support predictions in AQP

Operator Selectivity r Result size S Completion time T

Seq. scan rðn; n1inpÞ ¼
n
n1inp

Sðr;dS1
inpÞ ¼ r � dS1

inp , or T ðtmap; tpred; tpage;dn1inp ; dnpagesÞ
¼ ðavgðtmapÞþ avgðtpredÞÞ � dn1inpþ avgðtpageÞ � dnpages , or

Sðr;dn1inp ; sÞ ¼r � dn1inp � avgðsÞ T ðttuple;dn1inpÞ ¼ avgðttupleÞ � dn1inp , or
T ðtreal; tlasttuple; n1inp;dn1inpÞ ¼ trealþ tlasttuple � ðdn1inp � n1inpÞ

Hash join rðn; n1inp; n2inpÞ ¼
n

n1inp � n2inp
Sðr;dn1inp ;dn2inp ; dS1

inp ;
dS2
inpÞ

¼ r � dn1inp � dn2inp � ðdS1
inp þ dS2

inpÞ,

or

T ðthash; tconc; tpred; npairs;dn1inp ;dn2inpÞ
¼ avgðthashÞ � ðdn1inp þ dn2inpÞ þ ðavgðtpredÞþ avgðtconcÞÞ � npairs, or

Sðr; s;dn1inp ;dn2inpÞ
¼ r � avgðsÞ � dn1inp � dn2inp

T ðtreal; tlasttuple; n2inp;dn2inpÞ ¼ treal þ tlasttuple � ðdn2inp � n2inpÞ

Project/op. call rðÞ ¼ 1 Sðdn1inp ; sÞ ¼ dn1inp � avgðsÞ T ðttuple;dn1inpÞ ¼ avgðttupleÞ � bn1i , or
T ðtreal; tlasttuple; n1inp;dn1inpÞ ¼ treal þ tlasttuple � ðdn1inp � n1inpÞ

Unnest rðn; n1inpÞ ¼
n
n1inp

Sðdn1inp ; sÞ ¼ dn1inp � avgðsÞ T ðttuple;dn1inpÞ ¼ avgðttupleÞ � dn1inp , or
T ðtreal; tlasttuple; n1i ;dn1inpÞ ¼ treal þ tlasttuple � ðdn1inp � n1inpÞ
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the contribution of each of the three common subcosts to the total execution time. Thus, mon-
itoring at a finer level may be important in order to identify and quantify such differences.

3.2.2. Monitoring hash joins
The approach for predicting the final values of the selectivity and the size of the output of a

hash join is similar to the one used for scans. The main difference between scans and joins is that
the cardinalities of the inputs are more likely to be estimated rather than measured and building
estimates upon previous estimates may result in compound errors [14]. The total execution time of
a hash join consists of the time to hash the tuples for both inputs, the time to concatenate all the
relevant pairs of tuples and the time to evaluate the join predicate, i.e., T ¼ thash � ðn1inp þ n2inpÞþ
ðtpred þ tconcÞ � npairs. The initial estimate of the cost of a hash join at compile time uses a constant
value for the time required to hash a tuple. This constant can be monitored (Table 5) and thus can
be corrected in case it is not accurate. Another constant is used for the time to concatenate two
tuples, which is also error prone. The number of pairs of tuples concatenated is more difficult to
estimate. The optimiser can make a simple assumption that there is a uniform distribution of
tuples across the hash table buckets. A more realistic formula that captures the potential skew in
the partition of tuples into buckets and can be used to estimate the number of pairs is

npairs ¼ ð
Pm

i¼1 Ni �MiÞ �
cn2
inp

n2
inp

, where m is the total number of buckets, and the remaining arguments

are defined in Table 5. Another option, if the left input has already been consumed, is to use the
time elapsed along with the time taken to evaluate the last tuple, as shown in the second formula
in the relevant field of Table 9.

3.2.3. Monitoring projects, unnests and op. calls
For projections and operation calls, the cardinality of the output is the cardinality of the input,

as their selectivity is always equal to 1. The size and time prediction formulas resemble those for
scan (Table 9). Unnests differ in that they may have a selectivity greater than 1.

