
Adaptive Query Processing and the Grid: Opportunities and Challenges

Anastasios Gounaris Norman W. Paton Rizos Sakellariou Alvaro A.A. Fernandes

Department of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
E-mail:

�
gounaris,norm,rizos,alvaro � @cs.man.ac.uk

Abstract

Grid technologies have been developed in response to an
increase in demand for computing applications designed to
yield the benefits from collaboration, data sharing and so-
phisticated interaction of autonomous and geographically
dispersed resources. Distributed Query Processing (DQP)
is an appealing solution for expressing and efficiently eval-
uating requests across Grid resources. In this paper: (i)
we identify parts of the Grid infrastructure that facilitate,
and open new directions for, query processing over grid-
enabled heterogeneous and autonomous databases, stress-
ing the need for Adaptive Query Processing (AQP); (ii) we
discuss some basic challenges arising from the new oppor-
tunities and outline the unsuitability for use in a Grid setting
and narrow specialisation of existing proposals for AQP;
and (iii) we suggest a generic adaptivity framework as a
promising way forward.

1. Novel Opportunities

Grid technologies have been developed in response to an
increase in demands for computing applications designed
to yield the benefits from collaboration, data sharing and
sophisticated interaction of autonomous and geographically
dispersed resources. Indeed, the Grid is an infrastructure
and a set of protocols that enable the integrated, collabo-
rative use of high-end computers, networks, databases, and
scientific instruments owned and managed by multiple or-
ganizations, referred to virtual organisations [6]. Grid com-
puting, in contrast with traditional distributed computing,
focuses on large-scale resource sharing (i.e. not primar-
ily file exchange as on the web, but rather direct access to
computers, software, data and other resources) for innova-
tive applications and in some cases, high performance. As
such, it is not supported by today’s Internet and Web infras-
tructures. Typical Grid applications include autonomous
bioinformatics labs across the world sharing their simula-
tion tools, experimental results and databases, as well as
the use of the donated spare computer time of thousands of

PCs connected to the Internet in order to identify molecules
which might inhibit the growth of various types of cancer
cells.

Peer-to-peer, rather than being a competing paradigm
to Grid computing, can be deemed as an alternative and
complementary approach toward the organisation of dy-
namic computational communities, the interests of which
“are likely to grow closer to Grid computing over time” [5].

The benefits accruing from the combination of database
and grid technologies have been recognised [20], and al-
though Grid middleware platforms and toolkits do not yet
provide built-in support for database operations, specific
initiatives have been taken to this end, e.g., the OGSA-DAI
(http://www.ogsa-dai.org.uk/) project, which has developed
data access technology for Grid-enabling database systems,
and OGSA-DQP (http://www.ogsa-dai.org.uk/dqp/), which
has developed a service-based query processor for OGSA-
DAI wrapped databases [1]. These query technologies can
provide effective declarative support for combining data ac-
cess with analysis, and are inherently well suited for inten-
sive applications, as they implicitly provide for parallelism.

Distributed query processing (DQP) is an appealing so-
lution for a broad range of Grid applications due to its: (i)
declarative, as opposed to imperative, manner for express-
ing potentially complex computations that integrate inde-
pendent data resources and analysis tools, which are cur-
rently either not feasible, or must be carried out using non-
database technologies; (ii) implicit provision of parallelism
that makes efficient task execution more likely; and (iii),
well-established self-scheduling mechanisms for executing
the subtasks of a query plan after this has been constructed
and shipped for evaluation. Existing non-Grid-enabled dis-
tributed and federated database solutions allow data from
individual data repositories, with (e.g., [17]) or without
(e.g., [7]) some measure of central control, to be combined
for data integration purposes. Nevertheless, they lack the
parallel infrastructures that are required to perform com-
plex computations on large amounts of data, despite the fact
that parallel query processing has become a mature technol-
ogy. Query processing on the Grid can overcome this lim-
itation because of the following key differences from tradi-

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



tional DQP over heterogeneous and potentially autonomous
databases:

� The Grid provides for systematic access to remote
data and computational resources addressing the se-
curity, authentication and authorisation problems in-
volved [6], and, as such, the Grid enables remote data
sources to be used not only for data retrieval tasks, but
also for computational ones as well.

