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ABSTRACT

Service-based approaches are rising to prominence because of their potential to meet the requirements
for distributed application development in e-business and e-science. The emergence of a service-oriented
view of hardware and software resources raises the question as to how database management systems
and technologies can best be deployed or adapted for use in such an environment. This paper explores
one aspect of service-based computing and data management, viz., how to integrate query processing
technology with a service-based architecture suitable for a Grid environment. The paper addresses this
by describing in detail the design and implementation of a service-based distributed query processor. The
query processor is service-based in two orthogonal senses: firstly, it supports querying over data storage
and analysis resources that are made available as services, and, secondly, its internal architecture factors
out as services the functionalities related to the construction and execution of distributed query plans.
The resulting system both provides a declarative approach to service orchestration, and demonstrates
how query processing can benefit from a service-based architecture. As well as describing and motivating
the architecture used, the paper also describes usage scenarios, and, using a bioinformatics application,
presents performance results that benchmark the system and illustrate the benefits provided by the
service-based architecture.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Grid is a software infrastructure that supports the discov-
ery, access and use of distributed computational resources [21].
Although the Grid was originally devised principally to sup-
port scientific applications, the functionalities associated with
middlewares, such as the Globus Toolkit,! are potentially relevant
to applications from many domains, in particular those with de-
manding, but unpredictable, computational requirements. For the
most part, Grid middlewares abstract over platform or protocol-
specific mechanisms for authentication, file access, data move-
ment, application invocation, etc., and allow dynamic deployment
of jobs on diverse hardware and software platforms.

In parallel with the development of Grid computing, Web
Services (WSs) [24] are becoming widely accepted as a way of
providing language and platform-independent mechanisms for

* Corresponding author.
E-mail address: npaton@manchester.ac.uk (N.W. Paton).
1 http://www.globus.org.

0167-739X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.08.003

describing, discovering, invoking and orchestrating collections of
networked computational services. Although the stable and inter-
operable collection of WS standards managed by the WS-I2 organ-
isation covers quite modest functionalities, other standardisation
activities in Oasis® and the W3C* provide comprehensive mecha-
nisms for service description, security, management, notification
and workflow description.

The principal strengths of WSs and Grid middlewares are com-
plementary, with WSs focusing on platform-neutral description,
discovery and invocation, and Grid middlewares focusing on the
dynamic discovery and efficient use of distributed computational
resources. This complementarity has given rise to the service-
based Grids (for example the Open Grid Services Architecture
(OGSA) [20]), which make the functionality of Grid middlewares
available through WS interfaces.

Although the initial emphasis in Grid computing was on
file-based data storage [40], the importance of structured data

2 http://www.ws-i.org.
3 http://www.oasis-open.org.
4 http://www.w3.org.
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management to typical Grid applications is now widely recognised,
and several approaches exist for developing Grid-enabled database
services (e.g., [5,17]). To simplify somewhat, a Grid-enabled
database service provides a service-based interface to a database
as part of a wider collection of services for managing and using
resources.

The provision of facilities that support application development
is relevant to all service-oriented architectures. For example, in
a Grid setting, applications can use Grid functionalities through
toolkits [54] or Grid-enabled versions of parallel programming
libraries such as MPI [19]. In the WS setting, tools exist to
support the generation of client stubs (e.g., Axis®), but, more
ambitiously, XML-based workflow languages have been developed
to orchestrate WSs, of which BPEL4WS® is perhaps the most
prominent. However, all of these approaches are essentially
procedural in nature, and place significant responsibility on
programmers to specify the most appropriate order of execution
fora collection of service requests and to obtain adequate resources
for the execution of computationally demanding applications.

This paper argues that distributed query processing (DQP) can
provide effective declarative support for service orchestration,
and describes an approach to service-based DQP on the Grid,
implemented in the OGSA-DQP system, that: (i) supports queries
over multiple services combining data access with analysis; and
(ii) uses an infrastructure consisting of distributed services for
efficient evaluation of distributed queries.

In the broad space of design options for a distributed query
processor, OGSA-DQP:

(1) Supports low-cost data integration, in that we use existing
OGSA-DAI wrappers to obtain access to networked resources,
and in that there is no need to map source schemas to a
single global model. This is consistent with the Grid ethos, in
which the middleware is designed to encourage the rapid and
potentially temporary deployment of integrated collections of
resources.

Builds on parallel database technology, in which both pipelined
and partitioned parallelism are used to generate initial results
early and to increase throughput. This is consistent with the
Grid ethos, in which computational resources at multiple sites
are acquired and combined to meet requirements as they arise.

—
N
—

The argument for the importance of DQP in a service-based
Grid setting builds upon a claim of mutual benefit: the Grid
stands to benefit from DQP, through the provision of facilities
for declarative request formulation that complement existing
approaches to service orchestration; and DQP stands to benefit
from the Grid, due to the support provided for the discovery
and allocation of computational resources, as required to support
computationally demanding database operations (such as joins),
and implicit parallelism for complex analyses.

The remainder of this paper is structured as follows. Section 2
describes OGSA-DAI, which provides data access capabilities in
service-based Grids. Section 3 contains the principal technical
contributions of the paper — a detailed description of how
the OGSA-DQP engine has been realised, using services both as
architectural components in the design of the engine itself and as
nodes in distributed query execution plans. Section 4 describes the
range of tools that users can use to interact with the OGSA-DQP
system, including a GUI client and programming toolkit. Section 5
presents the results of an experimental evaluation. Section 6 draws
contrasts with other work on distributed query processing and
Grid data integration. Finally, Section 7 states some conclusions.

5 http://ws.apache.org/axis.
6 http://www-128.ibm.com/developerworks/library/specification/ws-bpel.

This paper reflects a number of changes to OGSA-DQP since the
conference paper in which it was first reported [3]; changes of
substance include a closer integration with OGSA-DAI both for
query evaluation and application development; a revision to the
service definitions used to support query evaluation; and the
provision of an experimental evaluation.

