
OCEANS: Optimising Compilers for Embedded

ApplicatioNS�

Michel Barreteau1, François Bodin2, Peter Brinkhaus3, Zbigniew Chamski4,
Henri-Pierre Charles1, Christine Eisenbeis5, John Gurd6, Jan Hoogerbrugge4,
Ping Hu5, William Jalby1, Peter M. W. Knijnenburg3, Michael O’Boyle7,
Erven Rohou2, Rizos Sakellariou6, André Seznec2, Elena A. Stöhr6,

Menno Treffers4, and Harry A. G. Wijshoff3

1 Laboratoire PRiSM, Université de Versailles, 78035 Versailles, France
2 IRISA, Campus Universitaire de Beaulieu, 35042 Rennes, France
3 Department of Computer Science, Leiden University, P.O. 9512

2300 RA Leiden, The Netherlands
4 Philips Research, Information and Software Technology, Prof. Holstlaan 4

5656 AA Eindhoven, The Netherlands
5 INRIA, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France

6 Department of Computer Science, The University, Manchester M13 9PL, U.K.
7 Department of Computer Science, The University, Edinburgh EH9 3JZ, U.K.

Abstract. This paper presents an overview of the activities carried out
within the ESPRIT project OCEANS whose objective is to investigate
and develop advanced compiler infrastructure for embedded VLIW pro-
cessors. This combines high and low-level optimisation approaches within
an iterative framework for compilation.

1 Introduction
Embedded applications have become increasingly complex during the last few
years. Although sophisticated hardware solutions, such as those exploiting in-
struction level parallelism, aim to provide improved performance, they also cre-
ate a burden for application developers. The traditional task of optimising as-
sembly code by hand becomes unrealistic due to the high complexity of hard-
ware/software. Thus the need for sophisticated compiler technology is evident.
Within the OCEANS project, the consortium intends to design and imple-

ment an optimising compiler that utilises aggressive analysis techniques and
integrates source-level restructuring transformations with low-level, machine de-
pendent, optimisations [1,14,16]. A major objective of the project is to provide
a prototype framework for iterative compilation where feedback from the low-
level is used to guide the selection of a suitable sequence of source-level trans-
formations and vice versa. Currently, the Philips TriMedia (TM1000) VLIW
processor [8] is used for the validation of the system.
In this paper, we present the work that has been carried out during the

first 15 months since the project started (September 1996). This has largely
� This research is supported by the ESPRIT IV reactive LTR project OCEANS, under
contract No. 22729.

D. Pritchard, J. Reeve (Eds.): Euro-Par’98, LNCS 1470, pp. 1123–1130, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

1124 Michel Barreteau et al.

File.f

MT1

Code
generator

File.s File.IL

SEA

SALTO

File_opt.s Report.IL

PILO

LORA

Fig. 1. The Compilation Process.

concentrated on the development of the necessary compiler infrastructure. An
overall description of the system is given in Section 2. Sections 3 and 4 present
the high-level and the low-level subsystems respectively, while the steps that
have been taken towards their integration are highlighted in Section 5. Finally,
some results from the initial validation of the system are shown in Section 6,
and the paper is concluded with Section 7.

2 An Overview of the OCEANS Compiler System

The OCEANS compiler is centred around two major components: a high-level
restructuring system, MT1, and a low-level system for supporting assembly lan-
guage transformations and optimisations, Salto, which is coupled with Sea,
a set of classes that provides an abstract view of the assembly code, and tools
for software pipelining (PiLo) and register allocation (LoRa). Their interaction
is illustrated in Figure 1 which shows the overall organisation of the OCEANS
compilation process. In particular, a program is compiled in three main steps:

– First, MT1 performs lexical, syntactical and semantic analysis of a source
ForTran program (File.f). Also, a sequence of source program transfor-
mations can be applied.

– The restructured source program is then fed into the code generator which
generates sequential assembly code that is annotated with instruction iden-
tifiers used to identify common objects in MT1 and Salto, and a file
written in an Interface Language (File.IL) that provides information on
data dependences and control flow graphs.

