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Abstract The increasing prevalence of networked storage and computational re-
sources, along with middleware for managing resource access and sharing, raises
the prospect that queries can be run over resources obtained on demand, rather than
on dedicated infrastructures. However, the movement of query processing into non-
dedicated environments means that it is necessary to take account of the partial
information and unstable conditions that characterise autonomous, shared, distrib-
uted settings. Thus, query processing on grid platforms needs to be adaptive, revis-
ing evaluation strategies at query runtime in response to the evolving environment,
such as changes to machine load and availability. To address this challenge, adap-

Communicated by Ahmed K. Elmagarmid.

A. Gounaris (<)
Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
e-mail: gounaria@csd.auth.gr

N.W. Paton - R. Sakellariou - A.A.A. Fernandes
School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK

N.W. Paton
e-mail: norm@cs.man.ac.uk

R. Sakellariou
e-mail: rizos @cs.man.ac.uk

A.A.A. Fernandes
e-mail: alvaro@cs.man.ac.uk

J. Smith - P. Watson
School of Computing Science, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU,
UK

J. Smith
e-mail: jim.smith@ncl.ac.uk

P. Watson
e-mail: paul.watson@ncl.ac.uk

@ Springer


mailto:gounaria@csd.auth.gr
mailto:norm@cs.man.ac.uk
mailto:rizos@cs.man.ac.uk
mailto:alvaro@cs.man.ac.uk
mailto:jim.smith@ncl.ac.uk
mailto:paul.watson@ncl.ac.uk

126 Distrib Parallel Databases (2009) 25: 125-164

tive techniques are described that: (i) balance load across plan partitions support-
ing intra-operator parallelism; (ii) remove bottlenecks in pipelined plans supporting
inter-operator parallelism; and (iii) combine the two aforementioned techniques. The
approach has been empirically evaluated in a grid-enabled adaptive query processor.

Keywords Adaptive query processing - Dynamic resource allocation - Load
balancing - Distributed query processing - Query optimization - Grid computing

1 Introduction

The increasing prevalence of networked storage and computational resources, along
with modern trends for accessing and sharing resources in wide area environments,
such as grid platforms [18], cloud computing (e.g., Amazon EC2) and peer-to-peer
networks [36], raises the prospect that queries can be run over machines and data
stores obtained on demand. However, the movement of query processing into non-
dedicated environments means that it is necessary to take account of the partial infor-
mation and unstable conditions that characterise autonomous, shared, heterogeneous
settings. Thus, query processing on such environments needs to be adaptive, revising
evaluation strategies at query runtime in response to the evolving environment, such
as changes to machine load and availability.

Adaptive query processing (AQP) has attracted significant interest in recent years,
and the results yielded thus far can offer speedups of an order of magnitude in many
cases [0, 16]. Nevertheless, most of this research has concentrated on the cases in
which the computational resources available are pre-determined and their charac-
teristics are stable and known before execution, both when these resources are co-
located (e.g. [5, 29]), and when they are geographically dispersed (e.g., [26, 48]).
Unfortunately, these assumptions are not valid for query processing in autonomous,
heterogeneous environments, where dynamic outsourcing of processing tasks to non-
dedicated, heterogeneous computers can take place and the effectiveness of paral-
lelism depends more on the exploitation of the actual machine capabilities and effi-
cient workload distribution, than on the way data is partitioned in the storage software
[40]. Consequently, adaptivity in such environments places a greater emphasis on
monitoring and learning the behavior of participating machines, the actual commu-
nication bandwidth between them, and the impact of this behavior on the progress of
query execution on the fly. Moreover, it manifests itself mostly as changes in the way
available resources contribute to the query execution rather than as runtime modifica-
tions of the query tree shape, and the order in which data or operators are processed.
To date, although parallelism is the most commonly adopted approach to speeding up
evaluation, adaptive techniques dealing with issues such as which machines should
be employed for parallel query execution in heterogeneous settings, and how to dis-
tribute workload across heterogeneous machines, are still in their infancy.

1.1 Problem description

This work deals with workload allocation in the context of query processing in au-
tonomous, heterogeneous environments (e.g., computational Grids, PlanetLab [12]).
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An amount of workload is allocated to a computational resource, if at least one query
plan fragment is executed on that resource, either partially (e.g., as in the case of par-
titioned parallelism), or completely. Resources are assumed to be autonomous, i.e.,
owned by third parties, in the sense that their actual capabilities are unknown and can
only be inferred by monitoring the progress of the execution of parts of the query plan
on them. Moreover, they are non-dedicated, and as such, there is no guarantee that
they can execute a query plan fragment exclusively, which may cause fluctuations in
their performance at runtime. Heterogeneity denotes the difference in the processing
capabilities of the resources available.

A basic difficulty in efficiently executing a query on an autonomous and hetero-
geneous platform is that the unavailability of accurate statistics at compile time and
evolving runtime conditions may lead to sub-optimal execution of a query plan. Sta-
tistics may refer to the data being processed (e.g., actual selectivities of predicates) or
to the machines available (e.g., average processing time of a foreign function). Typ-
ically, the former mostly impact on the construction of the query plan, whereas the
latter relate to scheduling and workload allocation decisions.

Common problems in workload allocation in wide-area settings stem from the
different characteristics of the machines contributing to the evaluation of a partitioned
operator, the loads on machines (which are autonomous and may run many other
jobs), the bandwidth of the connections between machines providing raw data, the
cost of processing foreign functions, and so on. As so many important factors differ
between machines and change with time, a challenge for the query processor is to
assign query fragments to resources in a way that takes into account the differences
and the runtime changes.

Adaptive workload allocation is particularly relevant to query plan execution
where partitioned parallelism is employed, since it is the main approach to attain-
ing balanced execution (i.e., the proportion of workload allocated to a resource is
proportional to its, possibly changing, performance). Adaptive load balancing be-
comes more complicated if the parallelised operations store intermediate state, like
the hash join and group-by relational operations; we call such operators stateful. Let
us assume, for example, that a query optimizer constructs a plan in which there is a
hash join parallelised across multiple sites. The smaller input is used to build the hash
table, which is probed by the other input. A hash function applied to the join attribute
defines the site for each tuple. In this case, any data repartitioning concerning the tu-
ples not processed yet needs to be accompanied by repartitioning of the state that has
already been created within the instances of the hash joins in the form of hash tables.

Dynamic data (and possibly state) repartitioning is just one aspect of the problem,
addressing what might be considered as horizontal imbalance, in which the comple-
tion of an operator within a query plan is possible only on the completion of the slow-
est of the sibling partitions evaluating the operator. In a pipelined plan, however, there
can also be what might be considered as vertical imbalance, in which an operator can
only process data at the rate it is delivered by its children, and can only deliver data at
the rate it can be consumed by its parents (assuming that the size of buffers between
operators is small compared to the data set to be processed). In essence, address-
ing vertical imbalance involves the identification of bottlenecks within pipelines, and
their reduction or removal by allocating additional resources to the associated opera-
tor(s), thus further increasing the degree of parallelism. Bottlenecks may occur within
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a pipeline either as a result of inappropriate scheduling decisions, or because appro-
priate decisions are overtaken by events in an intrinsically unstable environment.

1.2 Outline of contributions

Adaptive query processing techniques are inadequate for parallel execution over arbi-
trary heterogeneous networks [40], especially when several adaptivity strategies need
to be combined; we defer a detailed description of related work to Sect. 5. This paper
presents a comprehensive, effective and efficient solution to the problems of imbal-
anced partitioned parallelism and existence of bottlenecks mentioned above. The so-
lution includes a technique that dynamically balances intra-operator load across com-
putational nodes both for stateful and stateless operations, and is capable of changing
the degree of parallelism and moving load to new resources on-the-fly to overcome
bottlenecks. In particular, the paper makes the following key contributions:'

e It describes an architecture for adaptive query processing (AQP) that (i) covers
both data and state repartitioning, and (ii) is capable of allocating new resources
dynamically. The architecture allows the development and application of different
adaptivity functionalities within the same context, which is a contribution in its
own right. Key features of the architecture are that it is non-centralised, and its
components communicate with each other asynchronously according to the pub-
lish/subscribe model [17]. Thus it can be applied to loosely-coupled, autonomous
environments such as the grid and cloud computing services.

e It presents an implementation of the architecture as extensions to the OGSA-DQP?
service-based distributed query processor for the grid [1], which demonstrates the
practicality of the approach.

o It describes adaptive query processing strategies for balancing load and removing
bottlenecks within parallel query plans, and demonstrates their effectiveness in
decreasing the query response time in practice through a collection of experiments.
The experiments fall into three categories: large-scale ones run either (i) in the wild
or (ii) on a cluster that aim to show the effectiveness of the approach in practice,
and (iii) small scale ones in a controlled environment with few varying parameters
that aim to provide insights into the details of the strategies, such as the overheads
incurred. The results of the empirical evaluation of the prototype presented show
that it can yield significant performance improvements in representative scenarios.
In addition, the overhead remains reasonably low, which is a significant property
when adaptivity is not required.