� The Grid provides mechanisms for dynamic resource
discovery, allocation and monitoring [3].

� The Grid provides mechanisms for monitoring net-
work connections [21], which is essential for a query
engine to efficiently execute queries in wide-area envi-
ronments.

� The Grid conforms to (currently evolving) standards
(http://www.gridforum.org/6 DATA/dais.htm) and
there exist publicly available reference implemen-
tations (http://www.ogsa-dai.org.uk) for uniform
Grid-enabled access to commercial Object-Relational
and XML databases.

A significant similarity to traditional DQP however is the
need for adaptivity during query execution [11]: the success
and endurance of database technology is partially due to the
optimisers’ ability to choose efficient ways to evaluate the
plan that corresponds to the declarative query provided by
the user. The optimiser’s decisions are based on data prop-
erties, such as cardinalities and predicate selectivities, and
on environmental conditions, such as network speed and
machine load. In both Grid-enabled and non-Grid-enabled
DQP over heterogeneous and autonomous sources, infor-
mation about data properties is likely to be unavailable,
inaccurate or incomplete, since the environment is highly
volatile and unpredictable. In fact, in the Grid, the exe-
cution environment and the set of participating resources is
expected to be constructed on-the-fly either per query or per
session [1].

The remainder of the paper is structured as follows. Hav-
ing presented the aspects of Grid computing that facilitate
DQP, Section 2 discusses the novel challenges met in this
new environment, focusing on the adaptivity issues. Sec-
tion 3 suggests some new approaches to such challenges.
Section 4 concludes the paper.

2. Novel Challenges

2.1. Adaptivity at all levels

Without loss of generality, Figure 1 shows the typical
architecture of a DQP optimiser, which firstly constructs a

Parser
Logical
Optimiser

Single−node Optimiser

Physical
Optimiser

Metadata

Partitioner Scheduler

Multi−node Optimiser

Query Evaluator

Query

Figure 1. The components of a typical dis-
tributed query processor following the 2-
phase-optimisation approach.

centralised query plan, and then, a parallelised one, accord-
ing to the widely adopted 2-phase optimisation approach
[15]. The characteristics of the Grid environment discussed
in the previous section have an impact on all the compo-
nents in Figure 1, in contrast with the cases addressed by
existing adaptive techniques [11, 9]. The quality of the deci-
sions of the optimiser components is basically controlled by
the quality of their input information rather than by the pol-
icy they implement, which in real cases are typically well
established and validated. Examples of issues arising in
Grid environments include:

� Logical Optimiser: Typical decisions at this stage of
query compilation and optimisation include the order
of the joins and the shape of the query plan. Such deci-
sions are affected mostly by the sizes of the input and
intermediate data. For the former, accurate statistics
about the data stores need to be available, and for the
latter, information about the predicate and the filter se-
lectivities are required. Due to the expected lack of
such accurate information, it is unlikely that the initial
decisions by this component would be near optimal.

� Physical Optimiser: Mapping a logical algebraic
query plan to a physical one involves the mapping
of one logical operator to one of its potentially many
physical implementations. For example, a logical join
can appear in a query execution plan as a (blocked)
nested loop, a hash join, a sort-merge join, a pipelined
hash join, and so on. Knowing the specific, indi-
vidual physical characteristics of computational re-
sources, such as the amount of the available memory,
and properties such as ordered attributes, is crucial for
ensuring good performance.

� Partitioner: The partitioner and the scheduler are com-
monly used in query evaluators for parallel architec-
tures, but sometimes are omitted in wide-area query
engines, which tend to perform all the computation at
a central place, using remote machines only to provide
data over the network. The partitioner’s responsibility
is to split the physical query plan into subplans (i.e.,

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



subsets of physical operators), which can be evaluated
at different places according to the capabilities of the
available resources in the execution environment.