OCEANS: Optimising Compilers for Embedded ApplicatioNS 1125

– Finally, Salto (coupled with Sea) performs code scheduling and register
allocation. At this step guarded instructions are created and resource con-
straints are taken into account.

The above process is repeated iteratively until a certain level of performance
is reached. Thus, different optimisations, both at the source-level and the low-
level, are checked and evaluated. An important feature of the system is the exis-
tence of a client-server protocol that has been implemented in order to provide
easy access to the compiler over the Internet, for all members of the consortium.
MT1 and the code generator are located at Leiden, and Salto, Sea, PiLo and
LoRa are located at Rennes.

3 High-Level Transformations

Optimizing and restructuring compilers incorporate a number of program trans-
formations that replace program fragments by semantically equivalent fragments
to obtain more efficient code for a given target architecture. The problem of find-
ing an optimum order for applying them is commonly known as the phase order-
ing problem. Within the MT1 compilation system [5] this problem is solved by
providing a Transformation Definition Language (TDL) [3] and a Strategy Spec-
ification Language (SSL) [2]. Transformations and strategies specified in these
languages can be loaded dynamically into the compiler.

3.1 Transformation Definition Language

The TDL is based on pattern matching. The user can specify an input pattern,
a transformed output pattern and a condition when the transformation can be
legally and/or beneficially applied. Patterns may contain expression and state-
ment variables. When a pattern is matched against the code these variables are
bound to actual expressions and code fragments, respectively. The expression
and statement variables can be used in turn in the specification of the output
pattern and the condition. This mechanism allows one to specify a large number
of transformations, such as loop interchange, loop distribution or loop fusion.
However, it is not powerful enough to express other important transformations,
such as loop unrolling. Therefore, the TDL also allows for user-defined functions
in the output pattern. User-defined functions are the interface to the internal
data structures of the compiler. In this way, any algorithm for transforming and
testing code can be implemented and made accessible to the TDL.

3.2 Strategy Specification Language

The order in which transformations have to be applied is specified using a Strat-
egy Specification Language (SSL). It allows the specification of an optimising
strategy at a more abstract level than the source code level. This language
contains sequential composition of transformations, a choice construct and two
repetitive constructs.

1126 Michel Barreteau et al.

seaBase

seaINST seaCF

seaSCF

seaSBk

seaBBk

seaLoop

Fig. 2. Sea class hierar-
chy.

Sea object

clone

select

rebuild

Transformation
object

apply Sea object

Transformation
object

apply Sea objectclone Sea object

Fig. 3. Typical usage of Sea classes.

An if statement consists of a transformation that acts as a condition, a
then part and an optional else part. The transformation in the condition can
be applied successfully or not. If it is successful, the transformations in the then
part are to be executed. Optionally, in the else part a list of transformations
can be given which should be executed in case the transformation matched but
was not applied successfully due to failing conditions.
The two repetitive constructs consist of a transformation to be checked and a

statement list to be executed if the condition is true or false, respectively. They
consist of a while-endwhile and a repeat-until construct.
Examples of how to specify strategies in SSL can be found in [2].

4 Low-Level Optimisations

Low-level optimisations are built on the top of Salto, a retargetable system for
assembly language transformation and optimisation [15]. To facilitate the im-
plementation of optimisations, a set of classes has been designed, Sea (Salto
Enhanced Abstraction), that provides an abstract view of the assembly code
which is more pertinent to the code scheduling and register allocation problems.
The most important features of Sea are that it allows the evaluation of various
code transformations before producing the final code, and that it separates the
implementation of the global low-level optimisation strategy from the implemen-
tation of individual optimisation sequences.
The Sea model contains two kinds of objects:

code fragments The following objects can be used. seaINST: an instruction
object; seaCF, an unstructured set of code fragments; seaSCF, a structured
subset of control flow graph with a unique entry point; seaSBk, a superblock;
seaBBk, a basic block; and finally, seaLoop, a structured piece of code that
has loop properties. Figure 2 illustrates the corresponding class hierarchy.

transformations to be applied to subgraphs. All transformations are charac-
terized by the following main methods: preCond() returns the set of control
flow subgraphs that qualifies for the transformation; apply() applies the
transformation to a given subgraph, and finally, getStatus() that returns

OCEANS: Optimising Compilers for Embedded ApplicatioNS 1127

the status of the transformation after application (success or failure) and
the reason for the failure.