3.2.4. Monitoring exchanges
The time cost of an instance of exchange is the sum of the costs to receive packed tuples from

remote nodes, unpack them, pack tuples into a buffer, and send the packed tuples to other nodes.
The communication cost is the dominant cost.

The cardinality, the size of the output, and the time cost of the operator can be monitored.
However, no more accurate estimates for the number of tuples to be produced can be made at
runtime without communication, other than the estimations made by the optimiser at query
compile time. This is because this metric depends on the number of buffers that other instances of
exchange send to that node, and in order to get this information, data transmission is required.

On-the-fly updating of the predictions for the output size and the time cost can occur in a
limited range of situations. A better estimate of the size can be made if the observed average tuple
size is different than the estimated one, but again the information about the total number of result
tuples is missing.

More accurate estimates of the time cost are produced by adding together more accurate
estimates of the component costs. The time cost to transmit data depends on the input cardinality,
the average size of a tuple, and the network speed between the two nodes involved. It also depends
on system parameters that are not expected to vary for a given system, such as the size of a buffer
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and the space overhead for each buffer. From the above three variables, more accurate values can
be obtained for the average tuple size. If this size remains the same, the system cannot detect
deviations from expected cost caused by fluctuations in the network bandwidth, or from the
expected number of incoming tuples. Changes in the expected cardinality of the input and the
output are tracked, but cannot be predicted on the fly.

3.3. Discussion

Section 2 discussed what may be useful to monitor. This section has indicated how the ap-
proach for monitoring individual query operators can be used for detecting and predicting
deviations from expected performance presenting an example that explained how monitoring can
be useful for adaptation when no monitoring data are transmitted. Notice, however, that other
useful monitoring tasks, such as cost model refinement, were not examined as the focus is on
applications that may modify the query execution on-the-fly. Under some assumptions, predic-
tions on the performance of the system for the remainder of the query can be made on the fly. The
only exception to this is for parallel query plans that include exchanges. In that case, predictions
can only be made for a limited range of cases and passing data between operators is necessary for
improved estimates. Other examples of how the monitoring framework presented can be used to
support adaptivity are given in Section 6.

The prediction formulas for scans and unnests that only use notation from Tables 1 and 8 can
be generalised for any operator with selectivity different from 1. The formulas for projections can
be generalised for any operator with selectivity equal to 1. The formulas for hash joins that do not
use notation from Table 5 can be applied to any binary operator. In general, the formulas used
here are simple and may not be appropriate in all usage scenarios. It is not the aim of this paper to
explore their validity over more diverse usage scenarios. The role of such formulas in the moni-
toring task is to provide feedback for adaptive query processors. Although the performance
criteria were defined to be the selectivity of operators, the size of (intermediate) results, and the
time cost, there is no fundamental reason why this set cannot be extended and tailored to different
system characteristics.
4. Propagating monitoring information

Section 3 examined the case of monitoring without communication overhead. This section
shows how relaxing this constraint can enhance monitoring precision. Firstly, the case in which
data is not transmitted to remote nodes is discussed, then the case in which monitoring data is
shared among different nodes. In the first case, the communication overhead can remain low, as
the information does not have to be conveyed through the network. Actually, it may not need be
passed between operators physically at all, but simply recorded for access by later operators.

4.1. Sharing information among different operations in a node

When lower operators in the query plan propagate more accurate estimates to operators that lie
above them, estimates for the latter become more accurate. The formulas in Table 9 allow on-the-
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fly predictions of the final number of tuples, the final size of the result and the final time cost.

These formulas depend on initial estimates of the input cardinality (dn1inp and/or dn2inp) and size (dS1
inp

and/or dS2
inp). Monitoring allows more accurate estimates of these properties. The input size and

the input cardinality of an operator are the output size and the output cardinality of its children,
respectively. All physical operators, except exchange, are able to produce more accurate predic-
tions for these two metrics. This function operates in a recursive way that results in the propa-
gation of better estimates from the lowermost to the topmost operator provided that an exchange
operator does not break that chain.