The rest of the paper is structured as follows. Section 2 describes an architecture
for static query processing that is extended with components that support the imple-
mentation of adaptive behaviour. Sections 3 and 4 demonstrate adaptations to main-
tain load balance and to remove bottlenecks, presenting respectively the techniques
and their evaluation. Related work is in Sect. 5, and Sect. 6 concludes the paper.

LAn early version of parts of this work has appeared in [20].
2OGSA-DQP is publicly available in open-source form from www.ogsadai.org.uk/dqp.
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2 Overview of architecture
2.1 The adaptivity framework and its components

This section discusses an architectural framework for AQP that is capable of accom-
modating various kinds of adaptations (including adaptive data repartitioning and re-
source allocation). The core idea is to separate the phases of collecting feedback from
the execution and environment, analysing this feedback, and responding to changes
based on the feedback analysis. Thus, AQP is decomposed into monitoring, assess-
ment and response phases. In contrast, these are inherently present and often con-
flated in existing AQP systems. We identify three different kinds of adaptivity com-
ponents, i.e., one component for each phase of the adaptivity cycle. Any AQP tech-
nique requires at least one component of each different kind to cover all the adaptivity
phases. Consequently, any adaptation is based on collaboration of decoupled entities.
A promising way to achieve this in a service-based environment is through message
exchange, and to this end, the components support a publish/subscribe interface [17].
The functionality of the framework components is as follows.

Monitoring: A monitoring component acts as a source of notifications on the dy-
namic behaviour of distributed resources and of query execution. It may perform
basic integration and filtering of raw events both to avoid flooding the system with
low-level notifications, and to provide support for higher-level notification specifica-
tion (e.g., by sending a notification only if the load of a machine and the amount of
available memory have changed by more than 10%).

Assessment: The role of the assessment component is to establish whether there
exist opportunities for improvement of plan performance (or any other QoS criteria),
and whether there is a problem with the current execution that needs to be addressed,
in order to activate the response mechanisms. It performs its task by correlating and
analysing notifications from multiple monitoring components.

Response: The response component is responsible for: (i) identifying valid re-
sponses to the issues notified by the assessment component; (ii) evaluating the ex-
pected benefit and cost for each valid response; (iii) selecting the most efficient one;
and (iv) interacting with the evaluation engine to enforce its decisions.

2.2 Extending exchanges

As indicated in Sect. 1.1, the adaptations described in this paper are applicable to
stateful (as well as stateless) operators. This subsection describes how exchange op-
erators handle the issues arising by making use of underlying infrastructure for fault
tolerance. The description of the algorithms for fault tolerance is out of the scope of
this paper; details can be found in [45]. Here, we provide an overview of the parts
that are used for query plan adaptation.

Exchanges [22] comprise two parts that can run independently: exchange produc-
ers and exchange consumers (Ex-Prod and Ex-Cons in Fig. 1). The producers insert
checkpoint tuples into the set of data tuples they send to their consumers. They also
keep a copy of the outgoing data in their local recovery log. When the tuples between
two checkpoints have finished their processing and they are not needed any more by
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Fig. 1 The enhanced exchanges

the operators higher in the query plan, e.g. through having arrived at the next but one
machine downstream, the checkpoints are returned in the form of acknowledgment
tuples. Figure 1 shows an example of the data and acknowledgement flows when data
is partitioned between two machines (that also hold the data initially). On receipt of
the acknowledgement tuples, the recovery logs are pruned accordingly.

In practice, the recovery logs contain, at any point, the tuples that have not finished
their processing by the evaluators to which they were sent, and thus include all the in-
transit tuples and the tuples that form operator state. This provides an opportunity to
repartition state across consumer nodes by extracting the tuples stored in the recovery
logs, and applying the data repartitioning policy to these tuples as well.

2.3 Extensions to the OGSA-DQP distributed query processing system

This section describes static distributed query processing, as supported by the OGSA-
DQP system [1], and the extensions implemented to incorporate the aforementioned
framework. As well as supporting the evaluation of queries that access multiple
service-wrapped databases (by way of OGSA-DALI [2]) and computational web ser-
vices, OGSA-DQP has itself been implemented as a collection of interacting web
services. The first service type is called the Grid Distributed Query Service (GDQS)
and encapsulates a query optimizer, which receives user queries in a declarative lan-
guage, and compiles and optimizes an execution plan for each query. The second
type is the Grid Query Evaluation Service (GQES), which resides at each site par-
ticipating in the evaluation of a distributed query, and encapsulates a query engine
that receives and processes fragments of the query plan, as constructed and sched-
uled by the GDQS. By combining these two types of service, users and developers
can integrate data from multiple databases.
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For example, let us assume the existence of (i) two independent, grid-enabled
bioinformatics databases, each containing one table of relevance to the example,
namely Classification and Sequence, and (ii) implementations of the BLAST pro-
tein sequence similarity function, wrapped as Web Services. A non-trivial task is to
integrate the data of the two remote data sources accessible over a grid, and call
BLAST on the results produced. In OGSA-DQP, this task is declaratively specified by
the query in Fig. 2. The figure also shows the query execution plan that performs this
task. The nodes of the plan are query operators, in this example, scans, projects, joins,
exchanges (for data communication) and a call to a Web Service, the latter being en-
abled by the operation call operator of OGSA-DQP. The operators may be executed
on different machines, in parallel. The scan operators rely on OGSA-DAI Data Ser-
vices; in this paper, we assume that scans are not parallelisable, i.e., data from any
single table is accessed in an existing database, and not (for example) striped across
multiple machines.

Suppose that the optimizer decides, using the static scheduling algorithm de-
scribed in [21], that the join of the example query, implemented as a hash join algo-
rithm, should be cloned (to benefit from partitioned parallelism) at both sites holding
stored data, which are X and Y, respectively. Suppose further that it decides that the
calls to BLAST are to be parallelised across these two sites, X and Y, as well as a
third one, Z. The fragments that each site receives are depicted in Fig. 3.

The evaluation of the query plan is achieved through orchestration of multiple
GQESs, OGSA-DAI data services and WSs wrapping foreign functions, coordinated
by a GDQS. This type of query processing is static because the GQES services are
configured for each query at the set-up phase and do not change during evaluation.
For computations that are expected to last a relatively short period of time, or where

Fig. 2 Example query plan
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Fig. 3 Query plan distribution

the resources at their disposal are pre-determined and exclusively reserved, statically
composing and orchestrating services is sufficient, but this is not always the case for
database query processing. To implement the framework of Sect. 2.1, GQES have
been transformed into adaptive services.

Adaptive GQESs (AGQESs) instantiate this framework. Each AGQES consists of
four components: one query engine for implementing the query operators (the only
component in static GQESs), and one for each of monitoring, assessment and re-
sponse, as illustrated in Fig. 4. Monitoring is based on self-monitoring operators,
as reported in [19]. As such, the query engine is capable of monitoring its own be-
haviour, and of producing low-level monitoring information (such as the number of
tuples each operator has produced to this point, and the actual time cost of an op-
erator). The MonitoringEventDetector component instantiates the monitoring com-
ponent of the framework and integrates the events produced by the query engine.
The Diagnoser performs the assessment phase, i.e., establishes whether there is an
issue with the current execution (e.g., load imbalance). The Responder is notified of
any such issues and chooses how to react. Its decisions may affect not only the local
AGQES, but any AGQES participating in the evaluation. The adaptivity notifications
and subscription requests are transmitted across AGQESs as XML documents over
SOAP/HTTP.

The model above allows arbitrary connections of the adaptivity components. How-
ever, in the strategies investigated in this paper, the configuration selected is as fol-
lows: there is a separate MonitoringEventDetector on each participating site, and a
single, globally accessible Diagnoser and Responder for each query to which Moni-
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Fig. 4 Instantiating the adaptive architecture for dynamic load balancing

toringEventDetectors are subscribed. Also, since the operators of the query plan and
their ordering are not modified during the adaptations examined, there is no need
to establish a connection between a Responder and the optimiser within the GDQS,
which is called to build the initial plan. Nevertheless, these are not limitations of
the framework; there is no restriction on the number and the kind of subscription
requests an adaptivity component can make. Additionally, in the generic case, a Re-
sponder can communicate with the compile-time optimiser of the system through the
GDQS service interface, for instance to select an alternate realization of a part of the

query plan.

3 Adapting to load imbalance and bottlenecks
3.1 Approach to load balancing

Load imbalance with respect to the execution of a plan fragment over a fixed set of
resources may be the result of uneven load distribution in the case of homogeneous
machines; however, in the case of heterogeneous machines, it might be the result of
a distribution that is not proportional to the capabilities of the machines employed
(both because the machines are different and because their capabilities are subject
to dynamic changes). In other words, load balancing is related to the suitability of
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the allocation in terms of the rate with which the nodes can actually process the data
supplied.

To achieve load balance during execution we configure the AGQESs in the fol-
lowing way. The MonitoringEventDetector is active in each site evaluating a query
fragment, receiving raw monitoring events from the local query engine. There also
needs to be a single activated Diagnoser and Responder; the components subscribe
to each other, as illustrated in Fig. 4.