2. OGSA-DAI

In a service-oriented Grid the principal objective is to enable
computational resources to be accessed and managed in a secure
and systematic manner. As databases are important computational
resources, database access services can be expected to have
an important place in middlewares for data Grids [6]. In this
setting, the OGSA Data Access and Integration (OGSA-DAI) project’
has developed a service-based infrastructure for accessing both
relational databases and XML repositories that integrates service-
based access to data resources through two WS platforms:

(1) The WS-I® platform in the OMII° middleware stack.
(2) The WSREF platform in the Globus Toolkit 4'° middleware stack.

The role of OGSA-DAI in a service-based Grid, illustrated in Fig. 1,
involves interactions between several components which are now
defined:

e OGSA-DAI data service: A WS that implements various port
types allowing the submission of requests and data transport
operations.

e Client: An entity that submits a request to the OGSA-DAI data
service; a request is in the form of a perform document that
describes one or more activities to be carried out by the service.

e Consumer: A process, other than the client, to which an OGSA-
DAI service delivers data.

e Producer: A process, other than the client, that sends data to an

OGSA-DAI data service.

In order to make a request to an OGSA-DAI data service, the
client invokes a WS operation on the data service, parameterised
by a perform document. A perform document is an XML document
describing the request that the client wants to be executed, defined
by linking together a sequence of activities. An activity is an OGSA-
DAI construct corresponding to a specific task that should be
performed. The output of one activity can be linked to the input
of another to perform a number of tasks in sequence. For example,
the output of an sQLQueryStatement activity, which executes a SQL
query, can be sent to a DeliverToGDT activity to send the results to
a consumer supporting the Grid Data Transport (GDT) port type.
The input of the SQLQueryStatement activity may be pulled from
a consumer supporting the GDT port type by linking the output
of a DeliverFromGDT activity to the SQLQueryStatement activity. A
range of activities are supported by OGSA-DAI, falling into the
broad categories of relational activities, XML activities, delivery
activities, transformation activities and file activities. Furthermore,
the activity is an OGSA-DAI extensibility point, allowing third-
parties to define new activities and add them to the ones supported
by an OGSA-DAI data service.

7 http://www.ogsadai.org.uk.
8 http://www.ws-i.org.
9 http://www.omii.ac.uk.
10 http://www-unix.globus.org/toolkit.
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Fig. 1. OGSA-DAI data service.

2.1. Data service resources

Data service resource is the term used within the OGSA-DAI
domain for an individual resource that is managed by an OGSA-DAI
data service. When a perform document is submitted to an OGSA-
DAI data service, a data service resource is specified which is used
by the activities contained in the perform document to execute
their tasks. The use of this mechanism allows a single service to
expose multiple data resources, which can be of different types,
each supporting a different set of activities. Data service resources
may also expose resource properties, which are XML elements
describing properties of a given resource. Resource properties
may be queried and in some cases modified using the interfaces
defined by the WS-Resource Properties [29] specification. OGSA-
DAI data services expose resource properties describing the status
of executing perform documents and the activities supported by a
data service resource.

Data service resources and resource properties are also OGSA-
DAI extensibility points. Third parties may add their own data
service resources which can extend the set of resource properties
supported by OGSA-DAL To facilitate this extensibility mechanism,
OGSA-DAI introduces the data resource accessor (DRA). A DRA is
a component that mediates communication between the OGSA-
DAI engine, which processes perform documents, and the data
resource on which activities are executed. Fig. 2 illustrates the role
played by DRAs within the OGSA-DAI data service. To support a
new type of data resource, a DRA is implemented to support the
execution of a set of activities on the data resource. In the next
section it will be described how a data resource accessor is used to
represent a federation of services over which distributed queries
can be evaluated.

The service-based DQP approach described in this paper
functions as an integration component allowing queries to
be composed over multiple OGSA-DAI-wrapped relational data
sources. Although the core OGSA-DAI data service provides a
useful abstraction for accessing individual data resources on the
Grid, they do not address challenges associated with integrating
data from multiple resources; the following section describes
how this is supported using OGSA-DQP. Thus, OGSA-DAI allows a
program or a perform document to interact with several different
data resources, but does not support declarative query evaluation
over multiple sources. Declarative query evaluation over multiple
sources does not offer any additional capability compared with
an application that accesses multiple sources, but requests to a

distributed query processor are likely to be considerably more
concise, and benefit in the case of OGSA-DQP both from query
optimization and parallel evaluation.

3. A Service-based DQP architecture

This section describes a query processing framework, OGSA-
DQP, in which query compilation, optimisation and evaluation
are implemented using a service-based architecture; all of (i) the
distributed query processor; (ii) the query fragment execution
nodes; (iii) the data resources accessed from a query; and (iv) the
computational resources invoked from queries are represented as
services.

An important benefit of this approach is that OGSA-DQP can be
seen to provide an effective and efficient platform for declarative
orchestration of services in the Grid. As such, service-based DQP
provides an alternative to procedural approaches for expressing
data-based computations over the Grid.

OGSA-DQP extends OGSA-DAI with the following services:

e DQP coordinator service: An OGSA-DAI data service, enhanced
to support distributed queries using the extensibility points
discussed in the previous section. The main enhancement is the
contribution of the DQPQueryStatement activity which compiles,
optimises and schedules SQL queries for execution.

e DQP evaluator service: A service capable of evaluating a query
fragment provided by the coordinator. An evaluator is able to
play a role in the evaluation of a query by retrieving data from
OGSA-DAI-wrapped data resources, invoking analysis services
and managing the flow of data between other evaluators.
Multiple evaluators are used, to provide the benefits of
parallelism during query evaluation.

