EFFICIENT IMPLEMENTATION OF THE
ROW-COLUMN 8x 8 IDCT ON VLIW ARCHITECTURES*

Rizos Sakellariou®, Christine Eisenbeis?, and Peter Knijnenburg®
! Department of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, U.K.
2 INRIA, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France.
3 Department of Computer Science, Leiden University, P.O. Box 9512,
2300 RA Leiden, The Netherlands.

ABSTRACT

This paper experiments with a methodology for map-
ping the 8 x8 row-column Inverse Discrete Cosine Trans-
form on general-purpose Very Long Instruction Word
architectures. By exploiting the parallelism inherent in
the algorithm, the results obtained indicate that such
processors, using sufficiently advanced compilers, can
provide satisfactory performance at low cost without
need to resort to special-purpose hardware or time-
consuming hand-tuning of codes.

1 INTRODUCTION

The Discrete Cosine Transform (DCT) is one of the
most widely used techniques for image compression and,
over the last years, significant research effort has been
spent into finding fast algorithms and designing special-
purpose chips to implement this. However, the per-
formance advantage of the latter comes at an extra
cost, which may be prohibitive for an end-product to be
successful into the ever-competitive multimedia market.
On the other hand, as processor cost drops, it becomes
more attractive to use a general-purpose processor for
DSP and multimedia applications rather than specially
designed hardware.

Very Long Instruction Word (VLIW) processors pro-
vide a cost-effective solution as they can deliver poten-
tially high performance, due to multiple functional units
operating in parallel, and are relatively cheap to manu-
facture due to the simplicity of their architecture. These
characteristics make them particularly suitable for em-
bedded systems. Multimedia technologies are typical of
the growing importance of the latter; as a result, several
manufacturers are investing into VLIW technology, and
the first VLIW chips targeting multimedia applications
have already appeared in the market [3].

This paper describes research motivated by the work
carried out under the ESPRIT project OCEANS [1],
whose aim is to investigate and develop advanced com-
piler infrastructure for embedded VLIW processors tar-
geting at multimedia applications. Such a compiler can

* This research was partially supported by the ESPRIT IV
reactive LTR project OCEANS, under contract No. 22729.

use a number of program restructuring techniques to
generate efficient VLIW code. In order to provide an
indication of the performance that can be obtained us-
ing such compilation techniques, this paper considers
their application to the Inverse DCT (IDCT). After a
brief introduction to the IDCT and VLIW architectures,
Section 4 describes a standard methodology for mapping
the IDCT on a VLIW architecture. Using this method-
ology, experiments are carried out to obtain the perfor-
mance that can be obtained on different configurations.

2 THE 8 x8 ROW-COLUMN IDCT

Both the MPEG and JPEG standards apply DCT to
transform 8 x 8 blocks of pixels from the spatial do-
main to the frequency domain. When decoding com-
pressed images, the reverse process, i.e., the Inverse
DCT (IDCT), is applied. For an 8 x 8 block this is
defined as

@y = 1303 CICF(w)

u=0v=0
(2z 4+ 1)urm (2y + 1)vm
cos 16 cos 16 ;

where z,y are spatial coordinates in the image block,
u, v are coordinates in the DCT coefficient block, and

[1/V2, foru,v=0,
C(u),Cv) = { 1, otherwise.

Two basic methods can be used to compute the
above two-dimensional IDCT: either compute an one-
dimensional IDCT first along the rows, after along the
columns, or work directly on the entire two-dimensional
data set. Although the latter, direct approach may re-
sult in fewer multiplications and additions [4], corre-
sponding algorithms have a rather complex structure
and seem not to be any faster in practice. As a re-
sult, the software codification of the MPEG standard [9]
implements the IDCT using the row-column approach.
The one-dimensional IDCT of the 8 data elements input

