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Abstract. There is an increasing interest for distributed computing
technologies to be delivered through a market-based paradigm, which
allows consumers to make use of and pay for services that meet cer-
tain Quality of Service requirements. In turn, providers receive income
for successful provision of these services. In this paper, we assume an
environment with multiple, heterogeneous resources, which provide ser-
vices of different capabilities and of a different cost. Users want to make
use of these services to execute a workflow application, within a certain
deadline and budget. The problem considered in this paper is to find a
plan for admission control. This allows providers to agree on constraints
set by the user and allocate services for the execution of a workflow so
that both deadline and budget constraints are met while account is also
taken of the existing load (confirmed reservations) in the environment
and the planning costs. A novel heuristic is proposed and evaluated using
simulation with four different real-world workflow applications.

Keywords: Market-Oriented Computing, Workflow Execution, Work-
flow Planning, SLA.

1 Introduction

In market-oriented environments, such as grid or cloud platforms where resource
owners provide services of different capacities and of different prices [15], users
may want to use these services to execute complex applications, such as work-
flows [3]. Typically, a user may require his/her workflow application to complete
within a certain deadline and budget; such requirements are generally recog-
nised as Quality of Service (QoS) requirements. In analogy to markets in the
real world, a Service Level Agreement (SLA) [10], which acts as a bilateral con-
tract between a user and a service provider, is usually specified to capture the
user’s QoS requirements and act as a guarantee of the expected QoS. However,
to establish an SLA, the service provider must have a way of determining in ad-
vance if it is feasible to fulfil a user’s request. From the service provider’s point
of view, this implies that there is a need to find a plan for the execution of every
new workflow to see if both the budget and deadline constraints requested by
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the user can be met according to the current load of the service provider’s re-
sources. Such a plan is called a Budget-Deadline Constrained plan, or, in short,
‘BDC-plan’. The planning procedure is called ‘BDC-planning ’. BDC-planning
should be part of the admission control of a workflow request: if a BDC-plan
is found, a user’s request can be accepted and a relevant SLA can be agreed;
otherwise, the user’s request should be rejected.

BDC-planning is an important but also remarkably challenging problem for
market-oriented environments. First, such a planning problem is NP-complete [12].
Second, the non-dedicated nature of resources imposes more difficulties as the
contention for shared resources (due to other, already agreed workloads) needs
to be considered during planning. This suggests that the planner may have to
somehow query resources for their runtime information (e.g., the existing load)
to make informed decisions. Moreover, at the same time, BDC-planning should
be performed in short time, because: (i) users may require a real-time response,
and (ii) the (runtime) information, on which a planning decision has been made,
varies over time and, thus, a planning decision made using out-of-date informa-
tion may not be valid any more.

Essentially, the problem considered in this paper boils down to bi-criteria
DAG planning, as we assume that every workflow application is represented by
a Directed Acyclic Graph (DAG). This problem involves the planning process to
optimize two metrics at the same time to meet the specified constraints (budget
and deadline). There have been quite a few bi-criteria DAG planning heuristics
in the literature [12,25,26,16,5,20,19]. However, some of them do not take the
existing load of resources into account (or adopting them to do so could be too
costly). Moreover, most of these heuristics have sophisticated designs, such as
guided random research or local search, which usually require considerably high
planning costs. Such features do not make existing heuristics particularly suitable
for the BDC-planning problem discussed above (as opposed to the problem of
scheduling a workflow already admitted, in which case high-cost approaches
could be justified). This motivates the work presented in this paper.

In this paper, a new BDC-planning heuristic is proposed with the objective
to simultaneously provide effective BDC-planning and fast planning time. The
proposed heuristic is based on the Heterogeneous Earliest Finish Time (HEFT)
algorithm [21], which is a well-known list scheduling heuristic aiming at minimiz-
ing the overall execution time of a DAG application in a heterogeneous environ-
ment. While being powerful at optimizing makespan, the HEFT algorithm does
not consider the monetary cost and budget constraint when making scheduling
decisions. In this paper, the HEFT algorithm is extended in order to resolve the
BDC-planning problem and the new algorithm is named the Budget-constrained
Heterogeneous Earliest Finish Time (BHEFT). In the experimental section of
the paper, it is demonstrated that, for the BDC-planning problem, the proposed
heuristic addresses well the aforementioned challenges. In addition, it performs
at least as effectively as sophisticated heuristics, but costs much less in terms of
computation and communication overheads.
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In the rest of this paper, related work is reviewed in Section 2. The model
assumed and a problem definition are presented in Section 3. A novel BDC-
planning heuristic (BHEFT) is described in Section 4. Experimental details and
simulation results are discussed in Section 5. The paper is concluded in Section 6.