Fig. 3 illustrates the architecture of OGSA-DQP. Before queries
may be submitted, OGSA-DQP obtains the metadata that it needs
to compile, optimise, partition and schedule distributed query
execution plans over the multiple execution nodes (evaluators).
When a query is submitted, the following steps take place:

(1) The client sends a perform document, containing a DQPQuerysS-
tatement, Using the perform port type of the OGSA-DAI data
service. The query is parsed, compiled and scheduled for
execution and a query plan is produced. This query plan
is partitioned, where each partition is an XML document
specifying the role of an individual evaluator in the evaluation
of the query. Each query partition is sent to the relevant
evaluator using the query evaluation (QE) port type of the
evaluators.
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(2) The evaluators retrieve data from OGSA-DAI data services and
invoke any analysis services required to evaluate the query.
The flow of data during the execution of a query plan forms
a tree, where data flows upwards via the evaluators, which
use the QE port type to send data to other evaluators. The
DQPQueryStatement activity, which is the root of the tree, is able
to receive data via the GDT port type of the OGSA-DAI data
service.

There are two phases involved in the use of OGSA-DQP, a set-up
phase where the federation of services over which queries may be
executed is composed, and a query phase during which queries are
submitted and evaluated.

3.1. Setting up a distributed query service

To accomplish the set-up phase, the factory pattern is adopted
and OGSA-DQP is modelled as two separate data resources, one
encapsulating a factory entity and another representing a database
federation over which queries may be evaluated. In addition to
the activity extensibility point, another extensibility point is used
that allows new types of data resources to be exposed by OGSA-
DAI data services. When OGSA-DAI exposes a data resource, the
engine instantiates a DRA to interface with the data resource, as
was shown in Fig. 2. OGSA-DQP introduces DRAs for the following
two types of data resources:

e The DQP factory data resource, which maintains OGSA-DQP
system level installation data and supports the execution
of the DQPFactory activity, which is introduced to enable
configuration.

e The DQP data resource, which represents a federation of data
resources and analysis services over which queries may be
composed using DQPQueryStatement activities, and the pool
of evaluator services which may be utilised to evaluate such
queries.

OGSA-DAI allows data resources to be exposed dynamically by
providing activities with the ability to instantiate a DRA at runtime,
and this functionality is used by the DQPFactory activity to deploy
DQP data resources. The DQPFactory activity has one input, which
takes an XML document specifying the parameters required to
configure a DQP data resource. This configuration document is
provided by the client and is used to specify the data sources and
analysis services that the DQP data resource should attempt to
import. The output of the DQPFactory activity returns the resource
ID (the unique, automatically assigned identifier used to identify
individual resources exposed by an OGSA-DAI data service) of
the dynamically exposed DQP data resource. When the activity is
executed, the following sequence of events occurs:

(1) ADQP DRA is created and initialised.

(2) The DQPFactory activity passes the configuration document
to the DRA, which attempts to import the data sources
and analysis services specified. During this process physical
metadata about database tables is also retrieved from the
data sources. This information is used during optimisation to
construct query execution plans.

(3) If schema import is successful (i.e., at least one data source
is successfully imported), a DQP data resource is exposed,
through the created DRA, which encapsulates the data
federation over which queries can be evaluated. The unique
identifier used by the OGSA-DAI data service to identify
the resource is returned to the client. If schema import
is unsuccessful, the DQP DRA is destroyed and an error is
reported to the client.

3.2. Query submission, optimisation and evaluation

The DQPQueryStatement has one input, which accepts a SQL
query, and one output, which supplies the result of the query in
XML. The following takes place when the DQPQueryStatement is
executed:
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(1) An OGSA-DAI input stream is created. Input streams allow
data to be sent to an activity, either from another activity
or remotely via the GDT port type. OGSA-DAI allows input
streams to be created during the initialisation of an activity,
which results in the activity possessing a second input,
although only the first is visible to the client. The creation of
the input stream allows the DQPQueryStatement to function like
an InputStream activity and receive data from remote services.
Activities such as DeliverToGDT and InputStream usually work
in pairs to deliver data from one OGSA-DAI service to another,
however in this case the input stream is created to receive
results from evaluator services behind-the-scenes.

(2) The query is compiled to yield a partitioned query plan, where
each partition is assigned to an evaluator. The compilation,
optimisation and scheduling of queries is described in more
detail in Section 3.3. An XML representation of the query planis
exposed as a property of the DQP data resource. This resource
property allows the client to obtain a representation of the
query plan as it is being executed.

(3) Each query plan partition is sent to the relevant evaluator.
A query plan partition contains the relevant information
(service endpoint and input stream identifier) needed by
each evaluator to stream data back to the DQPQueryStatement
activity created in step 1. Evaluators are able to stream data
back to the DQPQueryStatement activity in the same way that
a DeliverToGDT activity delivers data from one OGSA-DAI data
service to another.

(4) The DQPQueryStatement activity waits for results from the
evaluators. As results are received, they are converted to XML
and sent to the activity’s output.

(5) When the complete set of query results has been received,
the input stream created in step 1 is closed and the resource
property exposed in step 2 is removed.

Queries are evaluated using both pipelined and partitioned
parallelism. Pipelined parallelism is achieved through the the use
of a multi-threaded implementation of the iterator model [28].
In the iterator model, each operator produces data one tuple at
a time, allowing produced tuples to be processed by subsequent
operators in the query plan without waiting for an input operator
to finish. Partitioned parallelism is facilitated by the placement by
the scheduler of an individual plan partition on multiple nodes,
as described further in Section 3.3. Although the iterator model
operates tuple-at-a-time, inter-service requests (both between the
DQP coordinator and evaluators, and between different evaluators)
transmit blocks of tuples, as individual WS invocations have
significant overheads.

3.3. Compiling, optimising and scheduling queries

The resources used to evaluate a query are identified by the
query planner and selected for use based on the predicted needs
of the queries (computed using a cost model [14]), and on the
properties of the available computational resources. In practice
resource assignment is principally heuristic; for example, resource
assignment selects the fastest available nodes first, and prefers
nodes that are located on the same network. When a query is
submitted, an execution plan is produced using the two-step
optimisation paradigm that has previously been exploited for both
parallel and distributed databases [35].