3.1.1 Monitoring

The query engine generates notifications of the following two types:

e M1, which includes notifications containing information about the processing cost
of a tuple. Such notifications are generated by the exchange operators that form
the local root of subplans (i.e., exchange producers) and include: (i) the cost of
processing an incoming tuple in milliseconds; (ii) the average waiting time of the
subplan leaf operator for this tuple, which corresponds to the idle time that the
relevant thread has spent; and (iii) the current selectivity.

e M2, which includes notifications containing information about the communication
cost of an outgoing buffer of tuples. Such notifications are generated by exchanges
that form the local root of subplans, and include: (i) the cost of sending a buffer in
milliseconds; (ii) the recipient of the buffer; and (iii) the number of tuples that the
buffer contains.

These notifications, which contain low-level information on plan progress, are sent
to a MonitoringEventDetector component that:

e groups the notifications of type M1 by the identifier of the operator that generated
the notification, and the notifications of the type M2 by the concatenated identifiers
of the producer and recipient of the relevant buffer;

e computes the running average of the cost over a window of a certain length, dis-
carding the minimum and maximum values as outliers; and

e generates a notification to be sent to subscribed Diagnosers, if these average values
change by a specified threshold thresM.

The default configuration is characterised by the following parameters:

o the monitoring frequency for the query engine is one notification for each 10 tuples
produced (for the type M1) and one notification for each buffer sent (for the type
M2);

e the low level notifications from the query engine are sent to the local Moni-
toringEventDetector;

e the window over which the average is calculated (in the MonitoringEventDetector)
contains the last 25 events; and

o the threshold thresM to generate notifications for Diagnosers is set to 20%. This
means that the average processing cost of a tuple needs to change by at least 20%
before the Diagnoser is notified.
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3.1.2 Assessment

Assessment is carried out within a Diagnoser. A Diagnoser gathers information pro-
duced by MonitoringEventDetectors to establish whether there is load imbalance.
Let us assume that a subplan p is partitioned across n machines, and p;, i =1...n
is the subplan fragment sent to the ith AGQES. The MonitoringEventDetectors no-
tify the cost per tuple c(p;) for each such subplan, as explained earlier. The Diag-
noser is also aware of the current tuple distribution policy, which is represented as a
vector W = (wy, ..., w,), where w; represents the proportion of tuples that is sent
to p;. To balance execution, the objective is to allocate a load w; to each AGQES
that is inversely proportional to c(p;). The Diagnoser computes the balanced vector

= (w}, ..., wy,). However, it only notifies the Responder with the proposed W' if

there exists a pair of w; and w; for which g exceeds a threshold thresA. This is

to avoid triggering adaptatlons with low expected benefit.
The cost per tuple for a subplan, c¢(p;), can be computed in two ways:

e Al, which takes into account only the notifications of type M1 that are produced
by the relevant subplan instance; or

e A2, which additionally takes into account the notifications of type M2 that are
produced by the subplans that deliver data to the relevant subplan instance, and
contain the communication costs for this delivery.

The default configuration is characterised by the following parameters:

e the threshold thresA to generate notifications for Responders is set to 20%; and

e the communication cost between subplans in the same machine (i.e., when the
exchange producer and consumer reside on the same machine) is considered to be
zero.

3.1.3 Response

The Responder receives notifications about imbalance from the Diagnosers in the
form of proposed enhanced workload distribution vectors W’. To decide whether to
accept the proposed change to the distribution vectors, it contacts all the evaluators
that produce data to estimate the progress of execution in line with [9]. If the progress
of execution is below a configurable threshold (which denotes the minimum interval
before expected completion at which adaptations are allowed to take place), the Re-
sponder notifies the evaluators that need to change their distribution policy, and the
Diagnosers that need to update their distribution vectors.
The data distribution can change in two ways:

e R1, in which the tuples in the recovery logs (i.e., the tuples already buffered to be
sent, and the tuples already sent to their consumers but not processed) are redistrib-
uted in accordance with the new data distribution policy. We call this redistribution
retrospective, as it applies both to new tuples being received for distribution, and
also to tuples already forwarded through this redistribution point, as long as the
tuples have not been finished with by the operators we are redistributing to; and
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e R2, in which the buffered tuples and the recovery logs are not affected. We call
this redistribution prospective, as it applies only from the present point onwards.

In the R1 case, operator state (in the form of buffers of exchange producers, in-
coming queues of exchange consumers, hash tables of hash-based operators, etc.) is
effectively recreated in other machines. This may be useful when adaptations need to
take effect as soon as possible, and it is imperative for redistributing tuples processed
by stateful operators (to ensure result correctness). In other words, if the plan parti-
tion affected by the rebalancing contains operators such as group by and operators
that build partitioned hash tables, retrospective redistribution is the only valid option;
otherwise, it is optional.

3.2 Approach to bottleneck reduction

The previous form of adaptivity dealt with the balanced execution across the n in-
stances of a subplan (or partition) p to which intra-operator parallelism has been
applied. In general, a query execution plan QFEP consists of a set of m such parti-
tions, P = { pl, p2, ..., p™}. If there are no blocking operators, all the partitions are
executed concurrently; in an efficient plan, they are expected to take approximately
the same length of time to evaluate when fully utilizing local resources. If this is not
the case, then one or more of the partitions forms a bottleneck [46], and the execution
of the whole plan slows down. This may be for several reasons, such as suboptimal
initial resource scheduling decisions. For example, if an expensive operator has been
allocated the same resources for the same number of tuples as an inexpensive one,
then the throughput of these two operators will vary significantly and the query execu-
tion time will largely be determined by the completion time of the costliest operator.
Several approaches could be taken to removing such bottlenecks (e.g. changing which
analyses are allocated to which machines, changing the order in which the operators
are applied with a view to reducing the number of calls to costly operators [24]). The
approach examined in this work increases the degree of parallelism of the costliest
partition, so that the difference between its predicted time cost and that of the other
partitions decreases, if the communication cost is not the dominant cost in the query
plan.

As such, the adaptivity policy to tackle bottlenecks focuses on the efficiency of
vertical (pipelined) parallelism within the query plan, whereas the policy to tackle im-
balanced execution deals with the efficiency of horizontal (partitioned) parallelism.
The requirements on the adaptivity components remain the same: each site partic-
ipating in query execution holds a MonitoringEventDetector, and there is a single,
globally accessible Diagnoser and Responder. Additionally, both policies rely on the
same monitoring information, which has been described in Sect. 3.1.1, thus provid-
ing an example of component reuse across different AQP techniques. Monitoring
information of both types M/ and M2 are used when adapting to bottlenecks. The
descriptions of the distinct assessment and response phases are presented below.

3.2.1 Assessment

The role of assessment in this adaptivity strategy is to identify the costliest parallelis-
able partition, and to establish whether the response component should be asked to
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consider increasing its degree of intra-operator parallelism. To this end, a sequence
of steps is followed:

1. The average cost of processing an incoming tuple by the ith instance of the jth
partition is denoted cij . This is included in the monitoring information collected
and its inverse is equal to the throughput of the partition instance. For each updated
value of cij received from a MonitoringEventDetector, the estimated response time
for the relevant partition instance pij , Cij , is computed. To do this, we need the
number of tuples that this partition is expected to process, Nejxp, and a workload
distribution vector W/ = {w{ , wé, e, w,{ }, which contains the proportion of the

tuples that each partition instance receives. Ny p» depends on the selectivities of its

children. The following formula holds: Cij = cij . Nejxp . wij .

2. The estimated cost C/ for a partition p/ is computed using the formula: C/ =
max(CiJ), i =1,...,n, where n is the number of instances of the partition (i.e.,
its current degree of intra-operator parallelism).

3. The partitions are sorted by their cost. If the costliest one does not contain an op-
erator that must be run on a specific machine, such as scan, it is considered to be
parallelisable. Then a heuristic is applied that guarantees that the intra-operator
parallelism is increased only if the communication cost does not dominate (if it

does, increasing the intra-operator parallelism is not expected to yield any bene-
fits):

C,J,'lax > (1 + thresA) - avg(communication_cost).

The average communication costs can be extracted from monitoring notifications
of type M2 that have already been sent to the Diagnoser. thresA is set to 0.05 in
the experiments.

A further control heuristic is used in some of the experiments. In a pipeline that
contains multiple parallelisable partitions, assessment may be conducted either as
soon as a bottleneck is detected involving any of the pipelined partitions, or it can
be deferred until throughput information is available for a/l partitions in the pipeline.
This heuristic is intended to avoid premature commitment of additional resources to
resolve a bottleneck that may not be the bottleneck for the whole query.

Given that the cost estimates rely on the load distribution vector, as shown in the
first step, there is a danger, if the vector is not balanced in the way discussed in the
previous section, that a specific partition may erroneously seem to be a bottleneck
point. To avoid that, it is preferable to combine the adaptivity policies and proceed to
bottleneck removal only when load balancing has been achieved.

3.2.2 Response

The set of actions that the Responder takes to respond to bottleneck diagnosis can be
deemed to be a superset of the actions required in the case of load imbalance. During
its creation by the GDQS coordinator service, the Responder is also notified of all the
machines available. The Responder reacts to bottlenecks only if the execution is not
very close to completion (this is a tunable parameter set to 95% in the experiments),
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as in the load balancing strategy. The actual response is activated only if there are
machines available, and consists of the following three steps:

1. An AGQES is created remotely by the Responder. Subsequently, the partitioned
subplan is sent to the new AGQES. However, this remains temporarily idle be-
cause the other AGQESs have not yet been notified of its existence.