2 Related Work

Admission control problems have been studied in various computing platforms
where QoS is considered. Yeo and Buyya [23] investigated the advance impact
of inaccurate runtime estimates for deadline constrained job admission control
in clusters. Yin et al. [24] proposed a predictive admission control algorithm to
support advance reservation in equipment grids. Admission control issues were
also studied as a subproblem of resource management in grids which support
SLAs [9,1]. Nevertheless, none of these works takes budget requirements from
users into account; moreover, their targeted applications are not workflows.

Admission control for workflows in market-oriented grids requires bi-criteria
DAG planning techniques. A grid capacity planning approach is presented in [17],
which aims at producing a plan for a workflow without reservation conflicts to
optimize resource utilization and multiple QoS constraints. However, this pa-
per mainly focused on a 3-layer negotiation mechanism rather than a planning
heuristic itself. The studies in [14,13] proposed mapping heuristics to meet dead-
line constraints, at the same time minimizing the reservation cost of workflows,
but they regarded workflow tasks as being multiprogramming, something not
commonly adopted in workflow scheduling studies [22]. Based on the model of
Utility Grids, the time-cost constrained optimization has been studied for meta-
scheduling [8,6,7] in which planning is considered at application-level, but ap-
plications are assumed to be independent rather than task-based and bounded
by dependencies as is the case in workflow DAGs. Therefore, although they con-
sider both time and cost constraints in planning, these techniques are not really
applicable for admission control for workflows.

To resolve the multi-objective (time and cost, commonly) DAG planning prob-
lem, evolutionary techniques (e.g., genetic algorithms) have been widely used.
Examples can be found in [25,26,20,19]. Although algorithms based on evolu-
tionary techniques normally perform well on optimization, they also require sig-
nificantly high planning costs and thus are naturally too time-consuming for
BDC-planning.

There are also bi-criteria scheduling heuristics for workflow applications de-
rived from local search and list scheduling techniques. Wieczorek et al. [12] pro-
pose a two-phase algorithm (DCA) to address the optimization problem with
two independent generic criteria for workflows in Grid environments. The al-
gorithm optimizes the primary criterion in the first phase, then optimizes the
secondary criterion while keeping the primary one within the defined sliding
constraint. In [16], two scheduling heuristics based on guided local optimiza-
tion, LOSS and GAIN, were developed to adjust a schedule, and these may be
generated by a time-optimized heuristic or a cost-optimized heuristic, to meet
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users’ budget constraints. As an extension to the DLS algorithm [18], BDLS is
presented in [5] which focuses on developing bi-criteria scheduling algorithms to
achieve a trade-off between execution time and reliability. Based on local search,
DCA and LOSS require a considerable number of repetitions to obtain a final
result. As a list scheduling heuristic, BDLS may have low complexity. The main
planning costs of BDLS arise from the computation of dynamic priorities when
making scheduling decisions. The main issue with these heuristics is that they do
not consider the existing load of resources in their assumptions, and thus tend
to produce plans which may lead to reservation conflicts, i.e., given that one
resource can only execute one task at a time, the planned task may overlap with
the tasks of other workflows which have already been reserved. However, with an
added communication phase between the planner and service providers (as men-
tioned in Section 3) and a slight change of algorithm design, these heuristics may
be able to produce BDC-plans without reservation conflicts. In Section 5, these
slightly-changed heuristics will be compared with BHEFT in terms of planning
performance and overheads.