Phase 1: In the first phase, the query compiler performs the
transformations that are valid irrespective of the number of
execution nodes (parsing, followed by type checking, followed
by logical and then physical optimisation) to yield a single-node
execution plan. The parser supports an SQL-based syntax that
is extended to allow function calls. During logical optimisation,

selectivity estimates are computed based on the physical metadata
obtained during schema import. The selectivity estimates are then
used to create a left-deep join tree using a heuristic which aims to
minimise the size of the intermediate relation produced at each
stage (for details of the optimization algorithm used, see [23],
Section 7.6.6). Physical optimisation simply chooses an algorithm
to implement each join operator based on cost estimates for each
suitable join algorithm.

Phase 2: In the second phase, a partitioner breaks down the single-
node execution plan into partitions and a scheduler assigns the
partitions to execution nodes. During this phase, the optimiser
considers parallelising certain operators in order to speed up the
query execution. There are two operator types for which paral-
lelisation can make a significant difference to the query execution
time: function calls which invoke external WSs, and specific types
of hash table-based join algorithms. The optimiser considers par-
allelisable joins and WS calls as candidates for parallelisation and
increases the degree to which they are parallelised until there are
no more evaluators available or the estimated cost of further paral-
lelising the operator outweighs the estimated benefit. This strategy
is based on the approach described in [26].

The scheduler assigns query plan partitions to evaluators based
on the computational characteristics of the nodes on which
evaluators are deployed. The computational characteristics of a
node consist of a range of attributes describing the node’s physical
properties which can be used to estimate the speed with which
it can evaluate a given partition of the query execution plan. For
example, a node with a large amount of memory may be required
to implement a hash-join for which the hash table built by the join
operator is expected to be large. The provision of computational
metadata about execution nodes is an OGSA-DQP extensibility
point, where users may provide a mechanism for dynamically
updating the metadata, the implementation of which depends
on the capabilities provided by the service-based Grid in which
OGSA-DQP is deployed. Metadata may be obtained statically, for
example using a configuration file when installing OGSA-DQP, or
dynamically, for example using the Index Service!! provided by the
Globus Toolkit 4.

Fig. 4 depicts an execution plan produced by the com-
piler/optimiser. The plan has been produced for a query that joins
data from two bioinformatics data sources, one of which contains
protein sequences. The hash_join operator used in this plan caches
the left input relation in a hash table and consumes the right in-
put one tuple at a time, producing matching tuples via lookups
using the hash table. The reduce operator is used by OGSA-DQP
to implement projection, and the operation_call operator invokes
Web service operations. Three partitions (i.e., the dashed regions)
have been decided upon whose intersections are marked by the
exchange operators [28] used to manage communication and data
distribution between evaluators. Note that the partition contain-
ing the BLAST execution (producing sequence alignment scores
for input protein sequences, which can be computationally expen-
sive) has been scheduled to run on two of the four nodes N1-N4
harnessed for executing the query.

3.4. Summary

The implementation of OGSA-DQP using the OGSA-DAI ex-
tensibility points is based on two new activities, and two new
data resources. As OGSA-DAI manages the concurrent execution of
activities, OGSA-DQP is capable of processing multiple queries si-
multaneously without the need for manually developing a con-
current implementation. The use of the extensibility points allows

1 http://www.globus.org/grid_software/monitoring/.
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Fig. 4. Distributed query plan.

OGSA-DQP to take advantage of the both the authentication and
the host of delivery options provided by OGSA-DAI by connecting
the output of DQPQueryStatement activities to core OGSA-DAI ac-
tivities such as DeliverToGDT and DeliverToFTP. OGSA-DQP is also
insulated from the multiple platform approach adopted by OGSA-
DAI, which allows OGSA-DQP to be deployed using either OGSA-
DAI WSRF or OGSA-DAI WS-I and therefore provides both of these
options to the users of OGSA-DQP.

Other than OGSA-DAI, OGSA-DQP has few mandatory external
dependencies on other Grid components or services; as such, the
infrastructure can obtain information about available services from
configuration parameters rather than by interrogating registries,
and uses web service communication rather than Grid data
movement protocols during query evaluation. Enhanced Grid
query processors could exploit diverse data transfer or reservation
capabilities, though at the cost of greater complexity in query
planning and additional external dependencies for the query
evaluator.

The software described in this paper is available in open-source
form from http://www.ogsadai.org.uk/dqp.

4. Usage scenarios

Use of OGSA-DQP is facilitated by a command-line client, a GUI
client, and a programming toolkit that allows users to integrate the
invocation of the distributed query service with their applications.
These tools provide a range of options for interacting with OGSA-
DQP, depending on the requirements of the user.

4.1. OGSA-DQP clients

The functionality of the clients is divided across two distinct
modes of operation: administrator mode and user mode.

The main role of the administrator mode is to set up a
query session, which corresponds to the configuration of a DQP
coordinator. This can be achieved (i) by passing a configuration file
as an argument to the command-line client, or (ii) interactively by
using the GUI client. The configuration corresponds to the set-up
phase described in Section 3.1, and results in the import of schemas
from OGSA-DAI-wrapped data sources and WSDL documents from
analysis services. Using the GUI client, the user is able to specify
the evaluators, data sources and analysis services that should be
used when setting up a DQP resource, and subsequently examine
the outcome of the setup phase in detail by viewing the metadata
exposed by the DQP resource, describing imported schemas and
available resources. Any web service that takes or returns the
following types: xsd:String, xsd:Boolean, xsd:Decimal, xsd:Float,
xsd:Double, xsd:Time, xsd:Date, xsd:Long, xsd:Int, xsd:Short and

xsd:Byte. Fig. 5 shows the GUI in administrator mode as the user
browses the metadata exposed by a DQP resource.

Following successful configuration and creation of a DQP
resource representing a federation of data and analysis services,
both the command-line and GUI clients allow queries to be
submitted and their results displayed. Here, the GUI client offers
three advantages by:

e Allowing the query to be more easily composed by displaying
the global schema, which consists of the union of the schemas
of the sources imported from the resources being queried. The
current version of OGSA-DQP does not provide support for the
development of a global schema that suppresses schematic
heterogeneities between sources (e.g., [34]), although OGSA-
DQP has been used as a back-end evaluation engine in
several projects in which schematic query evaluation has been
investigated [25,55].

e Providing the user with a graphical representation of the query
plan used to evaluate a query.

e Providing the facility to export results in HTML and XML
formats.