The usage of the Sea objects is shown in Figure 3. A transformation is tried on
a cloned piece of code, then according to performance or size criteria one of the
solutions found is chosen and propagated to the low-level program representation
using the rebuild() method.
The optimisations currently available within Sea are: register renaming, su-

perblock construction [12], guard insertion [11], loop unrolling (also available at
the high-level), local/superblock scheduling [12], software pipeline, and register al-
location. The implementation of software pipeline is based on the tools PiLo [17]
and LoRa [9] which generate a modulo scheduling of the loop body.

5 Integration

5.1 The Interface Language

In order to transmit information between the various components of the com-
piler, an Interface Language (IL) was designed. This allows the propagation of
information, such as data dependences and loop control data, from MT1 to
Salto, as well as feedback information from the scheduled code back to MT1.
An IL description consists of three sections: a list of keywords that specifies

the list of attributes that can apply to an object; a default level setting that
indicates the type of code the objects belong to; and a list of object references
which specify the nature, contents and attributes of an object. More details on
the IL can be found in [7].

5.2 Information Forwarded and Feedback

Data dependence information is propagated from MT1 to Salto and is used
for memory disambiguation. The feedback from Sea to MT1 (file Report.IL in
Figure 1) contains information on the code structure, the basic blocks, as well
as a record of the transformations that were applied. Data related to each basic
block include the total number of assembly instructions, the critical path for
scheduling the code, the number of cycles of the scheduled code, and a grouping
depending on the nature of the instructions. Examples can be found in [7].
MT1 uses the feedback from Salto in order to build an internal data struc-

ture that can be accessed by the TDL and the SSL by means of user-defined
functions in the condition that can check for the identity of a code fragment and
suggestions made by Salto. When such a transformation is used as the condi-
tion for an if construct in the SSL, we are able to select the transformations we
want to apply to this fragment.
Initially, MT1 compiles the program without performing any restructuring

and the compiled program is scheduled by Salto. Salto identifies the code frag-
ments that can be improved. It reports its diagnostics to a cost model that makes
a decision on what kind of restructuring could be performed next. Then, MT1

1128 Michel Barreteau et al.

reads the suggestions for restructuring and performs these. It is intended that a
transformation sequence for a given program fragment is selected by following a
systematic approach for searching through a domain of possible transformations.
First, each different transformation is applied once and then the same follows
for each branch of the tree. The search space is minimised by using a threshold
condition for terminating branches that are not likely to yield an optimum result
in their descendants. Some preliminary experiments using this strategy can be
found in [10]; further work is in progress.

6 Validation of the Initial System

In order to validate the compiler, four public domain multimedia codes have been
selected [4]. These are a low bit-rate encoder/decoder for H.263 bitstreams, an
MPEG2 encoder/decoder, an implementation of the CCITT G.711, G.721 and
G.723 voice compression standards, and the Persistence of Vision Ray-Tracer for
creating 3D graphics.
At the high-level, initial experimentation aimed at identifying those trans-

formations that appear to be the most crucial in optimising code scheduling. In-
spection of the benchmarks revealed that they contain many imperfectly nested
double or triple loops with much overhead due to branch delays. In order to deal
with such loops, a transformation that converts the imperfectly nested loop into
a single loop has been suggested [13].
At the low-level, the initial validation of the system has been carried out by

applying four different optimisation sequences:

– S0 is the simplest sequence. First, the code is scheduled locally and then
register allocation is performed.