1: x0 = Y0 << 11 32: x6 = x5 + x7
2: x0 =x0 + 128 33: xb = xb - x7
3: x1 =Y4 <K 11 34: x7 = x8 + x3
4: x2 =1Y6 36: x8 = x8 - x3
5: x3 = Y2 36: x3 = x0 + x2
6: x4 =1Y1 37: x0 = x0 - x2
7: x5 =1Y7 38: x2 = x4 + xb
8: x6 = Y5 39: x2 = 181 * x2
9: x7 =1Y3 40: x2 = x2 + 128
10: temp= x4 + x5 41: x2 =3x2 > 8
11: x8 = w7 * temp 42: x4 = x4 - x5
12: temp= wim7 * x4 43: x4 = 181 * x4
13: x4 = x8 + temp 44: x4 = x4 + 128
14: temp= wlp7 * x5 45: x4 = x4 > 8
156: x5 = x8 - temp 46: yO = x7 + x1
16: temp= x6 + x7 47: yO =y0 >> 8
17: x8 = w3 * temp 48: yl = x3 + x2
18: temp= w3mb * x6 49: y1 =y1 > 8
19: x6 = x8 - temp 50: y2 = x4 + x0
20: temp= w3pb * x7 5l: y2 =y2 > 8
21: x7 = x8 - temp 52: y3 = x8 + x6
22: x8 = x0 + x1 53: y3 =1y3 > 8
23: x0 =x0 - x1 54: y4 = x8 - x6
24: temp= x3 + x2 55: y4 = y4 >> 8
26: x1 = w6 * temp 56: yb = x0 - x4
26: temp= w2p6 * x2 57: yb =y5 >> 8
27: x2 = x1 - temp 58: y6 = x3 - x2
28: temp= w2mé * x3 59: y6 = y6 >> 8
29: x3 = x1 + temp 60: y7 =x7 - x1
30: x1 = x4 + x6 61: y7 =y7 >> 8
31: x4 = x4 - x6

Figure 1: Three-address code for computing the one-
dimensional IDCT along one row of 8 data elements.

sequence, defined as

(2j + 1)km

() =Y CU)F (k) cos ===,

k=0
is coded based on the method described in [10].

The version of the code used for computing the one-
dimensional IDCT along one row is shown in Figure 1;
this is presented in the form of three-address code, where
each instruction contains a result and a maximum of two
source operands.! The values of YO, Y1, ..., Y7 denote
the data input set and the values of yO0, y1, ..., y7 the
corresponding data output set. The values of w1, w2,

.., w7 are equal to 2048+/2 cos(in/16), i = 1,2,...,7,
and the values of wim7, wip7, w3m5, w3p5, w2p6, w2m6
correspond to wi-w7, wi+w7, w3-w5, and so on. Finally,
note that instructions 4 to 9 have been added to the
code for clarity; they can be eliminated by replacing the
first occurrence of the corresponding left-hand side vari-
able appropriately. In order to execute the whole 8 x 8
row-column IDCT, the above is repeated 8 times (one
for each row), followed by the code for computing the
one-dimensional IDCT along one column also repeated
8 times (one for each column). The latter, albeit similar
in nature with the code shown in Figure 1, requires an
extra 6 shift and 3 addition operations.

7

1 This is only one of the possible implementations of IDCT.

3 VLIW ARCHITECTURES

In recent years, microprocessors are designed in a way
that exploits aggressively the parallelism inherent in
computer programs. This parallelism comes from two
main sources. First, there exists parallelism in the ex-
ecution of each instruction. The execution is divided
into several stages and these stages are overlapped.
This gives rise to pipelined ezecution of instructions [6].
RISC processors are the primary example of this kind
of pipelined processor. Second, there exists parallelism
between different instructions. Two instructions are in-
dependent if the order they are executed does not affect
the program output. Independent instructions may be
executed in parallel.

There exist two approaches of detecting whether two
instructions are independent or not. In the first case, the
hardware takes the responsibility for this. Processors in
this class are called superscalar [7]; Well-known exam-
ples are the Pentium, PowerPC, MIPS R10000, DEC
Alpha and HP-PA. In the second case, the compiler
is responsible for detecting independent operations and
packing them into a single wide instruction. These pro-
cessors are called Very Long Instruction Word (VLIW)
processors [5]. One VLIW instruction contains a fixed
number of issue slots. Each such slot may contain one
conventional instruction. The processor contains several
functional units each of which is capable of executing
one operation (possibly of a restricted class). The ad-
vantage of VLIW over superscalar processors is that the
instruction issuing logic of the former is much simpler.

Recently, a powerful VLIW processor, the TriMedia
TM-1000 [3], has been released by Philips. The Tri-
Media is a state-of-the-art general-purpose microproces-
sor that has been enhanced to boost multimedia per-
formance. At the center of the TriMedia chip, there
is a 400 MB/s bus, which connects autonomous mod-
ules that include video-in, video-out, audio-in, audio-
out, an MPEG variable length decoder, an image co-
processor, a communications block and a VLIW proces-
sor. The VLIW processor includes a rich instruction set
with many extensions for handling multimedia, and is
capable of sustaining 5 RISC operations per clock cycle
at 100 MHz. It contains 27 functional units which are
pipelined ranging from 1 deep to 3 deep. The proces-
sor also includes 32KB of instruction cache memory and
16KB of data cache memory.