2. A notification is sent to the AGQESs that consume data from the new evaluator,
for them to update their catalogs and wait for data.

3. A notification is sent to the AGQESs that send data to the new evaluator (i) to
inform their relevant exchange producers that data can be sent to the new AGQES;
and (ii) to modify the data partitioning policy of the AGQESs that send data to take
into account the new consumer. This is similar to the response form for imbalanced
execution. The new consumer is initially assigned a proportion of the complete
workload which is equal to the average proportion of the pre-existing AGQESs.
The dynamic balancing mechanism presented in Sect. 3.1 can correct bad initial
decisions. All responses carried out in the experiments are prospective.

Essentially, in this approach, bottleneck is implicitly defined as the costliest plan
partition, which is actually the case for parallel (pipelined) execution in heteroge-
neous settings [46]; in such settings, the costliest partition defines the query response
time. The approach presented increases the partitioned parallelism until the commu-
nication cost, or the cost to retrieve data from non-parallel physical storage infrastruc-
ture, starts to dominate.

4 Evaluation

This section presents experimental results of the prototype developed. Using a real
prototype, rather than simulating the behavior of the system and the environment, is,
in our view, a strong advantage of this work, since end users are mostly interested
in the actual impact of the adaptivity techniques on the system performance. Several
experimental settings have been chosen that complement each other and examine the
system from different perspectives. In experiments “in the wild” (i.e., in real, wide
area environments), the system is deemed as a black box. Such experiments can reveal
its actual high level behaviour, but cannot be easily repeated and interpreted in detail,
due to the large number of varying factors. On the other hand, small scale experi-
ments provide useful insights into the low-level details of the adaptivity techniques.
A middle solution is to run experiments in a cluster setting. In this section, all three
approaches have been followed. The configurable parameters are those mentioned in
Sect. 3, unless explicitly redefined.

As discussed previously, the responses of both adaptations manifest themselves at
the operator level; however, although in the case of adaptations for load balancing, the
effectiveness of the adaptations can be evaluated in experiments that involve a single
(parallelised) operator (e.g., as in [42]), in the case of bottlenecks, the effectiveness
of the adaptations can be measured in experiments that involve pairs of (parallelised)
operators. As such, in terms of query plans, the experiments have deliberately been
designed to enable fine-grained analyses of the adaptations by using simple queries.
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4.1 Evaluation in the wild

This section describes some performance results obtained for adaptive load balancing
implemented using the infrastructure described in Sect. 3.1. The results have been ob-
tained using PlanetLab [12], a resource currently comprising hundreds of machines
world-wide that serves as a shared evaluation environment for wide area distributed
experiments. As PlanetLab resources are used concurrently by multiple users, it pro-
vides an excellent way to test adaptivity techniques “in the wild”, though the corollary
is that it does not provide a controlled setting for repeatable experiments.

A user at a participating institution who wishes to perform an experiment in the
PlanetLab environment is allocated a slice. Such a slice gives the user an account on
each machine in a subset of the machines in PlanetLab. Upon logging-in to such an
account, a user’s processes are isolated from those of other users in a separate virtual
environment, or sliver. While monitoring utilities, such as ps and fop do not show in-
dividual processes belonging to other users, the overall load on the machine is visible,
and is typically both significant and variable. Broadly speaking, multiple concurrent
users of a single machine each have the impression of exclusive access to a machine
of varying performance, which is somewhat less powerful than the actual machine.
Thus, PlanetLab provides the right kind of unpredictability to experimentally evaluate
the adaptivity measures described in this paper.

The experiments used a slice containing 55 machines: 21 machines in the UK, 18
machines elsewhere in Europe, 8 machines in Asia, and 8 machines in the US. How-
ever, for the duration of these particular experiments the number of these machines
which were accessible varied between about 20 and 30. The script driving the queries
selects for each run those machines that are running and have been most responsive
to an hourly probe. The result is that different subsets of the machines are used for
different runs. The specifications of machines in the slice vary, for instance: in cpu
speed between 1 and 3 GHz; in memory between 512 MB and 2 GB; and in cache
size between 256 and 2048 KB. However, apart from the fact that many of the ma-
chines have some trade off in their parameters, e.g., lower speed but more memory,
the overall load appears to be both high and variable. This makes it generally difficult
to select a favoured set of machines purely from their static specification.

4.1.1 Experiment 1: Runs on the PlanetLab

The experiments explore load balancing for a query that invokes external operations
using data from a table in which one attribute, sequence, represents a gene sequence;
in the experiments, the table contains 100,000 tuples. In addition, operation calls
analysis] and analysis2, which have identical cost and are stateless, are implemented
as web services, which are available at multiple sites, thereby supporting partitioned
parallelism. Each operation performs a complex analysis as might occur in a practical
bioinformatics scenario.

In this environment, the performance of the following pipeline example query is
measured:

Q1: select analysisl (s.ssequence),
analysis2 (s.ssequence)
from Sequence s;
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Fig. 5 Planning a query containing two operation calls

The AGQESs and associated software were installed on each available machine in
the PlanetLab slice. One of these machines also hosts the benchmark database. Each
of the remaining available machines in the PlanetLab slice hosts a service exporting
operation analysisl or analysis2. Each query is initiated from a user workstation at
Newcastle and the query results returned to the same machine.

The query compiler generates first a logical plan of the form shown in Fig. 5(a).
The plan defines the organization of the key data processing operators required to
perform the query. The data is accessed by a scan operator and forwarded via two op-
eration call operators to a print which outputs the result to the user. From the logical
plan, the compiler generates a physical plan, by dividing the logical plan into parti-
tions which can be parallelized. In this case, as shown by the dotted boxes, there are
four partitions. The compiler recognizes that there must be a single instance of print,
which just returns the results to the client, and that while the number of instances of
scan is fixed by the number of copies of the data source, there can independently be
multiple instances of each of the operation call partitions, depending on the number
of instances of the relevant service that are available. Additionally, the physical plan
contains instances of an exchange operator, which implements data redistribution as
required. The scheduler then decides how many copies of each partition should be
included in the plan to be submitted for execution. In the executable plan shown in
Fig. 5(b), while a single copy of the scan partition is allocated, corresponding to the
single data source, each of the operation call partitions is replicated for each machine
hosting the relevant operation. The exchange operators are parameterized so as to
implement an even round-robin redistribution of tuples. This redistribution can be
adjusted at runtime by the adaptivity support to achieve a balance when the multiple
destinations are found to have unequal throughput.

Figure 6 shows the impact of runtime adaptivity where increasing numbers of
machines are used to parallelise the analysis operations (for example, if there are 4
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Fig. 6 Results for low-cost operation calls

compute machines, there are 2 instances of each of analysisl and analysis2). The
query uses low cost versions of analysisl and analysis2, in which there is little scope
for parallelism providing speedup because the evaluation of the operation calls is not
a substantial portion of the overall cost of the query. Indeed, little or no speedup is ex-
hibited. However, the inclusion of a slow machine in the schedule has a much more
detrimental effect on the statically scheduled plan, when compared to the adaptive
system, which gives three times better performance. This demonstrates that adaptive
load balancing can be used to provide more predictable performance in an unpre-
dictable environment.

Figure 7 shows the impact of runtime adaptivity for more costly versions of analy-
sis] and analysis2, in which a significant portion of the overall query cost can be
reduced by partitioned parallelism. There is obvious performance degradation in the
cases where adaptivity is disabled. In these cases, the scheduler can only make an
initial placement, based on static parameters, in this case allocating the divisible por-
tions of the computations evenly amongst the available machines. When this is done,
the outcome is unpredictable, as the chance selection of a single heavily loaded ma-
chine may significantly increase response times. When adaptivity is enabled, by con-
trast, load is redistributed dynamically throughout the computation based on recently
measured performance, allowing profitable use of the available machines and some
speedup. In both the experiments, the variability of the capabilities of the participating
machines can be seen to make static allocation a risky proposition, while autonomic
rebalancing is able to mitigate this risk by continually readjusting the computation in
order to exploit the changing set of machines that are performing well.
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Fig. 7 Results for costly operation calls

Evaluation of the bottleneck removal strategy is deferred to the next subsection,
which employs a cluster as the platform for experiments, to render the regeneration
of a bottleneck across multiple runs feasible.

4.2 Evaluation in a cluster
4.2.1 Experiment 2: effectiveness of bottleneck removal

The experiments in this section have been conducted using an unloaded cluster
consisting of 12 860 MHz PCs, each with 512 Mb of memory, connected using a
100 Mb/s Ethernet. One of the nodes is used as a coordinator (where queries are
compiled and to which results are delivered). Queries are scheduled with a single
node used for database access, with different nodes used for each operation call in a

query.