Fig. 6 illustrates one of the features of the GUI client during
the execution of a query, where the user is examining a parallel
query plan used to execute the query. Each node in the displayed
query plan is an operator, which may be parallelised over a number
of machines. The dotted boundaries annotated with hostnames
indicate the hosts on which a group of operators have been
scheduled for execution.

4.2. Programming with OGSA-DQP

OGSA-DAI provides a Java-based client toolkit for interacting
with OGSA-DAI data services, which is also an extensibility point
where developers can add their own client toolkit classes to
support third-party data resources and activities. The client toolkit
allows developers to integrate DQP with their applications using
only a few lines of code. Configuration of a DQP resource can be
achieved as follows:

1 DataService service = fetcher.getDataService(
"http://test.man.ac.uk:8080/axis/services/dgpservice",
"dgp-factory");

2 DQPFactory factory = new DQPFactory(config);

3 ActivityRequest request = new ActivityRequest();

4 request.add(factory);

5 Response response = service.perform(request);

Line 1 uses the API provided by OGSA-DAI to create a local object
(service) representing a remote OGSA-DAI data service exposing
a DQP factory data service resource. In Line 2, a DQPFactory
object is instantiated and used to represent a DQP factory activity
parameterised by config, which is the XML document used to
specify configuration parameters such as the services used to form
the federation over which queries may be composed. Lines 3 and 4
create an activity request (i.e., a perform document) which is sent
to the data service in Line 5. The Response object returned in Line 5
provides methods allowing results or errors to be received from the
data service. A configured DQP data service resource can be queried
using the client toolkit as follows:

1 DataService service = fetcher.getDataService(
"http://test.man.ac.uk:8080/axis/services/dgpservice",
"dgp-resource") ;

2 ActivityRequest queryRequest = new ActivityRequest();

3 DQPQuery dgpQuery = new DQPQuery("select id from
dgp_goterm;");

4 queryRequest.add( dqpQuery );

5 Response response = service.perform(queryRequest);
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Fig. 5. OGSA-DQP GUI client in administrator mode.

Line 1 again creates an object to represent the OGSA-DAI data
service, except that this time a different data service resource is
used. This corresponds to a resource created as the result of a
configuration operation such as the one described above. Lines
2-4 create an activity request which contains a DQPQueryStatement
which is encapsulated in the client toolkit by the DQPQuery class.
Line 5 performs the request, and from the response object results
may streamed back to the client application from the data service.
The OGSA-DAI client toolkit also supports the querying of resource
properties, which allows the properties exposed by DQP resources,
such as the schema of the data resource federation, to be retrieved.

5. Performance evaluation

Architecturally, OGSA-DQP differs from established distributed
query evaluators in two principal ways: in using a service-
based Grid to access remote data and computational resources,
and in exploiting partitioned parallelism both for query-internal
operations (such as joins) and for external web service calls. This
section describes experiments that have been carried out that seek:
(i) to illustrate the overall performance that has been obtained
using a service-based distributed query processor in both local and
wide-area networks; and (ii) to show the benefit of parallelism
both for standard queries and for queries invoking web services
that provide application-specific analyses.

Several research projects have reported experimental results
that in some way build on OGSA-DQP, and thus which provide fur-
ther evidence as to the scaleability and performance of the archi-
tecture using literature [25] and proteome [56] data resources.

5.1. Experiment setup

The experiments involve three tables: goterm, which contains
data from the Gene Ontology (GO) [30] on biological function;

protein, which stores data on protein sequences; and pro-
tein_goterm which associates proteins with the terms that describe
their functions. The sequence table contains the amino acid se-
quences of proteins belonging to multiple organisms. Fig. 8 de-
scribes data volumes for each table.

As OGSA-DQP operates in a service-oriented environment, all
data is shipped across the network as XML documents using SOAP
as the transport protocol, which increases the volume of the data
on the wire significantly.

The four queries used in the experiments are listed in Fig. 7.
The queries SCAN-QUERY-1 and SCAN-QUERY-2 fully scan two
of the data sources mentioned above, and are used to illustrate
the throughput of basic data access operations over local and
remote sources. JOIN-QUERY joins the two data sources, and is
used to study the effect of parallelism on join performance; a main-
memory hash-join is used throughout. ANALYSIS-QUERY is used to
explore the performance of parallel invocations of a WS operation.
Each protein sequence is used as an input parameter to a WS call
to compute its entropy (i.e., information content).

The data sources are hosted in MySQL databases. The ex-
periments have been run on local area networks at Manchester
and Newcastle universities, which are connected to the UK aca-
demic network (JANET — Joint Academic NETwork) which has a
10 Gb/s backbone. The machines are connected via Fast Ether-
net switches (10/100 Mbps) to a departmental network that con-
sists of a fibre optic Gigabit Ethernet backbone. The computational
nodes used at Manchester are AMD Athlon(tm) XP 3000+ ma-
chines, each with a 3 GHz CPU and 512 MB-1 GB RAM. The
computational nodes used at Newcastle are Intel(R) Xeon(TM)
2.80 GHz CPUs with 2 GB of RAM. The experiments are now
described.
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Fig. 6. Screenshot of a query plan displayed by the GUI client.

select
from

select

from goterm;

select
from
where

ORF, GOTermIdentifier
protein_goterm;

(a) SCAN-QUERY-1: scan protein_goterm.

id, type, name

(b) SCAN-QUERY-2: scan goterms.

id, type, name, ORF, GOTermIdentifier
goterm, pro‘tein_goterm
goterm.id=protein_goterm.GOTermIdentifier

and id like ’G0:001%’ and ORF like ’Y%’;

select

from  sequence;

(d) ANALYSIS-QUERY: compute the entropy of proteins in the sequence table.

(c) JOIN-QUERY: join goterm and protein_goterm.

calculateEntropy (sequence)

Fig. 7. Queries used in experimental evaluation.