Consider the query plan in Fig. 1(a). For each join, the expected cardinalities of the inputs are
computed at compile time. Even if the selectivities of the three joins are estimated with the same
accuracy, the estimate for the output of the third join can be much worse than the estimate for the
second join and even worse than for the first one. Ref. [14] explains how propagation of errors
affects the quality of these estimates. All operators can continuously update their expected output
cardinalities and selectivities if monitoring is in place. The propagation of these measurements
results in the third join having an up-to-date estimate for its inputs. These inputs also have up-to-
date estimates for their inputs and so on. In that way, the effect of potentially inaccurate initial
estimates can be ameliorated.

The type of the formulas of Table 9 remain the same. However, for each operator the valuesdnjinp and dSj
inp are replaced with the relevant predictions of its child.

4.2. Sharing information among different nodes

In the previous example, assume now that the fourth scan is placed on another node, and that
the third join is evaluated through partitioned parallelism on both sites. In the operator model of
parallelism, tuples are exchanged between nodes through the exchange operator (Fig. 1(b)). If no
communication across sites is permitted for monitoring, exchanges cannot give up-to-date
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estimates. In this case, the third join can only use the initial estimates computed at query compile
time. However, if there is no zero-communication constraint, the monitored information can be
transmitted to and across exchanges. In this way, each instance of exchange can predict on the fly
the total number of buffers and the number of tuples that will be sent to each consumer. New
estimates of the output cardinalities can be produced by gathering this information from all the
exchanges.

Allowing monitored information to be transmitted over the network has additional benefits.
The relative workload of the nodes can be monitored by tracking and comparing the number of
tuples each instance of an operator receives. Moreover, the connection speed between two nodes
can be monitored by recording the time when a buffer is sent from a node and the time it arrives at
its destination. Finally, the relative load between nodes can be monitored by tracking and
comparing the average times to process a tuple on different sites. Hence, communication overhead
can be traded for such benefits.

This approach to propagating the monitoring information through the query plan allows for
adaptive schemes where operators adapt autonomously (e.g., [31]) as well as approaches that co-
ordinate the query re-optimisation centrally (e.g., [3]).
5. Evaluation

The presentation of the experimental results in this section serves two purposes. Firstly, to
provide insights into how large the overhead of monitoring and predicting can be, and, secondly,
to assess the accuracy of the predictions based on monitoring. The data used in the experiments
are from the OO7 benchmark [5]. The measurements are taken on a dedicated PC with 1.13 GHz
AMD Athlon CPU and 512 MB memory (of which 330–370 MB were available at the time of the
measurements), running Redhat Linux 7.1. The query engine used is part of the Polar* Grid-
enabled distributed query processor [25]. The operators are implemented in C++ according to the
iterator model [10] and following the standard algorithms as these appear in the literature, and all
are single-pass, i.e., all intermediate data sets are stored in main memory, although the data starts
off on disk. The granularity of the system’s timer is one microsecond.

5.1. Overhead of monitoring

The measurements fall in three categories: firstly, those that involve counters (e.g., cardinalities
of input, output and hash table buckets); secondly, those that require timings, i.e., two timestamps
are taken and their difference is computed (e.g., time to evaluate a tuple, time to change the tuple
format from the storage format to the evaluator format), and thirdly, those that compute the size
of a tuple. The size of the tuple is not statically known in two cases. Firstly, when the tuple has one
or more tuple fields with string type of undefined length; and, secondly, when there is a collection
attribute of undefined collection size. Measuring the size of a collection requires a counter.
Measuring the size of a string of characters involves identifying the tuple fields in the tuple that are
string-valued and computing the length of each.

Inserting a counter in an operator has a very small overhead, measured at 0.03 ls. The over-
head of measuring timings is of the order of microseconds (1.11 ls). The time cost of measuring
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the size of a string of characters depends on the size of the string. For small strings, the overhead
is small but for larger strings it can become several milliseconds (e.g., for a 1 MB string this takes
0.0044 s).