� Scheduler: The scheduler assigns a subplan defined
by the partitioner to at least one physical machine.
If the execution mechanism does not provide implicit
mechanisms for defining the order of operator execu-
tion within a subplan (e.g., it does not follow the it-
erator execution model [10]), the scheduler needs to
make these additional decisions as well. Its policies
are based mostly on the properties of the physical re-
sources.

Existing solutions for adaptive query processing (AQP)
can address only partially the above issues. They can com-
pensate for inaccurate or unavailable data properties (e.g.,
[2, 14]), bursty data retrieval rates from remote sources
(e.g., [12]), and provision of prioritised results as early as
possible (e.g., [18]) but they also suffer from the following
major limitations, which prohibit their widespread usage:

� They are too specific in terms of the problem they ad-
dress and are designed in isolation [13]. As such, they
cannot easily be combined to meet the broader adap-
tivity demands of query processing on the Grid.

� They focus on centralised, single-node query process-
ing and do not yet provide robust mechanisms for
responding to changes in the pool of available re-
sources, even when the data are initially stored re-
motely, whereas the Grid provides novel opportunities
to benefit from the multiple forms of parallelism (i.e.,
independent, pipelined, and intra-operator) over many
resources.

Efficient query processing on the Grid needs not only to
be adaptive, but also to address, in a unifying framework,
the cases mentioned above, i.e., both for single-node and
multi-node query processing.

2.2. Harnessing the available power

It is perhaps worth mentioning that the selection and
scheduling of the resources that will participate in query
evaluation from an unlimited and heterogeneous pool is an
open issue, even in its static form. Generic Grid schedulers,
like Condor [19], support DAGs that can represent query
plans but they do not provide for pipelined or partitioned
parallelism. Existing scheduling algorithms for distributed
databases either support limited partitioned parallelism if all
the participating machines have the same capabilities (e.g.,
[4]), or no partitioned parallelism at all (e.g., [16]). Thus,
they are inappropriate for intensive query applications and
unable to harvest the benefits of the typically heterogeneous

Assessment

Response

resource info

Q
ue

ry
 E

va
lu

at
or

prompt for
adaptation

issues with current execution

monitoring events

Monitoring
infoexecution

Query

Resource Repository

Figure 2. The monitoring, assessment and re-
sponse phases of AQP.

resources that a Grid makes available to its users (note also
that a distributed database is not necessarily heterogeneous
and autonomous).

3. A Roadmap for an Adaptivity framework

3.1. Database architecture in a service-based world

Section 2 underlined the need for a unifying and compre-
hensive adaptivity framework. Before elaborating on this
issue, it is important to answer the question as to what ar-
chitectural modifications are needed for query processing
over Grid resources. The prominence of Web and Grid
services as a promising architectural paradigm for wide-
area computing has an impact on DQP. Service-based ap-
plications are characterised by well-defined interfaces and
mechanisms for registering their properties and capabilities,
for querying such registries and for binding to remote ser-
vices. [1] describes an architecture for service-based DQP,
in which not only the databases manifest themselves as ser-
vices, but the whole system is itself a service and is acces-
sible in the same way as any other service. The benefits of
such an approach include the capability to dynamically dis-
cover relevant data stores and computational resources that
are capable of evaluating the query.

3.2. Divide-and-Conquer

It has already been reported that, so far, efforts in AQP
have resulted in a collection of isolated techniques rather
than in a generic framework, as comprehensive as in other
areas of database research [13]. A query processing system

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



is defined in [11] to be adaptive if it receives information
from its environment and determines its behaviour accord-
ing to that information in an iterative manner, i.e., if there is
a feedback loop between the environment and the behaviour
of the query processing system. Although such a feedback
loop may only be completed between query executions, the
most challenging case is where the feedback loop produces
effects during the execution of the query. A slightly finer-
grained analysis of this loop leads to the identification of
three semantically distinct phases, namely monitoring, as-
sessment and response. The execution of a plan and the exe-
cution environment itself are monitored, then an assessment
is made relating to the progress of the execution, depending
on which a response may be carried out that affects the con-
tinuing evaluation of the query. The response may be fine
grained (e.g., directing the next tuple to a particular node)
or coarse grained (e.g., rerunning the optimiser over some
or all of the query).