Experiment 2.1: Resolving a single bottleneck The aim of this experiment is to es-
tablish how effective bottleneck removal is in the context of a single bottleneck. The
following query is used:

Q2: select analysisl (s.ssequence)
from Sequence s;

The difference with Q1 is that there is just one call to an analysis service. The
query is initially compiled in such a way that Sequence is accessed on a single node

@ Springer



Distrib Parallel Databases (2009) 25: 125-164 143

T T T
—— bottleneck adaptivity |

o
©
T
1

response time (normalised time units)
=] =]
s (2]
T T
1 1

0.2 4

0 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12
number of machines

Fig. 8 Performance of Q2 with bottleneck adaptivity for 100,000 tuples

and a single analysis] is made available on a different node. Varying numbers of
the remaining nodes are made available for absorbing the imbalance. The call to
analysisl is the bottleneck in this plan, even when it is fully parallelised for any
number of available machines considered in the experiment.

Figure 8 shows the impact of increasing the number of nodes with which to absorb
the imbalance, running over a collection of 100,000 Sequences. The non-parallel case
is with 2 machines, as one machine is used for scanning the Sequences. The figure
is normalised such that / represents the cost of evaluating the query with adaptivity
disabled. In essence, bottleneck removal has been successful at reducing the effects of
the bottleneck, with significant speedups. This indicates that the bottleneck has been
detected in a timely manner. Moreover, the graph in Fig. 8 is close to what someone
would expect for the case where the degree of parallelism was set to its optimal at
compile time rather than at runtime, which means that the adaptivity loop and the
message exchange between components is efficient since it (i) does not prevent quick
adaptations; and (ii) incurs a low overhead. The overall overhead will be examined
more thoroughly in subsequent experiments.

Experiment 2.2: resolving multiple bottlenecks The aim of this experiment is to as-
sess the effectiveness of the strategy given bottlenecks at different points in a pipeline.

Initially, the case is considered in which there are different levels of bottleneck at
different points in the pipeline. Q7 is used in this experiment.
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Fig. 9 Performance of Q1 with deferred and non-deferred bottleneck adaptivity. The call to one of the
analysis is 5 times slower than to the other

In the first experiment, analysis2 has been slowed down so that each call takes
5 times as long as analysisl. Figure 9 shows the impact of increasing the number
of nodes with which to absorb the imbalance, running over a collection of 100,000
Sequences, for both deferred and non-deferred bottleneck resolution. The first op-
portunity for adaptation is with a parallelism level of 4, where a single machine is
available for absorbing the bottleneck.

The curve for non deferred bottleneck resolution improves on the performance
of the static case where there are significant numbers of machines available for ab-
sorbing the bottleneck. However, the plan has (by chance) been compiled in such a
way that the partition containing analysis2 is the parent of that containing analysis|,
which in turn is the parent of the scan of Sequence. As a result, the (non-deferred)
adaptive query processor obtains throughput figures for the evaluation of analysisi
before it obtains the corresponding figures for analysis2, and thus may allocate nodes
to the partition for analysis! that are then no longer available for resolving the bottle-
neck based on analysis2 when it is subsequently shown to be the principal bottleneck.
As a result, where only 4 processors are available for evaluating the query the sin-
gle processor that is available for absorbing the bottleneck is assigned to analysisi,
and there is little improvement in performance. With deferred bottleneck resolution,
a more suitable allocation is made when a single machine is available for absorbing
imbalance. Where larger numbers of machines are available to absorb the bottleneck,
both adaptive strategies improve significantly on the static case.
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In a second experiment, the case is considered in which the same level of bottle-
neck exists at different points in the pipeline. That is, analysis2 has been configured so
that each call takes as long as for analysisi. Figure 10 shows the impact of increasing
the number of nodes with which to absorb the imbalance, running over a collection
of 100,000 Sequences for both deferred and non-deferred bottleneck resolution.

The first opportunity for adaptation is with a parallelism level of 4, where a single
machine is available for absorbing the bottleneck. Both adaptivity strategies allocate
this node to the pipelined partition associated with one of the calls to the analysis tool.
However, this has little effect on overall response time, as the bottleneck remains as-
sociated with the other call to analysis. Where there is a parallelism level of 5, with
two machines available for absorbing the bottleneck, the deferred approach appro-
priately allocates two machines for each of the partitions associated with the calls to
the analysis operation, and obtains a significant speedup. However, the non-deferred
approach allocates both the additional machines to the partitions nearest the scan,
and thus leads to little overall performance improvement. With the higher levels of
parallelism, both adaptive strategies significantly improve on the static case. Where
the total number of machines is 7 and 8 (i.e., there are, respectively, 4 and 5 machines
available to absorb the bottleneck), the non-deferred case has made better allocations
of operation calls to machines than the deferred case; this does not result from any
fundamental property of the methods—allocation decisions are made on the basis of
dynamic feedback from monitoring of parallel plan fragments. Such dynamic feed-
back provides an evolving view of the behaviour of a complex software system, and
at any point in time may give a somewhat misleading picture to the diagnoser and
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Fig. 11 Performance of Q2 for different adaptive strategies

responder. The lesson learnt from this experiment is that when there is a very limited
number of additional machines available, deferred adaptivity should be preferred to
non-deferred, as it may lead to more efficient use of those machines.

4.2.2 Experiment 3: Combining and comparing the adaptivity strategies

This section compares the use of the techniques for adapting to load imbalances and
bottlenecks, both together and separately.

The experiment uses (2, in an environment in which machines 3, 5, 7, 9 and /1
perform operation calls approximately 2.5 times more slowly than those allocated to
machines 2, 4, 6, 8 and /0, where machines are made available in the experiments in
numerical order.

Figure 11 shows the impact of increasing the number of nodes with which to eval-
uate Q2 running over a collection of 100,000 Sequences. The plots on the graph have
legends of the form initial-allocation: environment-description: strategies-enabled,
where:

e initial-allocation is either one or all, to indicate if the plan is initially scheduled
with the call to analysisI on a single machine or on every machine available

e environment-description is either balanced or imbalanced, indicating whether or
not the operation calls allocated to odd numbered nodes have been slowed down;
and

e strategies-enabled is either none, bottleneck, imbalance or imbalance+bottleneck,
indicating which of the adaptivity strategies are enabled. When both are enabled,
bottleneck removal is applied after the execution has been balanced.

The following observations can be made for the different traces in Fig. 11:
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1. all: balanced: none. This configuration is essentially the best case performance
on the available hardware, as the query is evaluated with maximum parallelism on
an otherwise unloaded machine. No adaptivity strategies are enabled or required.

2. all: imbalanced: none. This configuration shows the effect of the introduction of
imbalance in the absence of the adaptation that seeks to restore balanced load.
Where three machines are available for running the query, performance is de-
graded by the even distribution of work across the two machines running analy-
sisl, one of which is significantly slower than the other. Although increasing par-
allelism improves performance from the worst case by reducing the size of the
dataset(s) allocated to the slowest machine(s), this only slightly improves on the
performance of the static case with the level of parallelism available. Note that
the reasonably strong performance with two processors is just chance—had re-
sponse times of operations been slowed down on even numbered rather than odd
numbered nodes, the poorest performance would have been for 2 machines rather
than 3.

3. all: imbalanced: imbalance. This configuration shows the effect of the adaptation
designed to remove imbalance on the configuration at (2). Overall, the adaptations
have been effective, providing steadily improving performance with increasing
levels of parallelism, even though odd numbered machines are significantly slower
than their even numbered counterparts. By sending the appropriate amount of tu-
ples to slower machines, performance improvements are observed for all machine
additions. However, these improvements are less significant when adding slower
machines, as shown by the changing angle of gradient in the graph.

4. one: imbalanced: bottleneck. This configuration shows how the bottleneck imbal-
ance strategy adds parallelism to the call to analysisl from an initial allocation to
a single node. This configuration is closest to (2), with the only difference being
that in this case the parallelism is added by bottleneck adaptation rather than by
the scheduler before query evaluation. The bottleneck adaptation is effective at
exploiting the available parallelism, but as in the static case suffers significantly
from the presence of slower machines.

5. one: imbalanced: bottleneck+imbalance. This configuration shows the effect of
the introduction of imbalance adaptivity to configuration (4). For all parallel con-
figurations, the combined adaptivity strategies improve significantly on the behav-
iour obtained in configuration (4), although the combination does not quite match
the behaviour of configuration (3) where the available computational resources are
the same. This is because the incremental introduction of parallelism inevitably
leads to slower exploitation of the available machines, and because the interplay
of the two adaptivity strategies requires greater numbers of adaptations to arrive
at a steady state; the difference equals to the number of machines available minus
one.

Overall, the improvement in the response time of the query due to the adaptivity
techniques is shown by comparing (2) and (3); and (4) and (5). The former refers to
the results of the online balancing technique, whereas the latter relates to the combi-
nation of bottleneck removal with balancing. Finally, the difference between (2) and
(4), and (3) and (5) denotes the overhead of the bottleneck removal strategies.
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Fig. 12 Overheads for different adaptive strategies

The overheads are illustrated more explicitly in Fig. 12. To derive the overhead of
the two adaptivity techniques running in combination, the first and the third plots need
to be compared. Their difference corresponds to the cost of monitoring, assessing
and responding in both ways examined. The first two plots give the overhead of the
balancing strategy (i.e., overhead because of monitoring, assessing and modifying the
workload distribution), whereas the overhead of the stand-alone bottleneck removal
technique can be derived from the second and the third plots.