The operators that were used in the experiments for monitoring overheads are shown in Table
10. All the joins are on a key/foreign key condition. Table 11 depicts more clearly the magnitude
and relative importance of the overheads, as it shows the percentage increase in the cost of
evaluating a tuple due to monitoring. For each of the operators in Table 10, the time cost is given
(second column in Table 11). The last three columns show the increase in the cost when a counter,
a timing and a character counter for a 100-byte string are applied to each tuple processed,
respectively. As expected, the relative overheads are higher for computationally inexpensive
operators, like project, and significantly lower for the computationally expensive ones, like hash
join. The overhead of a counter is negligible for all the operators. Placing two timestamps is more
costly than projecting an attribute, but the percentage overhead is relatively low for other
operators (between 0.32% and 13.5%). Measuring the size of a string has essentially no cost if the
string is a few bytes long. If the length is 100 characters or more, the performance may degrade
significantly. For instance, it may increase the cost of a hash join by up to 144%, when the size is
Table 10

The operators used in the experiments for monitoring overheads

Operator Characteristics

Scan A Average size of tuples is 155 bytes

Scan B Average size of tuples is 727 bytes

Scan C Average size of tuples is 2 Kbytes

Scan D Average size of tuples is 20 Kbytes

Hash-Join A 1 tuple per hash table bucket

Hash-Join B 10 tuples per hash table bucket

Hash-Join C 20 tuples per hash table bucket

Hash-Join D 200 tuples per hash table bucket

Project Project one tuple field out of 10

Unnest Fan-out is set to 3, average size of initial tuples is 155 bytes

Table 11

The overhead of taking measurements compared to the cost of the operators for each tuple processed

Operator Time (in ls) Counter (%) Timing (%) 100-byte string (%)

Scan A 16.82 0.18 6.60 70.63

Scan B 25.50 0.12 4.35 46.60

Scan C 48.81 0.06 2.27 24.34

Scan D 350.57 0.01 0.32 3.39

Hash-Join A 8.22 0.36 13.50 144.52

Hash-Join B 13.02 0.23 8.52 91.22

Hash-Join C 16.25 0.18 6.83 73.11

Hash-Join D 62.86 0.05 1.77 18.90

Project 0.89 3.39 125.27 1340.71

Unnest 10.16 0.30 10.92 116.88
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monitored for each tuple processed by the operator. If the size is computed for one tuple in ten,
the increase is only 14.4%, and if the frequency is 5% (one in twenty tuples is monitored), the
increase falls to 7.2%. However, it is not usually necessary to compute this in a database setting, as
often, the length of a string is stored explicitly. The values in Table 11 can inform the choice of
monitoring frequency by indicating broadly the overhead that can be anticipated.

5.2. Overhead of predictions

Here, only the scan operator is analysed, but a similar approach can be followed for the
remaining operators. The results for all operators are shown in Table 12.

It is assumed that the system holds information about the size and cardinality of the stored
collections. The selectivity of an operator is given by r ¼ n

n1
inp

, where n and n1inp are the monitored

cardinality of the output and the input up to that point of execution, respectively (Section 3.2.1).
The output cardinality is predicted by multiplying the monitored selectivity with the known input
cardinality. It requires two counters that are updated for each tuple and the evaluation of one
formula. The formula may be evaluated at various frequencies, but it is processed in time sig-
nificantly less than a microsecond. The cost of the two counters is of the order of nanoseconds
(0.03 ls each). So, the overhead of predicting the final number of tuples produced is some fraction
of a microsecond. If the output tuples do not contain strings with variable length, the final output
size is predicted by multiplying the monitored selectivity with the known size of the stored col-
lection, and the overhead of this prediction is the overhead incurred by two counters as well. If the
tuple produced does contain strings of undefined length, the total size is given by
Table

The p

Ope

Sca

Sca

Sca

Sca

Has

Has

Has

Has

Pro

Un
S ¼ r � dn1inp � avgðsÞ

where avgðsÞ ¼ sumðsÞ�freq

n1
inp

and freq specifies every how many tuples the tuple size s is monitored. The

cost of making these predictions is essentially dominated by the cost of measuring the length of
the strings.