To the best of our knowledge, there is no previous study which attempts to
address equally all four key elements of the problem at the same time, that is: (i)
workflow planning for (ii) admission control of (iii) market-oriented environments
while (iv) considering dynamically existing loads in non-dedicated resources.
Unlike the aforementioned works which exhibit drawbacks according to the BDC-
planning challenges mentioned in Section 1, BHEFT is a novel bi-criteria DAG
planning heuristic proposed to address these challenges. By applying BHEFT,
the planner of a market-oriented environment is enabled to effectively determine
whether a workflow request should be accepted or not in a real-time manner so
that the establishment of an SLA can be facilitated.

3 Problem Description

A workflow is modelled as a DAG consisting of a group of nodes and a set of
directed edges. A node denotes a task ti, (1 ≤ i ≤ n), where n is the number
of tasks. An edge represents a task dependency ti → tj , where ti is called a
parent task of tj and tj a child task of ti. A child task cannot be executed until
all the input data depending on parent tasks have been received. Information
associated with each task (ti) are: the service type the task wants to use (yi)
and the task size (zi). A workflow request is submitted with a budget B and a
deadline D.

There is a group of service types Y = {s0, s1, · · ·}, and a set of heterogeneous
resources which are fully interconnected. A resource rp may provide a set of
service types Yp ⊆ Y. Service instance sx,p exists if sx ∈ Yp. Mapping a task
to sx,p means allocating the task to resource rp. Task ti can be mapped to rp
for execution if and only if yi ∈ Yp. Different service types may have different
capacities with a different executing cost. For each service type sx, a parameter
βx is given to depict its standard execution time, which is one of the factors
to estimate the execution time of a task which uses this service type. Similarly,
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Fig. 1. An example of program input

different resources may have different powers with different prices. For each re-
source rp, a power ratio αp is given to depict its power. The larger αp is, the
more powerful the resource will be. Thereby, for ti, the execution time on rp (i.e.,
eti,p) is defined as eti,p = zi × βx/αp, and the execution cost eci,p = μp × eti,p,
where μp is the price unit for resource rp; it is assumed μp = αp(1+αp)/2. Also,
the time to transmit data between two dependent tasks which are respectively
mapped to specific (different) resources is given. Moreover, in a resource, con-
firmed reservations may exist. This is regarded as existing load denoted by the
set of pairs L = {(st0, f t0), · · · (stk, f tk), · · ·}, where st means the start time of
a reservation and ft the finish time. Here, it is assumed that only one service
can run at a time on a resource. Thus, each reservation reserves a certain period
of a whole resource for a task which wants to use a service instance provided by
the resource.

All the above-mentioned types of input are illustrated with an example shown
in Fig. 1, which includes a 4-node DAG and two resources. Every resource im-
plements two service types s0 and s1, of which the standard execution time is
given by β0 = 12 and β1 = 18. In Fig. 1(b), the parameters associated with
each task and each resource are presented and used to compute execution time
and cost on different resources. The data transfer times and existing load are
respecitively depicted in Fig. 1(c) and Fig. 1(d).

The BDC-planning problem is to map every task onto a suitable service in-
stance (i.e., a resource) and specify an appropriate start time for each mapped
task so that the execution time and overall cost of the workflow is within D and
B, respectively, and the produced plan does not overlap with existing reserva-
tions. With the same input, different heuristics may differ at deciding whether
a BDC-plan can be obtained. The objective of a BDC-planning heuristic is to
maximize the likelihood that a BDC-plan can be successfully found for a given
workflow request.

It is worth mentioning that the planner has to communicate with resource
owners to produce a plan without reservation conflict. We assume that the plan-
ner has to send a Time Slot Query (TSQ), i.e., ask for a certain length of time
slot on a specific resource, and then the resource owner responds with the ear-
liest availability. Here, the alternative of allowing the planner to retrieve all
free time slots of resources is not considered, since the service providers may
not want their workload, which may be commercially sensitive, to be exposed.
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Input: DAG G with Budget B and Deadline D;
Output: A BDC-plan

1. Compute rank (as defined in Eq.(1)) for all tasks.
2. Sort all tasks in a planning list in the non-ascending order of rank.
3. for k := 0 to n do (where n is the number of tasks)
4. Select the kth task from the planning list.
5. Compute the Spare Application Budget for task k (as defined in Eq.(2)).
6. Compute the Current Task Budget for task k (as defined in Eq.(3)).
7. Construct the set of Affordable Services (as defined in Eq.(4)) for task k.
8. for each service which can be used by task k do
9. Compute the earliest finish time of mapping task k to the service using