Data Source

Number of rows

Size in the database

Attributes

protein goterm 49171 1.23MB ORF, GoTermldentifier
goterm 22622 1.56MB id, type, name
sequence 8763 1.9MB ORF, sequence

(All attributes are String types)
Fig. 8. The datasets used
5.2. Experiment 1

This experiment executes table scans with increasing data
volumes. The objective is to discover the time taken for OGSA-

in the experiments.

DQP to scan remote tables and to see how the response time
scales as the size of the tables are increased. For this experiment,
the goterm and protein_goterm tables are scanned using SCAN-
QUERY-1 and SCAN-QUERY-2, respectively. This experiment is
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Fig.9. Comparison of the response times for scanning two data sources.

performed using three of the Manchester nodes, where two of
the nodes each have (i) a database containing one of the queries
tables, (ii) an OGSA-DAI data service exposing the databases, and
(iii) a DQP evaluator service. Queries originate from an OGSA-DQP
coordinator deployed on the third node.

5.2.1. Results

Fig. 9 shows the response times of SCAN-QUERY-1 and SCAN-
QUERY-2 for increasing data volumes. The two main conclusions
that can be reached from this graph are that absolute response
times shown are high for the amounts of data delivered and
that response time scales linearly as the data volume increases.
Experience reported in [32] indicates that the OGSA-DAI database
wrappers are around an order of magnitude slower than JDBC
calls for bulk delivery on a local area network. OGSA-DQP
exploits a still-slower block-delivery interface to OGSA-DAI to
allow pipelined processing, from which there is no real benefit in
these simple queries; as such, there is a significant performance
overhead associated with the creation and unpacking of XML
data representations, and for sending in SOAP messages. Ongoing
research and development work on WS infrastructures is likely to
reduce such overheads significantly (e.g., [48]).

5.3. Experiment 2

This experiment aims to investigate the benefit of parallelising
operation call operators that invoke WSs. ANALYSIS-QUERY is used
to invoke the calculateEntropy operation which is made available
by different WSs located on a number of separate machines. OGSA-
DQP is able to parallelise the execution of analysis queries by
scheduling operation call operators for execution on different
evaluators, each of which invokes a separate instance of the
WS operation. This experiment is performed using the machines
at Manchester, where a collection of nodes each host a DQP
evaluator and a WS supporting the calculateEntropy operation. A
separate node hosts one evaluator and the sequence table via an
OGSA-DAI data service. The number of available instances of the
calculateEntropy operation is increased, with a total of 7 evaluators
(6 evaluators on analysis service nodes and the single evaluator on
the data source node) made available to the DQP coordinator for
the execution of each query.

5.3.1. Results

Fig. 10 shows the response times of ANALYSIS-QUERY as the
number of replicated operations is increased from 1 to 6. The re-
sults show clearly that response time decreases as the level of par-
allelism used to execute the calculateEntropy operation increases.
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T T T
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55
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Fig. 10. Response times for analysis queries with different levels of parallelism.

The data source scanned, along with one evaluator, reside on a
node that does not host any of the WSs used to execute the query.
The optimiser chooses to schedule operation-call operators to run
on evaluators that are as close as possible to the WS being invoked,
therefore the output of the scan operator on the data source node
is always routed to a remote evaluator, resulting in some commu-
nication overhead regardless of the degree of parallelism. The re-
sults show that the communication overhead does not outweigh
the benefit of increasing the degree of parallelism used to execute
the operation.

5.4. Experiment 3

This experiment aims to investigate the benefits of parallelising
join operators by comparing the DQP framework proposed in
this paper to a more centralized wrapper-mediator approach, in
which a single mediator interacts with a collection of wrapped
sources [33,13]. Using the wrapper-mediator architecture, data
is fetched from remote sites and processed centrally using a
single evaluator. In contrast, OGSA-DQP is able to process data
remotely and in parallel by parallelising operators such as joins
and operation calls. OGSA-DQP can simulate the wrapper-mediator
architecture if only a single local evaluator is available to the DQP
coordinator, therefore necessitating the transport of all data from
remote data sources to this one evaluator, which then implements
the query execution plan. In this experiment, queries originate
from a DQP coordinator deployed on one of the Manchester nodes.
JOIN-QUERY is executed using data sources located at Newcastle.
The goterm and protein_goterm tables involved in this query are
each exposed by three separate OGSA-DAI data services. This
deployment replicates each table three times, and the OGSA-DQP
coordinator chooses at random which data service to use to scan
the tables when processing a query. The reason for replicating each
of the tables is to reduce the likelihood of data sources becoming
bottlenecks when multiple queries are processed concurrently.
Experiments are performed with two different sets of available
evaluators:

(1) Asingle evaluator is deployed at Manchester. This is equivalent
to the wrapper-mediator approach.

(2) Nine evaluators are deployed on nodes at Newcastle, six
of which are on the same nodes as the data sources. This
configuration enables OGSA-DQP to parallelise the execution
of joins over multiple evaluators.

For each of these deployment configurations, the average
response time for queries is monitored as the frequency with
which queries are submitted is increased (OGSA-DQP is able
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Fig. 11. Response times for analysis queries with different levels of parallelism.

to process multiple queries concurrently using the same set
of resources). The experiment is performed by periodically
submitting JOIN-QUERY and calculating the average time taken to
evaluate the queries over a fixed period. Initially, the experiment
is performed with a client that waits 16 s between the submission
of each query. Subsequently, the wait period is reduced by 2 s
and the experiment is performed again. This process is repeated
until the DQP infrastructure fails. For configuration 2, the optimiser
will choose to parallelise each join using four evaluators. Two
of these evaluators will reside on the nodes from which data
is obtained in order to minimise the communication overhead.
Metadata regarding the total memory and CPU speed of each node
is made available to the DQP coordinator, however these properties
are identical for the Newcastle nodes, meaning that the optimiser
will randomly choose two of the evaluators used to execute each
join from those available.