Predicting the total time for completion of the operator involves one timing ttuple being captured
for each monitored tuple as follows:
12

ercentage increase in the operator cost when predictions are made

rator Overhead computing output

cardinality (%)

Overhead computing

operator time (%)

n A 0.36 (6.6/freq+ 0.18)

n B 0.24 (4.35/freq+ 0.12)

n C 0.12 (2.27/freq+ 0.06)

n D 0.02 (0.32/freq+ 0.01)

h-Join A 0.72 (13.5/freq+ 0.36)

h-Join B 0.46 (8.52/freq+ 0.23)

h-Join C 0.36 (6.83/freq+ 0.18)

h-Join D 0.1 (1.77/freq+ 0.05)

ject 6.78 (125.27/freq+ 3.39)

nest 0.60 (10.92/freq+ 0.30)
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Ttotal ¼ avgðttupleÞ � dn1inp

The average overhead is 1.11 ls for each monitored tuple, which is the cost of a single timing, plus
the cost of updating a counter.

Table 12 shows the relative overhead of making predictions. As the prediction of the output size
depends on the size of the variable length strings (if any) and is not generic, it is not shown in the
table. If there are no collection attributes or variable-length strings, then the cost is the same as the
cost to compute the output cardinality.

5.3. Accuracy of predictions

The formulas introduced in Section 3 are rather straightforward and may be expected to give
better results when the system is uniform in terms of load, attribute value distribution, operator
workload, etc. However, it is interesting to examine how large the deviations are when the for-
mulas are applied to skewed data. Since all operators require initial estimates for their input
cardinality, an error in that cardinality compromises the accuracy at exactly the same magnitude.
Consequently, it is important that an operator not only is able to make accurate predictions about
the cardinality of its result set, but also that it is able to pass that information on to its parent
operator in the query tree, as described in Section 4.

Consider three scans. The first, scan1, has selectivity 10% and the tuples that satisfy the scan
condition are spread in a uniform manner across its extent. The second, scan2, also has a uniform
distribution, but the selectivity is 50%. The third scan, scan3, has a selectivity of 50%, and is
satisfied by all but the first 25% and the last 25% of the tuples. Fig. 2 shows how accurate the
predictions for the output cardinality are at each stage in the process of query execution. The
formula used assumes that the final selectivity of the predicate is the same as the monitored
selectivity at that point. If the tuples that satisfy the predicate are distributed across the dataset in
a uniform manner (e.g., scan1 and scan2) the accuracy is very high and not dependent on the
selectivity. However, for skewed distributions with unfavourable shapes (e.g., scan3), the pre-
dictions can be erratic over the course of execution. If the load of the system does not vary during
execution and every tuple is monitored, the operator response time can be accurately predicted
from the very early stages for all three scans (Fig. 3). Lower monitoring frequencies result in worse
accuracy, especially if the load varies.
5.4. General remarks on the evaluation

There are several lessons to be learned from the evaluation of the overheads related to moni-
toring:

(1) In our approach, there are three types of monitored information: counters, timings, and sizes
of variable-length strings. The overhead of these three types is not dependent on the type of
the query operator. The costs of counting and of computing a time interval are constant for a
given system, whereas the cost of measuring the size of a string depends on its size.

(2) The cost of a counter is negligible for all the operators examined. However, this is not true for
timings and string computations.
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(3) The cost of computing the output cardinality is lower than 1% for all operators examined ex-
cept project, for which it is 6.78%. So, it can be regarded as low. Additionally, the relative cost
of predicting the final response time is lower than 13.5% for all operators except project, even
if the time cost of each tuple is measured separately. If the time cost is measured at a frequency
lower than 10% (i.e., one in ten tuples is timed), the cost becomes lower than 1.5% for these
operators.