TSQ as described in Section 3.
10. endfor
11. Select a service for task k according to the defined selection rules.
12. endfor

Fig. 2. The BHEFT Heuristic

Let Lp be the existing load of resource rp, we define TSQ in the form of
fQ(ti, rp, dati,p, dur) = min{(a, b)|(a, b)∩Lp = ∅, a ≥ dati,p, b = a+ dur}, where
dati,p means the time all required data is available for task ti on resource rp,
and dur denotes the required duration which is considered to be equal to the es-
timated execution time eti,p. According to Fig. 1, L1 = {(0, 6), (8, 12), (30, 50)}
and for task 0, dat0,1 = 0 and et0,1 = 3, then it holds that fQ(0, 1, 0, 3) = (12, 16).

With TSQ, there are two ways for a planning heuristic to avoid reservation
conflicts. One is invoking TSQ every time when computing the estimated earliest
finish time for a task on a resource. A planning heuristic, such as DCA [12] or
LOSS [16], normally involves lots of such estimates, and thus may introduce
heavy communication costs if using this approach. The other way is producing
an initial plan without considering the existing reservations and then using TSQ
to reallocate the time slot for each mapped tasks in the order that tasks are
initially scheduled. In this case, the communication costs may be small but the
performance of the heuristic may degrade.

4 The Proposed Heuristic

This section describes the details of BHEFT, of which the outline is shown in
Figure 2. Similar to the original HEFT algorithm, the BHEFT also has two
major phases: task prioritizing and service selection.

In the task prioritizing phase, the priorities of all tasks are computed using
upward ranking which is the same as defined in HEFT. The rank of a task i is
recursively defined by

ranki = eti + max
j∈Succ(i)

{dti,j + rankj} (1)
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where Succ(i) is the set of the child tasks of task i, eti is the average execution
time of task ti, dti,j is the average data transfer time of edge ti → tj . In the case
of childless nodes, the rank equals to the average execution time.

In the service selection phase, the tasks are selected in order of priority. Each
selected task is allocated to its “best possible” service, of which the metric may
change according to an assessment of the spare budget which varies as planning
proceeds. For this assessment, two variables are used: Spare Application Budget
(SAB) and Current Task Budget (CTB). Suppose that the kth task is being
allocated, SABk and CTBk are respectively computed by

SABk = B −
∑k−1

i=0
ci −

∑n−1

j=k
cj (2)

CTBk =

{
ck + SABk × ck/

∑n−1
i=k ci : SABk ≥ 0

ck : SABk < 0
(3)

where B is the given budget, ci is the reservation cost of the allocated task i, cj
is the average reservation cost of the unallocated task j over different resource
mappings, n is the number of tasks. Provided that task tk uses service type sx,
a set S∗

k is constructed consisting of an affordable service for task k, i.e.,

S∗
k = {sx,p|∃sx,p, ck,p ≤ CTBk} (4)

Then the “best possible” service is selected by the selection rules as follows:

1. If S∗
k 
= ∅, the affordable service with the earliest finish time is selected;

2. If S∗
k = ∅ and SBA ≥ 0, the service with the earliest finish time selected;

3. If S∗
k = ∅ and SBA < 0, the cheapest service is selected;

Using the example presented in Fig. 1 and assuming a budget B = 89 and
a deadline D = 60, the planning results derived by using the above-described
heuristic are shown in Fig. 3, where tasks are planned in the order t0, t1, t2, t3
and a BDC-plan is successfully obtained.

5 Performance Evaluation

5.1 Experimental Setting

To run the experiments, a job planner (broker) and a set of resources were simu-
lated by java programs distributed on computing nodes with 3.0 Ghz CPU, 1 GB
memory and connection through Gigabit Ethernet. The communication between
the broker and the service providers was implemented by socket programming.
The existing load of resources was also randomly generated for simulation. Given
a specific period between time a and b, the existing load of each resource p (i.e.,
Lp) is parameterized by two pre-specified values: Utilization Rate (UR) and Av-
erage Task Load (ATL). The former is the ratio of the total reserved time to
the whole period, and the latter is the ratio of the number of tasks appearing
during a certain period to the length of this period. Then, the average duration
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Fig. 3. Planning derived using BHEFT (Avg.=Average)

of a reservation slot is RD = UR/ATL and the average duration of an idle slot
is ID = (1− UR)/ATL.