4.3 Evaluation in a small scale controlled environment

The experiments presented in this section explore the costs and benefits of redistrib-
uting the tuple workload on the fly to keep the evaluation balanced across evaluators.
Throughout this section, experiments are carried out in a small-scale homogeneous
environment into which imbalances are introduced, to allow detailed study of the
behaviour of the adaptive techniques in a controlled setting.

Two example queries are used, Q2 and Q3, which is as follows:

Q3: select i.0ORF2
from Sequence s, Interaction 1
where i.proteinid=s.proteinid;

The tables Sequence and Interaction are from the OGSA-DQP demo database and
they contain data on proteins and results of a bioinformatics experiment, respectively
(the Sequence collection used in the experiments is slightly modified to make all the
tuples the same length to facilitate result analysis). Unless otherwise stated, Sequence
in this experiment contains 3000 tuples and Interaction contains 4700 tuples.

Both Q2 and Q3 are compiled in such a way that each table is accessed from a
single node. Partitioned parallelism is used in Q2 for the calls to analysisl and in Q3
for the join. The join is implemented as a blocking hash join algorithm, with the hash
table being cloned to all participating nodes. The pipeline fragment that is subject
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to adaptivity consists of a scan operator, sending data to the hash join to probe the
already built table, and subsequently to return the results through a print. As such,
the adaptable query plan fragments of Q2 and Q3 are quite similar; in the former the
middle operator is an operation call accessing analysisl, whilst in the latter it is a
hash join.

In the previous experiments it was shown that the adaptations described can be
applied to a large number of machines. However, to enable carefully controlled ex-
periments to be conducted, and to ease interpretation of the behaviour of the system
for specific kinds of adaptation, two machines are used in this experiment for the eval-
uation of analysisl in Q2, and the join in Q3, unless otherwise stated. The data are
retrieved from a third machine. All machines are identical, run RH Linux 9, are con-
nected by a 100 Mbps network, and are autonomously exposed as grid resources. It
was ensured that they were unloaded at the time of the experiments to allow a detailed
analysis of the behaviour of the adaptive techniques. The third machine retrieves and
sends data to the first two as fast as it can.

For each result, the query was run three times after the system has been warmed up
to ensure that in all cases the standard deviation remains below 5%, and the average is
presented here. Finally, we have used two methods to create artificial load for machine
perturbation: (i) by programming a computation to iterate over the same function
multiple times, and (ii) by inserting sleep() calls. In the previous experiments, only
the former method has been adopted.

4.3.1 Experiment 4: Behaviour of load balancing strategy

The objective of this experiment is to understand how effective the load balancing
strategies described in Sect. 3.1 are, by measuring the performance of different con-
figurations in a controlled environment.

Experiment 4.1: Alternative forms of response The objective of this experiment is
to compare alternative strategies in the presence and absence of imbalance.
The following configurations are considered:

e no ad/mo imb: there is no imbalance between the performance of the analysisl
services in the two machines, and adaptivity is not enabled (bottomline case);

e ad/no imb: there is no imbalance between the two services, and adaptivity is en-
abled, so that the overhead can be revealed;

e 1o ad/imb: one WS call is costlier than the other, thus there is imbalance between
the two services. Adaptivity is not enabled, so that the performance degradation
due to imbalance can be revealed; and

e ad/imb: there is imbalance between the two services, and adaptivity is enabled, so
that the improvements due to adaptivity can be revealed.

To create the imbalance in the first experiment, we set the cost of the WS call in Q2
in one machine to be exactly 10 times more than in the other for the whole duration
of the query. As will be discussed later, this slows down the overall execution on one
machine by a factor of 3.5 approximately. The responses are prospective (response
type R2 in Sect. 3.1). The first row of Table 1 shows how the system behaves under
different configurations.
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Table 1 Performance of queries in normalised units

Query-Response no ad/no imb ad/no imb no ad/imb ad/imb
Q2-R2 1 1.059 3.53 1.45
Q2-R1 1 1.15 3.53 1.57
Q3-R1 1 1.11 1.71 1.31

The results are normalised, so that the response time corresponding to no ad/no
imb is set to 1 unit for each query. The scale of degradation due to imbalance is given
by the difference of the normalised performance from 1. The “unnecessary” adaptiv-
ity overhead is the overhead incurred when adaptivity is not needed (i.e., there is no
imbalance),? which can be computed by the difference of the second and the third
column of Table 1 (1st row). This difference is 5.9%, and is due to the publishing of
monitoring messages. When one WS is perturbed and there are no adaptivity mech-
anisms, the response time of the query increases 3.53 times (4th column in Table 1).
For this type of query, the cost to evaluate the WS calls is the highest cost; however,
it is not dominant, as there is significant /O and communication cost. Thus, a 10-fold
increase in the WS cost, results in 3.53-fold increase in the query response time. The
adaptive system manages to drop this increase to 1.45 times, performing significantly
better than without adaptivity.

The 2nd row in Table 1 shows the results for the same experimental setup, except
that the adaptation is retrospective (type R1 of response). When the adaptivity is
not enabled (no ad/imb), the response time remains stable as expected (3.53 units).
However, the average overhead (ad/no imb) is nearly three times more (15.3% of the
execution). This is because it is now more costly to perform log management, as the
tuples already sent to remote evaluators need to be discarded and redistributed in a
tidy manner. On average, the size of the state recreated is 10% of the overall size
(3000 tuples) approximately. Because of the larger overhead, the degradation of the
performance in the imbalanced case (ad/imb) is larger than for prospective response
(1.57 times from 1.45).

The same general pattern is observed for Q3 as well, using the second method to
create imbalance artificially. The factor of performance degradation due to imbalance
is less than 1 in these runs (0.71), to give an example of small imbalances. In this
case, the perturbation is caused in one machine by the insertion of a sleep(10msecs)
call before the processing of each tuple by the join. The 3rd row of Table 1 shows
the performance when the adaptations are retrospective. The overhead is 11%, and
adaptivity, in the case of imbalance, makes the system run 1.31 times slower instead
of 1.71.

Experiment 4.2: Varying the size of perturbation The objective of this experiment
is to compare the strategies for different levels of imbalance.

3Without adaptivity, the machines finish at the same time (the difference is in the order of fractions of
seconds). This, in general, cannot be attained in a distributed setting. In more realistic scenarios, adaptivity
is very rarely “unnecessary”, even when distributed services are expected to behave similarly, but these
experiments aim to show the actual overhead.

@ Springer



Distrib Parallel Databases (2009) 25: 125-164 151

10

Il adaptivity disabled
9 | [ adaptivity enabled R

normalised response time

10 times 20 times 30 times

Fig. 13 Performance of Q2 for prospective adaptations

We reran Q2 for the cases in which the perturbed WS is 10, 20 and 30 times
costlier, and adaptations are prospective. When the perturbed WS is 30 costlier, the
increase in the overall query response time is close to an order of magnitude. Fig-
ure 13 shows that the improvements in performance are consistent over a reasonably
wide range of perturbations. When the WS cost on one of the machines becomes
10, 20 and 30 times costlier, the response time becomes 3.53, 6.66 and 9.76 times
higher, respectively, without dynamic balancing. With dynamic balancing, these drop
to 1.45, 2.48 and 3.79 times higher, respectively, i.e., the performance improvement
is of several factors, consistently.

Experiment 4.3: Effects of different policies The objective of this experiment is to
compare assessment and response policies.

Thus far, the assessment has been carried out according to the type Al, in which
communication cost is not taken into account. The next experiment takes a closer
look at the effects of different adaptivity policies. Three cases are examined: (i) when
the Diagnoser does not take into account the communication cost to send data to the
subplan examined for imbalance, and no state is recreated (type Al of assessment
combined with type R2 of response); (ii) when the Diagnoser does not take into
account the communication cost to send data to the subplan examined for imbalance,
and state is recreated (type Al of assessment combined with type R1 of response);
and (iii) when the Diagnoser does take into account the communication cost to send
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Fig. 14 Performance of Q2 for different adaptivity policies

data to the subplan examined for imbalance, and no state is recreated (type A2 of
assessment combined with type R2 of response).

There are two important factors that impact on the implications of communication
costs, namely the execution model and the network capacity with regard to the com-
putational requirements of the query. When communications tasks overlap with ex-
pensive computational tasks, then the communication cost is hidden regardless of the
plan topology, and since communication costs does not dominate, it can be omitted
during the assessment/response phases. In other execution models (e.g., synchronous
data delivery where the processing and transmission of data occurs sequentially) this
might not be the case, even if the communication cost does not dominate. Our frame-
work supports both cases during assessment; however its instantiation, which is an
extension to the OGSA-DQP system, fits better to the first scenario. In essence, in
our prototype, when the communication cost is not considered (assessment Al), an
assumption is made that the cost for sending data overlaps with the cost of process-
ing data due to pipelined parallelism. Such an assumption is valid, and indeed, this is
verified by the experimental results discussed next.