In general, the relative overhead incurred by monitoring remains low if the monitoring fre-
quency of inexpensive operators (and the monitoring frequency of all operators when the
environment is stable) remains low. Notice that in multi-pass implementations of operator
algorithms, where the data cannot fit entirely in main memory, the average cost of the operator is
expected to be significantly higher, whereas the cost of monitoring is expected to remain the same.
Consequently, in such systems the contribution of the monitoring cost to the total execution time
is envisaged to be even smaller. Thus, the results presented here with respect to the proportional
overhead of monitoring approximate the worst-case scenario, as other query processors are ex-
pected to behave either similarly or worse than the query processor used, in terms of the moni-
toring overhead. For accurate predictions, a good knowledge of the input sizes and cardinalities is
always required, which means that the children also need to be able to make good predictions and
pass on relevant information to their parent. If the load of the system does not vary, the total
response time can be predicted accurately from the early stages of execution. When it varies, the
predictions can still converge, but they require higher monitoring frequencies. Skewed distribu-
tions impose significant errors but, even in such cases, predictions can be better than direct usage
of estimates produced at compile time.
6. Related work

This work can be related to numerous activities in the area of performance analysis for data-
bases and software systems, database cost models and performance prediction. However, the most
relevant work is in the area of adaptive (or dynamic) query processing (AQP). Adaptive query
engines receive information from their environment and determine their behaviour according to
that information in an iterative manner [12]. The most dynamic are those that capture specific
aspects of the query processing, evaluate this feedback and react accordingly, during the execution
of a single query. According to the feedback they collect from the query execution, they can be
classified in three broad categories.

The adaptive systems that monitor the rate at which they receive their input belong to the first
category. A typical example is the XJoin [28], a variant of pipelined hash joins that hides delays in
the arrival of the input tuples by performing other operations when the inputs are blocked. In our
approach, the input tuple rate and the time waiting since the last tuple was processed can be
monitored for each operator. Consequently, it can be inferred whether an input is blocked by
using a threshold. Ginga [20], Query Scrambling [30], and Bouganim et al. [3] also deal with
the problem of experiencing delays in the delivery of the first tuples from a remote source. Ref.
[3] proposed an approach that generalised Query Scrambling to adapt not only to blocked
connections, but to any changes in the data delivery rates as well. To monitor the delivery rates,



Table 13

Monitored information that can provide input to existing AQP systems

Systems Operators n njinp treal ttuple s tjwait
Bouganim et al. Scan and parent

p p p

Conquest Any
p p p p

Dyn. Pip. Scheduler Join
p p

Eddies Join
p p

Flux Exchange
p p

Ginga Scan and parent
p p p

Kabra and DeWitt Any
p p

Q. Scrambling Join and scan
p p p

River Scan
p p p

Tukwila Any
p p p p p

XJoin Join
p p p
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they employ a new component, whereas in the approach proposed in this paper this could be
easily achieved within the operator. Information about the data delivery rates can trigger adap-
tation also in the context of Rivers [1], a proposal for parallel I/O intensive applications, which
monitors the bandwidth between data producers (e.g., disks) and consumers (e.g. scan operators).

Another group comprises systems that focus on the workload and the productivity of operators
measured in tuples. For example, Eddies [2], a very dynamic technique, encapsulates a multi-join,
and dynamically chooses the order of the individual joins for each incoming tuple. The basic
routing policy observes the number of tuples received by each join so far, and the number of
tuples produced. Both these metrics are covered by the proposed approach, not only for the joins,
but for all the operators (Table 1). Also, Flux [24] extends the traditional exchange operator to
adapt to fluctuations in resource availability (like resource and memory loads) while executing a
query in a pipelining mode. It relies on the on-the-fly selection of simple statistics like the number
of tuples processed and the time the operator is active. These systems can be combined together to
form even more powerful mechanisms like the TelegraphCQ [6] and [18,21]. In [29], the Dynamic
Pipeline Scheduler tries to reduce the initial response time of the query, basing its adaptive
behaviour on the number of the tuples consumed so far by the operators and on their selectivities.