The following procedure describes how the existing load of resource p (Lp)
was constructed: (1) Set Lp = ∅ and current time CT = a. (2) Randomly
determine current state among reserved and idle. (3) If reserved: (3.a)
randomly generate reserved duration RD by normal distribution with mean
RD and standard deviation RD/2 whereas only RD > 0 is adopted; (3.b) set
Lp = Lp ∪ (CT,CT + RD); (3.c) set CT = CT + RD; (4.d) switch current
state to idle. (4) If idle: (4.a) randomly generate idle duration ID by normal
distribution with mean ID and standard deviation ID/2 whereas only ID > 0
is adopted; (4.b) set CT = CT + ID; (4.c) switch current state to reserved.
(5) Repeat Steps 3 and 4 till CT reaches b.

There were 2 service providers in the evaluation, each of which managed 3
resources, hence, there were 6 resources in total. There were 4 service types
having a standard execution time of 10, 15, 25 and 30 respectively. For each
resource p, the capability ratio αp was randomly generated from the interval
[0.5, 2.0]. The period considered for existing load modelling was [0, 5000].

Four types of DAGs, corresponding to real-world workflow applications, were
considered in the experiments; these are: fMRI [27] with 17 nodes, Montage [2]
with 34 nodes, AIRSN [11] with 53 nodes and LIGO [4] with 77 nodes. For
each task i, yi was randomly selected from the provided service types, and zi
was randomly generated from [0.5, 2.0]. The communication computation ratio
(CCR) was randomly selected from [0.1, 1.0].

Given a DAG, constraints for reasonable values for deadline and budget were
generated as follows. For simplicity, a job was always assumed to start at time
0. The makespan MHEFT was computed by applying the HEFT algorithm [21]
to the DAG without considering the existing load of resources. The deadline
constraint DC was considered to be located between the lower bound LBdc =
MHEFT and the upper bound UBdc = 5 × MHEFT . A deadline ratio φd was
used to depict the position of DC by DC = LBdc + φd × (UBdc −LBdc), where
0 ≤ φd ≤ 1.0. For budget constraint, LBbc was the lowest total cost obtained
by mapping each task to the cheapest service, and UPbc, the highest total cost
obtained conversely. Similarly, a budget ratio φb was used to specify the possible
budget constraint BC = LBbc + φb × (UBbc − LBbc), where 0 ≤ φb ≤ 1.0.
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BHEFT was compared with DCA [12], LOSS [16] and BDLS [5] in the exper-
iments. As mentioned in Section 3, some modification is needed to adapt these
heuristics, which do not consider the existing load of resources, to produce a
contention-free plan. According to the evaluation in [12], where existing loads
on resources (and hence TSQ) are not considered, DCA, which is based on ex-
tensive local search, has the best optimization performance but the highest time
overhead, as opposed to BDLS which is a static list scheduling heuristic using
a dynamic priority. Therefore, TSQ was introduced into LOSS and BDLS only,
while DCA was modified in the other way mentioned in Section 3 (that is, a plan
is first generated without considering existing loads and, then, TSQ is used to
reallocate the time slot allocated to each task to resolve reservation conflicts).
When showing the experimental results in figures, the suffix ‘ TSQ’ was added
to the names of the algorithms which used TSQ, to distinguish them from DCA
which does not consider TSQ, while the original names are used for short in the
discussion. In terms of the configuration of DCA and BDLS, the same settings
as used in [12] are adopted, i.e., LOSS3 in [16] is adopted to represent LOSS, a
memorization table consisting of 100 cells with up to 10 intermediate solutions
stored in each cell was used by DCA, and the parameter δ for BDLS was deter-
mined by a binary search with a maximum of 15 loop iterations. Moreover, all
heuristics terminate immediately when a BDC-plan is found.