4 MAPPING THE IDCT ON VLIW ARCHI-
TECTURES

In order to transform sequential code into a VLIW form
we have to consider dependences between instructions
that place constraints on their execution order. For the
code shown in Figure 1 these are illustrated by means
of the dataflow graph shown in Figure 2. Each node of
the graph corresponds to one instruction of the code.
Each edge of the graph represents the flow of data be-

(ar (-3

(s}-@—@ ee@@“‘e

[o2]
o

Figure 2: Dataflow graph of the code in Figure 1 showing dependences between instructions.

tween different instructions. Clearly, the execution of
an instruction can begin only when all necessary data is
available.

Apart from dependence constraints, architectural
constraints may also exist restricting the number and
the type of instructions that can be executed in parallel.
Assuming an infinite number of resources, the number
of clock cycles needed to execute the code would be de-
termined by the path (from a Y; to a y;) with the maxi-
mum number of cycles as resulting by summing the cost
(in cycles) for executing each instruction (instruction la-
tency); this is the critical path that can be considered as
a lower bound of the performance of the code with re-
gard to dependence constraints. Alternatively, if up to n
instructions can be scheduled in parallel in one cycle, a
lower bound of the performance with regard to resource
constraints, is obtained by [s/n], where s is the total
number of instructions in the code. For instance, assum-
ing a latency of 1 cycle for additions and shift operations
and 3 cycles for multiplications (i.e., corresponding to
the cost of these instructions in [3]), the critical path
of the dataflow graph shown in Figure 2 is 14 cycles
(which corresponds to 6 additions/subtractions, 2 mul-
tiplications and 2 shift operations; check, for example,

the path 16-17-19-31-38-39-40-41-58-59) and there is a
total of 55 instructions. Note, that it is further assumed
that instructions 4 to 9 are eliminated. Similarly, in
the code used for computing the one-dimensional IDCT
along one column the critical path is 15 cycles and there
are 64 instructions.

Taking into account all constraints, the problem that
needs to be addressed in order to produce efficient VLIW
code is how to schedule the dataflow graph such that the
total number of cycles needed to execute the graph is
minimised. Techniques for solving this problem have
been studied since long time [8]. In this paper, our
approach follows a technique known as list scheduling.
Each node of the graph is assigned a weighting value
which is equal to the maximum number of cycles needed
to compute an output value from this node, assuming
unlimited resources and that all data from other instruc-
tions is available; clearly, the weighting value is deter-
mined purely by instruction latencies. Scheduling starts
from the node with the highest weight. Then, the node
with the second highest weight is examined. This can
be scheduled to the first available slot after the execu-
tion of all sources of dependence (if there are any) has
finished. This process is repeated for all nodes.

| Jul] sea. [2] 3] 4] 5] 6] 7] 8] 9] 10] 15] 20] 25] 30] 35| 40|
IDCT-row || 1 77 28] 19 14 14] 14] 14] 14] 14 14 14| 14] 14] 14] 14] 14
2| 154 | 55| 37| 28| 22| 19| 16| 14| 14| 14| 14| 14| 14| 14| 14| 14
41 308 | 110 | 74| 55| 44| 37| 32| 28| 25| 22| 15| 14| 14| 14| 14| 14
8| 616 | 220 | 147 | 110 | 8 | 74| 63| 55| 49| 44| 30| 22| 18| 15| 14| 14
IDCT-col || 1 86 || 32 22 16| 15| 15| 15| 15| 15| 15| 15| 15| 15| 15| 15| 15
20 172 64| 43| 32| 26| 22| 19| 16| 15| 15| 15| 15| 15| 15| 15| 15
41 344|128 | 8 | 64 | 52| 43| 37| 32| 29| 26| 18| 15| 15| 15| 15| 15
8 || 688 | 256 | 171 | 128 | 103 | 86 | 74| 64 | 57| 52| 35| 26| 21| 18| 15| 15
IDCT 1] 1304 [480 [328 [240 [232 [232 [232 | 232 | 232 | 232 [232 | 232 | 232 | 232 [232 | 232
2 || 1304 || 476 | 320 | 240 | 192 | 164 | 140 | 120 | 116 | 116 | 116 | 116 | 116 | 116 | 116 | 116
4 || 1304 || 476 | 320 | 238 | 192 | 160 | 138 | 120 | 108 | 96 | 66 | 58 | 58 | 58 | 58 | 58
8 || 1304 || 476 | 318 | 238 | 191 | 160 | 137 | 119 | 106 | 96 | 65 | 48 | 39 | 33 | 29| 29

Table 1: Number of cycles of the generic VLIW schedule for a number of functional units and unrolling factor.