5.4.1. Results

Fig. 11 plots the average response time for each query submis-
sion wait period for which the experiment was successfully per-
formed. When the client waited less than 1 s between submitting
each query, the evaluator used by the mediator-wrapper configu-
ration ran out of memory and failed to process queries. The graph
shows that when the query submission wait period is 10 s or more,
the response times of the mediator-wrapper approach (configura-
tion 1) are less than those of the parallelised joins (configuration
2). For these query submission frequencies, there is no inter-query
parallelism as the response time is less than the wait period. Under
these conditions the mediator-wrapper architecture provides the
better performance of the two configurations. Where the wait pe-
riod is less then 10 s and the query evaluation infrastructure must
process queries concurrently, the parallelised joins used in config-
uration 2 outperform the mediator-wrapper configuration. These
results show that OGSA-DQP, with its support for partitioned par-
allelism and ability to schedule queries over collections of available
execution nodes, can effectively reduce response times under these
conditions and provide a scalable query evaluation infrastructure.
In addition to the reduction of response times under such condi-
tions, the parallelisation of the hash join, which caches its left in-
put in main-memory, enhances scalability by providing a means of
distributing memory usage over multiple nodes.

6. Related work

Most early work on data Grids focused principally on the
provision of infrastructures for managing and providing efficient

access to file-based data [40]. The emphasis was therefore not
on supporting structured data collections. However, the need to
provide effective metadata catalogues for file archives gave rise to
the use of database technology within data Grids (e.g., [16,40]), and
subsequently to the development of generic data access services,
such as Spitfire [7] and OGSA-DAI [4]. This activity on metadata
management, combined with the fact that an increasing number of
the applications that use the Grid make extensive use of database
technology, has increased awareness of the need to integrate
database access interfaces with Grid middleware, both in terms
of access to existing data resources and the wider management
of data in Grid settings [2]. Community interest in Grid database
services is reflected in the fact that the OGF has have provided
interfaces for accessing databases in a Grid setting [5].

The distributed nature of Grid applications means that services
to support coordinated use of Grid resources are important,
and considerable attention has been given to functionalities for
managing data derivation (e.g., [22]) and replication (e.g., [11]);
such data Grid capabilities are also emerging in commercial
offerings (e.g., www.avaki.com). However, such higher-level Grid
data management functionalities are still targeted principally at
file-based data, although the GRelC project has been developing
an evolving collection of libraries and services to support database
access and management in Grids [17].

The first proposal to use distributed query processing in a Grid
setting was the Polar* proposal from the authors [49,50]. Polar*
differs from the approach presented in this paper in that it is
not service-based; in Polar*, Grid middleware is accessed using a
Grid-enabled version of MPI [19]. The absence of the service-based
context in Polar* means that connection to external databases and
computational services is much less seamless than in the service-
based setting.

Several projects use database language functionalities in pre-
service-based Grids, where query languages express application
requirements, which are then implemented by running jobs over
Grid middlewares. For example, in GridDB [37] a functional
language is proposed from which calls can be made to external
programs or relational databases. These relational databases are
typically used to represent internal state from a computation, and
programs in the functional language are compiled for execution
using Condor [36] to manage access to a cluster of computational
resources. As such, GridDB can be seen as exploiting databases
for information management within workflows expressed as
functional programs, rather than as using queries as the way of
expressing requests over multiple resources. A similarly named,
but independent activity, is GridDB-Lite [43]. Like OGSA-DQP, in
GridDB-Lite, data integration and analysis tasks are expressed
as queries, although in a variation of SQL that makes explicit
how data is to be partitioned over an analysis middleware. As
such, like OGSA-DQP, the objective is to benefit from declarative
requests over a Grid middleware. Architecturally the approach in
GridDB-Lite seems rather different, in that the approach seems
more bottom-up — identifying patterns in the use of existing Grid
libraries that can be captured in a declarative manner - rather
than top-down - working out how an existing query language
can be deployed for data and process integration in a service-
oriented environment. In POQSEC [18], like GridDB and GridDB-
Lite, queries expressed in a declarative language are compiled into
scripts that run over an existing middleware. As such, an analogy
can be drawn with Grid workflow engines such as Pegasus [15], in
which abstract characterisations of application requirements are
mapped onto lower level job and file descriptions for execution.
This contrasts with OGSA-DQP, in which all resources are accessed
by way of web services. All these proposals investigate the
mapping of query functionalities onto Grid resources. In Grid query
processing most such work has focused on extensions to classical
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distributed query processing architectures, although opportunities
also exist for adapting other paradigms for use in a Grid setting. For
example, HiSbase [47] uses application-specific mapping functions
to allocate data to Grid nodes using a decentralized Peer-to-Peer
model.

In a WS setting, structured data representations, at least in the
form of XML Schemas, have been much more prominent from the
start. In addition, vendors have been quick to integrate WS and
data management products (e.g., [38,45]). One previous proposal
for querying over collections of WSs is that of SkyQuery [39],
which applies the classical wrapper-mediator architecture in a
service-based setting. A variation of SkyQuery deploys WSs at each
database store for handling metadata, performing queries, and
cross matching partial results. However, the SkyQuery proposal
is less ambitious than that presented here, in a number of
respects: (i) the only services that contribute to query evaluation
are the data sources — there is no query-specific allocation of
evaluators, for example, to support evaluation of large joins or to
reduce processing bottlenecks; (ii) the execution plan generated
by the optimiser is a straightforward pipeline — there is no
partitioned parallelism; and (iii) the query language supported
is specialised for use with astronomical queries, and seems to
assume that database nodes contain horizontal partitions of the
overall database — there seem not to be generic facilities for
joining data from multiple nodes, for example. Thus, SkyQuery
is an important early demonstration of the viability of WSs for
supporting distributed query processing, but it lacks allocation
of resources to match the needs of specific requests. This latter
feature is central to the ethos of the Grid, in which computational
resources are made shareable, and thus can be deployed flexibly to
support changing user needs. An alternative approach for querying
collections of WSs is provided by [52], which proposes a Web
Service Management System (WSMS) that optimises pipelined
execution plans over collections of Web services. Although this
approach exploits the distribution of Web services over multiple
nodes to provide parallelism, all other operations (such as joins)
take place at the centralised WSMS. This approach eliminates the
potential for the partitioned parallelism provided by OGSA-DQP.