The performance of the three configurations for Q2 is shown in Fig. 14. Although
all of them result in significant gains compared to the static system, some perform
better than others. From this figure we can observe: (i) that, taking into consideration
the pipelining, performing the assessment of type A1l has an impact on the quality of
the decisions and results in better repartitioning (see the difference between the left-
most and the rightmost bar in each group); and (ii) that retrospective adaptations (R1
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Table 2 Ratio of tuples sent to

the two evaluators Case Al-R2 Al-RI A2-R2
10 times 5.58 11.21 3.16
20 times 4.95 11.42 4.33
30 times 4.55 16.45 3.89

response) behave better than the prospective ones for bigger perturbations (see the
difference between the leftmost and the middle bar in each group). The latter is also
expected, as the overhead for recreating state remains stable independently of the size
of perturbations, whereas the benefits of removing tuples already sent to the slower
consumers, and re-sending them to the faster ones increases for bigger perturbations.
Also, from Fig. 14, it can be seen that the bars referring to retrospective adapta-
tions remain similar with different sizes of perturbation, which means that the size
of performance improvements increases with the size of perturbations. This happens
for two complementary reasons: (i) the higher the perturbation, the more tuples are
evaluated by the faster machine, in a way that outweighs the increased overhead for
redistributing tuples already sent or buffered to be sent; and (ii) for any of these per-
turbations, only a very small portion of the tuples is evaluated by the slower machine,
which makes the performance of the system less sensitive to the size of perturbation
of this machine.

Experiments with Q3 lead to the same conclusions. Figure 15 shows the behaviour
of the join query when the sleep() process sleeps for 10, 50 and 100 ms, respectively,
and adaptations are of type Al of assessment and R1 of response. As already iden-
tified in Fig. 14, retrospective adaptations are characterised by better scalability, and
their performance is less dependent on the perturbation.

Table 2 corresponds to Fig. 14 and shows the ratio* of the number of tuples sent to
the two evaluators calling the WSs. The ratio is significantly higher for retrospective
adaptations, which means that the system manages, in practice, to reroute data accord-
ing to the performance of the evaluators. For prospective adaptations, for this demo
query, although the monitoring information is the same, rerouting is not as effective.
This is because the dataset is relatively small, and by the time load imbalance has
been detected, a significant number of tuples has already been sent to its consumers.
In retrospective adaptations, these tuples are redistributed, whereas such a redistrib-
ution cannot happen in the prospective ones. However, as will be demonstrated later,
this is mitigated when the dataset size increases.

Experiment 4.4: Varying the dataset size The objective of this experiment is to ex-
plore the effect of dataset size on the effectiveness of the adaptive load balancing.
From the figures presented up to this point, retrospective adaptations outperform
the prospective ones, but suffer from higher overhead. The reason why prospective
adaptations exhibit worse performance is that a significant proportion of the tuples
have been distributed before the adaptations can take place. Intuitively, this can be
mitigated in larger queries. Indeed, this is verified by increasing the dataset size of Q2

4ratio = number of tuples sent to the faster machine/number of tuples sent to the slower machine.

@ Springer



154 Distrib Parallel Databases (2009) 25: 125-164

Il adaptivity disabled
[ adaptivity enabled

normalised response time

10msec 50msec 100msec

Fig. 15 Performance of Q2 for retrospective adaptations

from 3000 tuples to 6000, and making one WS call 10, 20 and 30 times costlier than
the other, while the adaptations are prospective. Figure 16 shows the results, which
are very close to those when adaptations are retrospective (i.e., Fig. 14 for Q2 and
Fig. 15 for Q3 compared to Fig. 13), and lead to better performance improvements.

In summary, there is a trade-off between retrospective and prospective adaptations.
The former are costlier but the latter suffer from poor performance when the time to
process the tuples that have been distributed in a suboptimal manner is significant
compared to the overall remaining execution time. An interesting extension to our
work, left for the future, is to develop a cost model that quantifies these trade-offs
with a view to deciding whether to employ retrospective or prospective adaptations
on the fly.

Experiment 4.5: Varying the number of perturbed machines The objective of this
experiment is to identify the effectiveness of the different approaches where varying
numbers of machines exhibit reduced performance.

Figure 17 shows the performance of Q2 for different numbers of perturbed ma-
chines when adaptations are retrospective (three machines have been used for WS
evaluation in this experiment). Perturbations are inserted by making selected WS
calls 10 times costlier than the others. Without load balancing, the presence of an im-
balance affecting any node substantially delays completion of the query. By contrast,
when load balancing is enabled, performance degrades gracefully in the presence of
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Fig. 16 Performance of Q1 for prospective adaptations and double data size

perturbed machines until such time as all machines are perturbed, and there is no way
to avoid substantially reduced performance.

4.3.2 Experiment 5: Impact of monitoring frequency

The objective of this experiment is to complement the discussion of Experiment 4.1
on the overheads associated with adaptive load balancing and discuss the impact of
monitoring frequency.

4.3.2.1 Experiment 5.1: Monitoring overhead for different frequencies of monitor-
ing Figure 18 presents the behaviour of the system for Q2, when the WS cost on
one machine is 10 times greater than on the other, and the frequency of generating
raw monitoring events from the query engine varies between O (i.e., no monitoring to
drive adaptivity) and 1 notification per 10, 20 and 30 tuples produced. Both the adap-
tation quality (2nd and 4th plots) and the overhead incurred (1st and 3rd plots) are
rather insensitive to these monitoring frequencies. This is because (i) the mechanism
to produce low-level monitoring notifications has been shown to have very low over-
head [19], and (ii) the adaptivity components filter the notifications effectively. On
average, between 100 and 300 notifications are generated from the query engine, but
the MonitoringEventDetector needs to notify the Diagnoser only around 10 times,
1-3 of which lead to actual rebalancing. Thus the system is not flooded by messages,
which keeps the overhead low.
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4.3.3 Experiment 6: Changing load

The objective of this experiment is to understand how effective the load balancing
strategies are in the context of rapidly changing loads instead of loads which are
stable during the whole duration of the query execution.

Experiment 6.1: The effectiveness of load balancing for different levels of change
in imbalance Thus far, the perturbations have been stable throughout execution.
A question arises as to whether the system can exhibit similar performance gains
when perturbations vary in magnitude over the lifetime of the run. In these experi-
ments the perturbation varies for each incoming tuple in a normally distributed way,
so that the mean value remains stable. Figure 19 shows the results when the differ-
ences in the two WS costs in Q2 vary between 25 and 35 times, between 20 and 40
times, and between 1 and 60 times, and the adaptations are stateless. The leftmost
bar in each group in the figure corresponds to a stable cost, which is 30 times higher
(e.g., bar A1-R2, 30 times in Fig. 14 for prospective adaptations), and is presented
again for comparison purposes. For the ranges explored, the system is effective and
efficient in handling different levels of imbalance and different frequencies in which
imbalance occurs.
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4.4 Generalization to larger queries

The plans of the example queries comprise up to three operators, at most two of which
can be parallelized. However, the results presented can be generalized to arbitrarily
larger queries in terms of degree of operator parallelism, or number of operators in
the query plan, or their combination. This is because the response phase of the adap-
tations impacts solely on individual operators; thus it is independent of the size of the
query plan. Moreover, the assessment phase during operator load balancing involves
the estimation of a vector with length equal to the degree of the operator parallelism;
practically, this cost is negligible even for very large degrees. In bottleneck reduction,
the assessment phase includes sorting the partition instances and then the partitions
by their cost; again, typically, this cost is not significant. Aggregate monitoring costs
may increase significantly for larger queries. However, our framework naturally sup-
ports the case in which each operator is subscribed to a different assessment/response
component, thus achieving scalability. As such, the impact of monitoring on the total
response time is expected to be similar to that reported in the previous sections.

5 Related work

Adaptive query processing is an active research area [6, 16]; solutions have been de-
veloped to compensate for inaccurate or unavailable data properties (e.g., [4, 5, 29,
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32]), to manage bursty data retrieval rates from remote sources (e.g., [25]), and to
provide prioritized results as early as possible (e.g., [41]). In works such as [5, 32],
the focus is on changing the query plan at runtime in light of new statistical informa-
tion becoming available. In summary, current adaptive query processing techniques
assume centralized processing (even when data are retrieved from remote sources)
and either change the query plan on the fly (e.g., [30]) or continuously reroute tuples
through operators; Eddies [4] is a pioneer of the latter approach. The adaptations con-
sidered in this paper are finer grained than most approaches that involve reoptimiza-
tion, and adaptations seek to respond to inaccurate or unstable resource properties for
distributed queries rather than to inaccurate statistics about the data to be processed.
As such, one can see this work as complementing, rather than superceding, or being
superceded by, the work to date on adaptive reoptimization. The reality of work in
adaptive query processing is that individual papers tend to consider only one kind
of adaptation in response to one kind of challenge. Our paper describes two related
kinds of adaptation (to address load imbalance and bottlenecks) and a specific kind of
challenge (uncertain or changing resource properties or query resource requirements
in distributed systems). Both the kinds of adaptation considered and the challenge
dealt with have been overlooked by other interesting adaptive proposals [16]. To the
best of our knowledge, our work is the first that considers adaptations to changing
machine capabilities by deciding on the workload allocation and the number of the
machines employed on the fly and is tailored to partitioned pipelined execution over
heterogeneous resources. An interesting direction for future work is to investigate the
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combination of adaptations to updated information about both data and resources and
changes to both the query plan shape and the workload allocation.