– S1(u) is based on unrolling the loop body u times. The unrolled body is
transformed into a superblock by guarding instructions. As in S0, register
allocation is performed after local scheduling.

– S2(u) is similar to S1(u) except that register allocation is performed before
scheduling. This usually requires less registers, allowing this sequence to
succeed when S1(u) fails due to a lack of registers.

– S3 consists in applying a software pipelining algorithm.

The above optimisation sequences were validated and indicative results, us-
ing the most-time consuming loops of H263, are illustrated in Figure 4. Every
optimisation sequence has been applied to each of the six selected loops and the
size of the resulting VLIW code and the speed of the loop, i.e. the number of
cycles per iteration, were computed. From the table, a well-known result is ob-
served: the more we unroll a loop, the faster it runs — cf. columns S1(2), S1(3),
S1(4) — but at the expense of a larger code size. As expected S2(2) yields too
poor performance and large code because of the presence of false dependences.
Finally, software pipelining (S3) gives the best performance but at the expense
of a very large increase in code size. Note that this transformation failed with
the last loop, due to a lack of registers.

OCEANS: Optimising Compilers for Embedded ApplicatioNS 1129

Optimisation sequences C code
S0 S1(2) S1(3) S1(4) S2(2) S3

speed 8 6 5 5 7 3 for (i=xa;i<xb; i++)

size 8 12 16 20 13 75 { d[i]=s[i]*om[i];

}

speed 9 7 6 6 10 5 for (i=xa; i<xb; i++)

size 9 13 18 22 19 55 { d[i]+=s[i]*om[i];

}

speed 12 8 8 7 12 6 for (i=xa; i<xb; i++)

size 12 16 24 28 24 121 { dp[i]+=(((unsigned int)(sp[i]

+sp2[i]+1))>>1)*om[i];

}

speed 15 10 9 9 16 6 for (i=xa; i<xb; i++)

size 15 20 28 34 31 172 { dp[i]+=(((unsigned int)(sp[i]+

sp[i+1]+1))>>1)*OM[c][j][i];

}

speed 15 10 10 8 17 7 for (i=xa; i<xb; i++)

size 15 19 29 33 33 179 { dp[i]+=(((uint)(sp[i]+sp2[i]+

sp[i+1]+sp2[i+1]+2))>>2)*om[i];

}

speed 19 13 12 11 30 – for (k=0; k<5; k++)

size 19 25 36 44 59 – { xint[k]=nx[k]>>1; xh[k]=nx[k] & 1;

yint[k]=ny[k]>>1; yh[k]=ny[k] & 1;

s[k]=src+lx2*(y+yint[k])+x+xint[k];

}

Fig. 4. Time consuming loops extracted from H263.

In most embedded applications, it is necessary to answer globally questions
such as: “Given a maximum code size, what is the highest performance that
can be achieved?”, or “Given a performance goal, what is the smallest code
size that can be achieved?”. Within the OCEANS compiler this trade-off is
evaluated quantitatively by applying a novel compiler strategy. Thus, the choice
of the most suitable optimisation is made a posteriori, when the impact of each
possible transformation is known. More details can be found in [6].

7 Conclusion and Future Work

The previous sections outlined the current status of the OCEANS compiler.
Although the results obtained so far, using the initial prototype, are satisfactory
(comparing with a production compiler), the implementation work still continues
on both the high and low levels. A major part of the work during the next months
and until the end of the project is devoted to the integration of the two levels,
the development of a prototype framework for iterative compilation, and its
experimental evaluation and tuning. Finally, it is intended that the system be

1130 Michel Barreteau et al.

made publically available in due time (at the moment Salto is available on
request).