For each experiment, all of the parameters except for those which were given
and fixed, were re-initialized at random with the above specifications. After a
heuristic was run, if a BDC-plan was found, the planning succeeded, otherwise,
a failure was reported. To analyze the performance of each heuristic, the experi-
ment was repeated multiple times and the metric Planning Success Rate (PSR)
was used, as defined below:

PSR = 100× number of times for which a BDC-plan was found

number of total repeated times of experiment
(5)

Four sets of experiments were carried out. In the first one, φd and φb were fixed
to be 0.5, while UR was varied for each resource from 0.0 to 0.6 in the step of
0.1 with the corresponding ATL = 0.05×UR. The experiment was repeated 500
times to observe how the existing load of resources affected the PSR of each
heuristic. In the second set of experiments, UR was randomly generated in the
interval [0.1, 0.4], and the ATL was computed correspondingly. φd and φb were
selected from the set {0.25, 0.5, 0.75} to form 9 combinations which covered
a wide spectrum of diverse user requests; the experiment was then repeated
500 times for each combination. Thus, the value of PSR was investigated under
various constraints (from tight to relaxed). In the third set of experiments, we
studied the same 9 combinations for user requests but for three specific values of
UR. Finally, in the fourth experiment, the average running time of each heuristic
to do planning was measured. This experiment was repeated 100 times for each
workflow with various combinations of constraints.
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(a) fMRI, 17 nodes (b) Montage, 34 nodes

(c) AIRSN, 53 nodes (d) LIGO, 77 nodes

Fig. 4. PSR with different utilization rate of resources

5.2 Experimental Results

First set of experiments: Figure 4 shows the results of the first set of experiments
where the impact of the existing load of resources is investigated. Here, φd and
φb are both fixed to be 0.5 to avoid unnecessary disturbance caused by setting
the user constraints to be too tight or too relaxed. It can be seen from Figure 4
that the behaviour of the compared heuristics in terms of their PSR follows the
same pattern regardless of the type of DAG. BHEFT almost always shows the
best performance, with a notable exception in the case of fMRI, which could be
attributed to its small number of nodes. As expected, all heuristics perform worse
as UR increases. In such cases, the better performance exhibited by BHEFT
is more profound in the graphs. Its performance is followed by BDLS, which
appears to be second best outperforming LOSS and DCA. It is noted that this
performance classification changes (or differences become less clear) when there
is no existing load on resources (as also observed in [12] where LOSS seems to
give better performance than BDLS).

Second set of experiments: In the second set of experiments, the performance of
each heuristic was investigated under various circumstances of user constraints,
from tight to relaxed. As already mentioned we considered nine combinations
of different types of constraints. Figure 5 shows the value of PSR for different
types of DAG and different budget-deadline constraints. The first observation
is that when both the deadline constraint and the budget constraint are tight,
for example, φd=0.25 and φb=0.25, all four heuristics obtain low PSRs; among
them, BHEFT achieves the best PSR which is between 20% to 40%. When a
small DAG (e.g., fMRI) is used, both DCA and BDLS obtain PSRs which are
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(a) fMRI, 17 nodes (b) Montage, 34 nodes

(c) AIRSN, 53 nodes (d) LIGO, 77 nodes

Fig. 5. PSR with different types of constraints

comparable to those of BHEFT. However, their PSRs turn significantly lower
when a DAG such as LIGO is used. It is interesting to note that the performance
of LOSS is particularly poor when the budget constraint is tight. This may be
because the initial plan of LOSS, constructed using HEFT, usually has a small
makespan regardless of the monetary cost; then, it may not be straightforward
for LOSS to adjust the plan to meet the budget constraint with a limited number
of local searches. BDLS can be almost as effective as BHEFT in many cases, for
example, when both budget and deadline constraints are above 50%. In the case
where a small DAG (e.g., fMRI) is used, BDLS can occasionally achieve a better
PSR than BHEFT. However, overall, in most cases, BHEFT performs better
than BDLS. The advantage of BHEFT is more profound when at least one of
the constraints is tight and the used DAG has a large number of nodes.