In existing AQP proposals, the monitoring, assessment
and response phases are not normally addressed as stand-
alone topics. Rather, individual techniques tend to group
together an approach to monitoring, a means of assessment,
and a form of response. Consequently, to date no general
framework has been constructed for identifying or compos-
ing generic and reusable techniques for monitoring, assess-
ment or response. For example, one could envisage a par-
ticular approach to monitoring being used with different
forms of assessment and response, or different categories
of response being made in the light of a single approach to
monitoring and assessment. In [8] it is discussed how dy-
namically gathered execution information about the actual
selectivity of an operator can be used either to re-route tu-
ples through joins, or to reconstruct a query execution plan
for the remainder of the query, or to build more accurate
predictions of the query completion time. By decoupling
the generation of selectivity information and its usage, it
becomes possible to use a single monitoring mechanism for
all the above techniques. This is true for assessment and
response, as well. A form of response can be decoupled
from the problem it tries to tackle. For example, reoptimis-
ing the query plan may be used for various reasons, includ-
ing the unavailability of accurate statistics at compile time,
non-responding remote data sources and unexpected mem-
ory shortage.

Figure 2 shows a diagram of what we envisage as a
generic framework for adaptive query processing, i.e., a
basis for constructing, explaining and comparing adaptive
techniques. The execution engine generates information
about the state, quality and progress of the evaluation of
a query plan. Also, the resource repository provides up-
to-date information about the registered resources. Based
on such monitoring information, events are generated. The
assessment phase evaluates these events in order to verify

whether they denote changes in the values of interesting
properties and whether such changes are an issue for the
current execution, in the sense of something that may com-
promise its optimality. Once an issue has been identified,
the system tries to identify potential ways to respond. If
such ways are found, the execution engine is notified ac-
cordingly and its behaviour changes as a result.

The above model of AQP is simple, yet powerful and
comprehensive, as it can describe and combine existing pro-
posals. Other key benefits that have not been previously
mentioned or implied include:

� Conformance to the service-based computing
paradigm: the framework proposed does not depend
on, but conforms to, a service-oriented architecture
as it can be implemented by individual components
for each distinct phase that are not necessarily tightly
coupled with other components, can be enhanced and
modified separately, only expose an interface, and
communicate primarily by exchanging messages.

� Suitability for multi-node executions: there is no re-
striction on the number of instances and the locality
of each of the components comprising an AQP sys-
tem. For instance, monitoring components can reside
with evaluators, or be placed centrally, or form a hier-
archy of monitors. As Figure 2 imposes no restrictions
on the cases supported, the framework is suitable for
multi-node query evaluation and adaptivity control.

� Comprehensiveness: it can cover many approaches
with respect to

– architecture: AQP can be achieved by the evalua-
tor calling back the static query optimiser, or the
evaluator calling a different central mechanism,
or the evaluator being self-adaptive. Still, in all
these cases there is a need for monitoring, assess-
ment, and response, and thus, the framework can
be applied.

– plan annotations: AQP may, but need not, de-
pend on annotations of query plans with perfor-
mance expectations in order to operate, thereby
enabling it to cover a broader range of cases, and
not to require any modifications to the static op-
timiser with respect to this particular issue.

– proactive vs reactive adaptivity techniques: the
framework, in general, can realise and implement
any existing proposals as it is orthogonal to them.
It does not define any specific purposes for plan
alteration, kinds of monitoring information, etc.