More generic systems, in terms of the information they collect from a query plan, fall in the
third category. Kabra and DeWitt [16] use a separate monitoring operator for collecting statistics
about data on the fly, provided that this is possible in one pass of the input. Such statistics include
the cardinality of intermediate results, their average size, and certain histograms. However, it
requires the monitoring points to be defined at compile time, it cannot operate in parts of the plan
that are executed in a pipelined fashion, and, it cannot capture timings referring to other oper-
ators (e.g., the time taken for a lower operator to process a tuple). These limitations, which are
essentially limitations of the approach to monitoring in which dedicated operators are employed,
do not arise in our approach, since it is based on self-monitoring operators. The Tukwila system
[15] integrates adaptive techniques proposed in [16,30]. A special operator is also used to switch to
an alternative data source, when the initial source fails. The execution information that the system
monitors for active operators is the number of tuples produced so far (to check whether the
optimisers estimates were adequately accurate) and the time waiting since the last tuple was re-
ceived (to identify slow or blocked connections). The Conquest query processing system resembles
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Tukwila in adopting a triggering approach to respond to runtime changes [19]. Characteristics
related to query execution that can trigger actions include updates to operator selectivities and
sizes of intermediate results. Also, the system monitors the load of the resources. The framework
we have presented can infer relative levels of load by comparing the time to process a tuple at
different points of the execution. Operator selectivities and sizes are monitored explicitly.

Table 13 summarises the aspects of our monitoring proposal in Table 1 that are used by the
AQP systems examined (referring to specific operators). It demonstrates that the proposal is
generic enough to support many adaptive systems with different functionalities and requirements.
The approach presented integrates and extends existing monitoring approaches with regard to
data characteristics and execution cost. In essence, any of the above adaptive techniques can
implement its assessment and response strategy on top of our monitoring framework. This cannot
be achieved by operators dedicated to statistics collection or new components in the architecture
of the query engine, as both these techniques can capture a significantly smaller amount of
monitoring information. In contrast, updated information on computational resources (like
available memory or new machines becoming available) is an important and complementary
factor for deciding about adaptivity that is not covered by our approach, as such information
cannot be inferred solely from the query execution.

The overhead of monitoring has not been explicitly considered in the literature above. Infor-
mation about the overhead is included in LEO [26], which monitors the query plan but only
collects information about operator and predicate selectivities, and about the cardinalities of the
intermediate results. This additional information is stored so as to enable the adjustment of the
query optimiser for the subsequent queries. The overhead is about 5% and has been regarded by
the authors as small.
7. Conclusions

So far, adaptive query processors have tended to ignore the monitoring phase at all, or, to use
potentially efficient, but ad hoc, ways of collecting feedback from the environment and the query
plan itself, analysing that feedback and choosing a reaction, all grouped together. This paper
argues that these three functions can be studied separately, in order to exploit the benefits of
divide-and-conquer techniques and to gain generality, substitutability, and reusability. The main
contribution of our work is the construction of a general technique for monitoring the execution
of query plans, based on self-monitoring query operators. Our approach is generic in the sense
that it is not dependent on any particular adaptive system or form of adaptation and can support
most AQP proposals to date in terms of the monitoring information required. In addition, it is
capable of identifying and predicting erroneous initial estimates on the fly. It can be easily
implemented as it employs only counters, timestamps and tuple size computations. It can be easily
integrated into existing query engines, as it does not require changes in the architecture or in the
internal logic of the query optimiser. Moreover, our approach is not centralised and thus fits
better to distributed environments with potentially large numbers of nodes. The simplicity does
not compromise the comprehensiveness, as many properties of query execution can be captured in
a systematic way. Also, it allows for monitoring at different levels of detail in the monitoring
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information and at different frequencies, and it examines the trade-offs between communication
overhead and monitoring quality.

Finally, the monitoring approach was experimentally evaluated. The overheads and the in-
crease in operator cost incurred by monitoring are reasonable enough for the approach to be
incorporated in query systems that operate in volatile environments. In addition, the experimental
results can provide strong insight into how the frequency and the intensity of monitoring impact
on its cost.
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