References

1. B. Aarts, et al. OCEANS: Optimizing Compilers for Embedded Applications. In
C. Lengauer, M. Griebl, S. Gorlatch (Eds.), Proceedings of Euro-Par’97, Lecture
Notes in Computer Science 1300, Springer-Verlag, 1997, pp. 1351–1356. 1123

2. R. A. M. Bakker, F. Bregt, P. M. W. Knijnenburg, P. Touber, and H. A. G. Wijs-
hoff. Strategy Specification Language. OCEANS Deliverable D1.2a, 1997. 1125,
1126

3. A. J. C. Bik, P. J. Brinkhaus, P. M. W. Knijnenburg, P. Touber, and H. A. G. Wijs-
hoff. Transformation Definition Language. OCEANS Deliverable D1.1, 1997. 1125

4. A. J. C. Bik, P. J. Brinkhaus, P. M. W. Knijnenburg, P. Touber, H. A. G. Wijs-
hoff, W. Jalby, H.-P. Charles, M. Barreteau. Identification of Code Kernels and
Validation of Initial System. OCEANS Deliverable D3.1c, 1997. 1128

5. A. J. C. Bik and H. A. G. Wijshoff. MT1: A Prototype Restructuring Compiler.
Technical Report 93-32, Department of Computer Science, Leiden University, 1993.
1125

6. F. Bodin, Z. Chamski, C. Eisenbeis, E. Rohou, and A. Seznec. GCDS: A Compiler
Strategy for Trading Code Size Against Performance in Embedded Applications.
Research Report 1153, IRISA, 1997. 1129

7. F. Bodin and E. Rohou. High-level Low-level Interface Language. OCEANS De-
liverable D2.3a, 1997. 1127

8. B. Case. Philips Hope to Displace DSPs with VLIW.Microprocessor Report, 8(16),
5 Dec. 1994, pp. 12–15. See also http://www.trimedia-philips.com/ 1123

9. C. Eisenbeis, S. Lelait, and B. Marmol. The meeting graph: a new model for loop
cyclic register allocation. Proceedings of PACT’95 (Cyprus, June 1995). 1127

10. J. Gurd, A. Laffitte, R. Sakellariou, E. A. Stöhr, Y. T. Chu, and M. F. P. O’Boyle.
On Compile-Time Cost Models. OCEANS Deliverable 1.2b, 1997. 1128

11. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M. Lavery G. E. Haab, J.
C. Gyllenhaal, and D. I. August. Compiler Technology for Future Microprocessors.
Proceedings of the IEEE, 83(12), Dec. 1995, pp. 1625–1639. 1127

12. W. Hwu, et al. The Superblock: An Effective Technique for VLIW and Superscalar
Compilation. The Journal of Supercomputing, 7(1), May 1993, pp. 229–248. 1127

13. P.M.W. Knijnenburg. Flattening: VLIW Code Generation for Imperfectly Nested
Loops. Proceedings CPC’98, 1998. To appear. 1128

14. OCEANS Web Site at http://www.wi.leidenuniv.nl/Oceans/ 1123
15. E. Rohou, F. Bodin, A. Seznec, G. Le Fol, F. Charot, F. Raimbault. SALTO: Sys-

tem for Assembly-Language Transformation and Optimization. Technical Report
1032, IRISA, June 1996. See also http://www.irisa.fr/caps/Salto/ 1126

16. R. Sakellariou, E. A. Stöhr, and M. F. P. O’Boyle. Compiling Multimedia Appli-
cations on a VLIW Architecture. Proceedings of the 13th International Conference
on Digital Signal Processing (DSP97) (Santorini, July 1997), vol. 2, IEEE Press,
1997, pp. 1007–1010. 1123

17. J. Wang, C. Eisenbeis, M. Jourdan, and B. Su. Decomposed Software Pipelin-
ing: a New Perspective and a New Approach. International Journal on Parallel
Processing, 22(3), 1994, pp. 357–379. 1127

	OCEANS: Optimising Compilers for Embedded ApplicatioNS
	Introduction
	An Overview of the OCEANS Compiler System
	High-Level Transformations
	Transformation Definition Language
	Strategy Specification Language

	Low-Level Optimisations
	Integration
	The Interface Language
	Information Forwarded and Feedback

	Validation of the Initial System
	Conclusion and Future Work