In a distributed setting, [27] deals with adaptations to changing statistics of data
from remote sources, whereas our proposal, complementarily, focuses on changing
resources. Moreover, sources in [27] only provide data, and do not otherwise con-
tribute to the query evaluation, which takes place centrally. Eddies [4] are also used in
centralised processing of data streams to adapt to changing data characteristics (e.g.,
[8]) and operator consumption speeds. When Eddies are distributed, as in [48, 53],
changes to consumption speeds may indicate changing resource performance. Nev-
ertheless, our approach differs in several significant aspects: (i) the emphasis is on
parallel query processing, and thus in the case of adaptive load balancing on chang-
ing the routing of data within rather than between operators; (ii) there is the potential
to add to the resource pool during query evaluation, as in the case of adaptive bot-
tleneck resolution; although proposals based on Eddies may dynamically reduce the
number of tuples that ever pass through the operator that is responsible for a bottle-
neck, the option of allocating additional resource to the evaluation of that operator is
not considered. The use of Eddies in parallel query processing is discussed in [39],
where an Eddy operator splits output tuples over several query evaluators and merges
incoming responses from those evaluators; in the case of hash joins, the dynamic
redistribution of data is avoided by allocating the complete hash table to multiple
parallel evaluators. Such an approach should be effective for join queries in which
one operand is very much smaller than the other, although a central Eddy operator
may be a bottleneck for higher levels of parallelism.

There are, however, two particularly relevant pieces of work on adaptive load bal-
ancing. For data and state repartitioning, the most relevant work is the Flux operator
for continuous queries [42], which extends exchanges and uses partitioned paral-
lelism. Flux operates in the same context as the work supported in our paper, i.e., het-
erogeneous machines, although with an emphasis on stream query processing, but it
does not address bottlenecks and it does not consider employing additional machines
on the fly. Flux differs from the adaptive load balancing approach described here by
moving operator state between sibling operator fragments, rather than by resending
data from upstream caches. We see the following benefits from the use of upstream
caches: (i) the work required to extract the data for reallocation does not further load
the machine(s) that have been detected as the source of the problem; (ii) extraction
of state for reallocation from buffers is independent of the algorithm storing the state,
reducing development costs because there is no need for different state-extraction
functionality to be written for different stateful operators; (iii) the cache provides
support for fault tolerance with quite modest overheads [45], whereas the fault toler-
ance scheme associated with Flux does substantial amounts of redundant work [43].
Also, our paper investigates the relative merits of different state movement strategies
(prospective and retrospective) that can have a significant impact on performance.
A more direct comparison of the performance of different load balancing strategies
can be found in [38].

A further strategy for adapting to load imbalance is part of the Data In The Net-
work (DITN) proposal [40]. In DITN, redundant plan fragments are executed when
a fragment is late completing. In such an approach, however, adaptation may take
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place after a prolonged period of imbalance; as a result, DITN is expected to be less
responsive to changes in load balance than the approaches of Flux or OGSA-DQP,
but there is no risk of the strategy thrashing (by adapting repeatedly to an unstable
environment). In addition, there are circumstances in which DITN does significant
additional work during query evaluation to reduce the level of coupling between plan
fragments, which means that overheads can be significant.

Rivers [3] follow a simpler approach than Flux, but are capable of performing
only data (and not state) repartitioning. State management has also been considered
in [15], but only with a view to allowing more efficient, adaptive tuple rerouting
within a single-node query plan. Finally, [54] has examined possible operator state
management techniques to be used in any single-node adaptation.

There are also several pieces of work of relevance to bottleneck resolution. For ex-
ample, adapting the allocation of plan fragments to resources has been considered in
the Aurora distributed stream query processing system; the relevant paper discusses
a wide range of options, but does not provide a detailed description of algorithms or
evaluation results [10]. In the follow-on project, Borealis [51], operators may be real-
located between pairs or groups of similar rather than heterogeneous nodes, although
there is no discussion of parallel query evaluation. The operator reallocations should
help to resolve bottlenecks, although bottlenecks are not explicitly diagnosed, as they
are in this paper.

Some forms of reoptimisation of parallel plans, including using new machines on
the fly, are presented in [34], although this approach is less general than that presented
here, since it can be applied only to a limited range of unary operators. In addition,
some proposals defer the machine scheduling decisions until more accurate infor-
mation about data statistics becomes available; however they suffer from significant
limitations such as assuming that all machines available have the same characteris-
tics (e.g., [23]) or do not consider intra-operator parallelism (e.g., [37, 52]). In [25],
substitution of data sources on the fly is supported to tackle data source failure; by
contrast, the work described in this paper applies to resources that provide both data
and computations, and adapts principally to improve performance rather than to pro-
vide fault tolerance.

In general, work on distributed query processing over wide-area autonomous en-
vironments has resulted in many interesting proposals such as WSMS [46], Object-
Globe [7], Garlic [28] and Mariposa [47], but has directed fairly little attention to-
wards issues of intra-query adaptivity. In the Grid setting, Polar* [44], OGSA-DQP
[1], GridDB [31] and GridDB-Lite [33] are examples of grid-enabled database sys-
tems that support access to distributed data resources, and exploit the parallelism
available through heterogeneous infrastructures to meet demanding application re-
quirements. However, none of the systems mentioned above tackles the adaptivity is-
sues investigated in this work. Finally, the work in [49, 50] examine wide-area query
processing from another perspective, focusing on the communication costs and the
efficient network utilization. Our work can take communication costs into account
but the adaptations are designed with a view to reducing the overall response time.

Recently, new paradigms for parallel data processing have emerged, such as
MapReduce [13, 14] that perform load balancing at a higher level. Our techniques
operate under assumptions that are different from those of MapReduce, and that bear
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directly on how to address the issues of load rebalancing and bottleneck removal.
Most notably, in MapReduce, good knowledge about the properties of the data to
be processed and the computational requirements of the number of machines allo-
cated to the map and reduce tasks is assumed. This knowledge drives the static deci-
sions on the way source data is partitioned across nodes and the degree of partitioned
parallelism. By contrast, our system is tailored to more autonomous environments,
where this knowledge is incomplete, data cannot be removed from store before query
execution to facilitate processing and these decisions are taken—and continuously
refined—on the fly in response to the feedback collected at runtime. MapReduce re-
lies on independent parallelism, whereas our work deals with the other two aspects of
parallelism in query plans, namely partitioned and pipelined parallelism. In MapRe-
duce, it is assumed that there is full control on the source data; by contrast, in our
work we assume that the data sources are autonomous, and the place from where they
can be retrieved is fixed. This has an impact on the way load balancing is enforced.
MapReduce can effectively parallelise the process of retrieving data from source, and
can achieve load balancing by allocating large chunks of data to separate machines in
a way that faster machines process more chunks. In our approach, we perform load
balancing at a finer level of granularity as tuples are routed to the machines according
to their processing speed, which is monitored at runtime. In summary, MapReduce
is geared towards the efficient parallelisation of independent tasks in a managed en-
vironment assuming full control of input data and adequate knowledge about the
computational requirements of the task to be executed. Our solutions refer to a more
wild setting, in which data is retrieved from predefined sources, there is no a-priori
knowledge about the computational requirements of the task, and, as such, the only
way to achieve good performance is to respond to empirical evidence collected on the
fly by adapting sensibly. Finally, it is an open issue as to whether, and to which extent,
query processing can benefit from the map-reduce framework. Unary operators such
as selection and group by can be easily re-implemented as map-reduce functions, but
this is may not be the case for other query operators. Such issues are examined in [11,
35].

6 Conclusions

The volatility of the environment provided for parallel query processing over het-
erogeneous and autonomous wide-area resources makes it imperative to adapt to
changing resource properties, in order to avoid serious performance degradation. This
paper proposes two solutions, one for dynamic load balancing through data and op-
erator state repartitioning, and another for dynamic bottleneck resolution through re-
source allocation. Both solutions are instantiated in the context of the same generic
architectural framework for constructing adaptive techniques. They are implemented
through extensions to a distributed query processor for service-based grids. The im-
plementation is particularly appealing for environments such as the grid and cloud
computing, as it is based on loosely-coupled components, engineered as web ser-
vices, which communicate asynchronously and support the publish/subscribe model.
For state repartitioning, and with a view to software component reuse, the approach
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adopted uses recovery logs that are kept for the purposes of fault tolerance guarantees.
The results of the empirical evaluation are promising: performance is significantly
improved in a variety of contexts (by an order of magnitude in some cases), while
the overhead remains low enough to allow the benefits of adaptation to outweigh its
cost for a wide range of scenarios. The results of this work pave the way towards
further research in this area. Of particular interest are the topics of combining the
adaptivity strategies of this paper with ones that modify the query plan on the fly, and
of configuring the numerous tunable parameters of these strategies in an optimal, or
near-optimal, way. These topics are left for future work.
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