Third set of experiments: In order to consider the impact of the Utilization Rate
in more detail, we studied the PSR for the nine different combinations of user
constraints and three different values of utilization rate. The results, for two types
of DAG, Montage and LIGO, are shown in Fig. 6. Once again, BHEFT performed
the best among the competitive heuristics in most of the circumstances. The
results highlight the impact that the existing load of resources may have on
BDC-planning. As expected, when the Utilization Rate is low, that is, there is
little existing load on resources, and the constraints for budget and deadline are
relaxed (e.g., φd=0.75 and φb=0.75), all heuristics perform equally well.
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(a) Montage, UtilizationRate = 0.2 (b) LIGO, UtilizationRate = 0.2

(c) Montage, UtilizationRate = 0.3 (d) LIGO, UtilizationRate = 0.3

(e) Montage, UtilizationRate = 0.4 (f) LIGO, UtilizationRate = 0.4

Fig. 6. PSR with different utilization rates and constraints for Montage and LIGO

Fourth experiment: In the fourth experiment, the execution time needed by
each algorithm to obtain a planning result was studied. Figure 7 shows how the
running time of each heuristic varies over diverse types of DAG and constraint
settings. It is not surprising that, in most of the cases, LOSS has the highest time
costs due to the overhead caused by numerous TSQs. It can be easily imagined
that some other sophisticated algorithms, such as DCA or genetic algorithms,
if using TSQ when scheduling, may need even more time compared to LOSS.
Our results suggest that even LOSS is not scalable to large applications and
too time-consuming for on-line workflow planning. Although not using TSQ, the
DCA heuristic considered in the experiment still has an execution time com-
parable to BDLS, and this is significantly higher than BHEFT. The latter two
algorithms are both based on list scheduling, whereas BHEFT needs evidently
less running time than BDLS due to simpler computation and the fact that less
communication is needed when making scheduling decisions. Moreover, BHEFT
is the most scalable in terms of the growth of DAG size (and potentially the
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Fig. 7. Execution time for each heuristic with different DAGs and user constraints

number of resources which is considered constant in this experiment). As can be
seen in the graph, when planning LIGO with 77 nodes on 6 resources, BHEFT
only needs around 0.2 seconds on average. This suggests that BHEFT copes well
with the real-time requirements of workflow planning.

Summary of observations: The results lead to the following observations:

– The existing load of resources may have significant impact on BDC-planning.
Directly applying a heuristic not considering the existing load of resources
in job planning (e.g., DCA) may result in a significant degradation of PSR.
In contrast, BHEFT, which takes the existing load of resources into account,
is able to achieve a significant improvement on the success rate of finding a
BDC-plan which simultaneously satisfies deadline and budget constraints.

– Some guided local search heuristics (for example, LOSS) may be too sensitive
regarding the existing load of resources and cannot perform reasonably well
for BDC-planning, even when the existing load of resources is taking into
account when making planning decisions.

– In the context of BDC-planning, simple list scheduling bi-criteria heuristics
(for example, BHEFT and BDLS) may be as effective as more sophisticated
heuristics based on extensive local search, such as DCA.

– With low running cost, BHEFT seems to be a good choice for BDC-planning.

6 Conclusion and Future Work

BDC-planning is required to establish an SLA in order to provide a certain level
of QoS for workflow execution in market-based environments. This paper pro-
posed BHEFT, a novel low-cost bi-criteria heuristic based on HEFT, to fulfill the
specific requirements of BDC-planning. The experimental results suggest that
BHEFT appears to be at least as effective, or even more so than other existing



118 W. Zheng and R. Sakellariou

sophisticated bi-criteria workflow scheduling heuristics, and has a lowest execu-
tion time cost and good scalability. It also appears that BHEFT can effectively
and efficiently find a BDC-plan under various circumstances of constraints. This
enables a quick admission control decision (i.e., a judgement of whether or not
the submitted user request is acceptable), and provides the feasibility of au-
tomating the creation of an SLA over diverse user constraints. Based on the
work in this paper, our future work will try more experiments using different ap-
plications and platforms and will consider the overestimation of task execution
time in BDC-planning to cope with prediction uncertainty. In addition, we think
it is worth investigating BDC-planning with more sophisticated pricing policies.
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