How does the work presented here compare with other work
on DQP, as surveyed in [35]? The principal differences derive
from the context in which queries are executed. The aim of the
current proposal is essentially the same as that of the developers
of systems such as Garlic [33] and Kleisli [13], i.e., to support
declarative query formulation over distributed data stores and
analysis tools. However, the development of service-based Grids
provides certain opportunities for the developers of DQP systems
that were more elusive before. For example, WSs promise to
make available comprehensive discovery and access facilities for
distributed resources that ease their integration into federated
architectures. We note that no custom-built wrappers were
developed to support the bioinformatics application illustrated
in this paper — generic OGSA-DAI data services were used to
access the databases, and regular WSs were used as analysis
components. OGSA-DAI provides not only access to the data
in underlying sources, but also provides ExtractDatabaseSchema
and ExtractPhysicalSchema activities, that provide details about
sources that are used by OGSA-DQP in query compilation and
optimization. This contrasts with both Garlic and Kleisli, where
custom wrappers are constructed for interfacing the query engine
to the external resources. In Garlic, the wrapper customization
process allows different sources to provide different levels of
service to the distributed query processor, whereas in OGSA-DQP
we have chosen an off-the-shelf wrapper infrastructure with a
view to minimising up-front configuration costs. In addition to
the automatic extraction of source descriptions, we observe that
the resources used to evaluate queries are allocated on a per-
query basis, based on the anticipated needs of the request. Where

requests require substantially greater resources to run efficiently,
these can be allocated from those available on the Grid. This
contrasts with both Garlic and Kleisli, where query evaluation
is shared between the central query evaluator and the source
wrappers, with no dynamic resource allocation.

There has been a significant amount of work on internet-scale
query processing, with varying levels of similarity to OGSA-DQP.
Perhaps the most similar is ObjectGlobe [8]. Although ObjectGlobe
predates WSs, and thus service-based Grids, ObjectGlobe uses reg-
istries, dynamically allocated query engines and source wrappers
in ways that have much in common with those in OGSA-DQP. The
principal difference is that various functionalities were developed
specifically to support ObjectGlobe that are provided in a generic
way as part of a service-based Grid middleware. As such, OGSA-
DQP can be seen as indicating how the requirements that moti-
vated the development of ObjectGlobe can be supported within
a service-based Grid. Various other proposals make assumptions
that significantly affect the way a query processing technology
is deployed or used. For example, in [44] and [31], query pro-
cessing takes place over peer-to-peer networks, in which there
is no global metadata, data sources arrive and depart organi-
cally during the evaluation of a query, and partial results are ac-
cepted as the norm. Approaches also exist for executing queries
over data streams (e.g., [41,10]) where continuous queries may
need to be evaluated incrementally. OGSA-DQP and ObjectGlobe
both deploy query components on potentially widely distributed
computational nodes, but retain conventional query and data
model semantics.

Several projects have used OGSA-DQP as a starting point
for research into more experimental aspects of distributed
query processing, or as a platform for data integration in
scientific applications. In distributed query processing, extensions
to the parallel query evaluator have been developed that:
(i) support fault tolerance in the context of failures to evaluator
nodes by maintaining intermediate query results in upstream
caches until the data has been fully processed by downstream
nodes [51]; (ii) adapt with a view to reducing load imbalance
by dynamically changing the distribution of work across parallel
query partitions [27]; and (iii) dynamically deploy evaluator
web services as required to support query evaluation [42].
Furthermore, as data resources are accessed via OGSA-DAI, which
in turn is designed to be extensible with respect to the sorts
of data resource accessed (e.g., [46]), OGSA-DQP has been able
to be extended to support different categories of data resource,
including XML data resources and web-based data resources [53].
The focus on this paper has been narrower, with a view to
detailing the stable features that form the public release of OGSA-
DQP, and that have served as a starting point for these more
preliminary investigations. In terms of applications, OGSA-DQP
has been applied to support the integration of proteome [55] and
Epidemiology data resources [1].

7. Conclusions

WSs, in particular in conjunction with the resource access
and management facilities of Grid computing, show considerable
promise as an infrastructure over which distributed applications
in e-business and e-science can be developed. However, to date,
the emphasis has been on the development of core middleware
functionalities, such as for service description, discovery and
access. Extensions to support the coordinated use of such services,
for example using distributed transactions [9] or workflow
languages [12], are becoming more widely adopted. This paper
seeks to contribute to the corpus of work on higher-level
services by demonstrating how techniques from distributed query
processing can be deployed in a service-based Grid. The proposal
is service-based in two respects:
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e Queries are written with respect to and evaluated over
distributed resources discovered and accessed using WSs. This
is important because it is as yet far from clear how best
to orchestrate collections of services in data-intensive Grid
applications. Although it is likely that workflow languages
will have a prominent role, DQP offers system-supported
optimisation of declarative requests with implicit parallelism,
a combination that should yield significant programmer
productivity and performance benefits for large-scale, data
intensive applications. As such, we believe that service-based
architectures stand to benefit significantly from DQP. The
proposal made in this paper is the most comprehensive to date
for a distributed query processor that acts over services.

e The query processor has been designed and implemented as a
collection of cooperating services, which is important because
although service-based Grids have found widespread support
within the academic and industrial Grid community, there are
as yet few examples of higher-level services developed using
them. This proposal can be seen to provide important valida-
tion of service-based Grids for developing higher-level func-
tionalities. Furthermore, it has been shown how the combina-
tion of dynamic computational resource allocation can be used
to match the requirements of a distributed query to the re-
sources available in a heterogeneous distributed environment.
In addition, experiments have illustrated the performance ben-
efits in this context of both pipelined and partitioned paral-
lelism in both local and wide area networks. As such, we believe
that DQP stands to benefit significantly from the availability of
service based Grids. The proposal made in this paper is much
the most comprehensive to date for a distributed query proces-
sor that uses service-based Grids in its implementation.
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