5 EXPERIMENTAL RESULTS

The above methodology has been applied to generate a
schedule for the row-column 8 x 8 IDCT on a generic
VLIW architectural model with a varying number of
functional units. The instruction latencies assumed were
those used above, that is, 1 cycle for additions and shift
operations and 3 cycles for multiplications. The number
of cycles of the VLIW schedule in each case is shown in
Table 1. The results are arranged in three groups: the
first (IDCT-row) refers to the number of cycles needed
to schedule the code for the one-dimensional IDCT along
one (or more) row; the second (IDCT-col) refers to the
number of cycles needed to schedule the code for the one-
dimensional IDCT along one (or more) column; and the
third refers to the number of cycles needed to schedule
the whole row-column 8 x 8 IDCT. Within each group
there are four lines each of which refers to the results
obtained when loop unrolling with a varying unrolling
factor of u [2] has been applied to the loop surrounding
the respective code in order to enhance the parallelism
available (i.e., by exploiting parallelism between compu-
tations on different rows or columns).

As can be seen from the table, without loop unrolling
(i.e., u = 1) the results are quickly bound from the
critical path and no performance improvements occur
for more than 5 functional units; this leads to a max-
imum speed-up of 5.62 over the sequential execution.
Conversely, if both loops are fully unrolled, a maximum
speed-up of 44.96 on 35 functional units is obtained.
Using a smaller number of functional units the perfor-
mance is typically bound by resource constraints and
high slot occupancy is achieved. However, it is noted
that our implementation has assumed that all data ele-
ments are loaded in registers and that there are no con-
flicts between them. This implies that more registers
than program variables are present.

6 CONCLUSION

This paper has considered an approach for implement-
ing the 8 x 8 row-column IDCT on VLIW architectures

and experimented with the performance that can be ob-
tained using different configurations. The results indi-
cate that these architectures have the potential of deliv-
ering performance, which, assuming infinite resources,
is bound only by the inherent characteristics of the al-
gorithm. This implies that on VLIW architectures the
decisive factor for an efficient IDCT algorithm should
be the critical path of the corresponding dataflow graph
rather than the total number of arithmetic operations
in the algorithm, a criterion typically used in the past.
Thus, for these platforms, more suitable algorithms than
the one used in this paper may exist.

References

[1] B. Aarts, et al. OCEANS: Optimizing Compilers for
Embedded Applications. Proceedings of EuroPar’97,
Lecture Notes in Computer Science 1300, Springer-
Verlag, 1997, pp. 1351-1356.

D. F. Bacon, S. L. Graham, and O. J. Sharp. Com-
piler Transformations for High-Performance Comput-
ing. ACM Computing Surveys, 26(4), Dec. 1994, pp.
345-420.

B. Case. Philips Hope to Displace DSPs with VLIW.
Microprocessor Report, 8(16), 5 Dec. 1994, pp. 12-15.
See also http://www.trimedia-philips.com/

N.I. Cho and S. U. Lee. A fast 4 x4 DCT algorithm for
the recursive 2-D DCT. IEEE Transactions on Signal
Processing, 40(9), Sep. 1992, pp. 2166-2173.
H. Corporaal. Microprocessor Architectures:
VLIW to TTA. John Wiley, 1997.

J. L. Hennessy and D. A. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan Kauf-
mann, 1996.

W. M. Johnson. Superscalar Microprocessor Design.
Prentice Hall, 1991.

D. Landskov, S. Davidson, B. Shriver, and P. W. Mal-
lett. Local Microcode Compaction Techniques. ACM
Computing Surveys, 12(3), Sep. 1980, pp. 261-294.
MPEG Software Simulation group;
http://www.mpeg.org/

Z. Whang. Fast Algorithms for the Discrete W Trans-
form and the for the Discrete Fourier Transform. IEEE
Transactions on Acoustics Speech Signal Processing,
32(4), Aug. 1984, pp. 803-816.

2]

From

see