Implementing the framework: Below, we briefly
present some insights for implementing the framework.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



� Monitoring: creating monitoring information about the
execution of a query plan can be achieved (i) by the in-
corporation of new components in the evaluator, (ii) by
incorporation of dedicated operators in the plan, and
(iii) by planting specific probes in the operators, which
yields good results [8].

� Assessment: without loss of generality most of the ex-
isting approaches can be expressed, and evaluated, as
Event-Condition-Action (ECA) rules.

� Response: defining response messages on the basis of
the impact of adaptation on the current execution (e.g.,
operator reordering, operator replacement, etc), rather
than on the basis of its purpose and the problems it
addresses (e.g., memory limitations, fluctuating data
arrival rate, etc) can lead to a small, concrete set of
response message types.

4. Conclusions

Grid technologies open new directions for DQP, as they
provide solutions for problems such as security, authorisa-
tion, authentication, resource discovery, etc. However, the
volatility, multiple ownership and heterogeneity of the en-
vironment necessitate the development of a comprehensive
framework that can cover, generalise, combine and extend
adaptive proposals to date. To this end, three phases have
been identified in AQP, viz., monitoring, assessment and re-
sponse, which form the foundations of our proposal for such
an adaptivity framework. Studying these phases separately
yields generality, substitutability, and reusability across dif-
ferent techniques.

Acknowledgement: Research on AQP at Manchester is
supported by the DIM Programme of the UK EPSRC,
through Grant GR/R51797/01. We are pleased to acknowl-
edge their support. We are also grateful to our co-workers
in this area at Newcastle, namely Paul Watson, Jim Smith
and Arijit Mukherjee, and to M. Nedim Alpdemir.

References

[1] N. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson,
A. A. A. Fernandes, A. Gounaris, and J. Smith. Service-
based distributed querying on the grid. In Proc. of ICSOC,
LNCS, pages 467–482. Springer, 2003.

[2] R. Avnur and J. Hellerstein. Eddies: continuously adaptive
query processing. In Proc. of ACM SIGMOD 2000, pages
261–272, 2000.

[3] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid information services for distributed resource sharing.
In 10th IEEE Symp. On High Performance Distributed Com-
puting, 2001.

[4] R. Epstein, M. Stonebraker, and E. Wong. Distributed query
processing in a relational data base system. In Proc. of 1978
ACM SIGMOD., pages 169–180. ACM Press, 1978.

[5] I. Foster and A. Iamnitchi. On death, taxes, and the con-
vergence of peer-to-peer and grid computing. In 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS’03),
2003.

[6] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers,
San Francisco, CA, USA, second edition, 2003.

[7] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, V. Vassalos, and
J. Widomthers. The TSIMMIS Approach to Mediation:
Data Models and Languages. J. Intelligent Information
Systems, 8(2):117–132, 1997.

[8] A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakel-
lariou. Self monitoring query execution for adaptive query
processing. To appear in Data and Knowledge Engineering.

[9] A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakel-
lariou. Adaptive query processing: A survey. In 19th BN-
COD, pages 11–25. Springer, 2002.

[10] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, 1993.

[11] J. Hellerstein, M. Franklin, S. Chandrasekaran, A. Desh-
pande, K. Hildrum, S. Madden, V. Raman, and M. Shah.
Adaptive query processing: Technology in evolution. IEEE
Data Engineering Bulletin, 23(2):7–18, 2000.

[12] Z. Ives. Efficient Query Processing for Data Integration.
PhD thesis, University of Washington, 2002.

[13] Z. Ives, A. Halevy, and D. Weld. Adapting to source prop-
erties in processing data integration queries. In Proc. of the
2004 ACM SIGMOD. ACM Press, 2004.

[14] N. Kabra and D. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In Proc.
of ACM SIGMOD 1998, pages 106–117, 1998.

[15] D. Kossmann. The state of the art in distributed query pro-
cessing. ACM Computing Surveys, 32(4):422–469, 2000.

[16] L. F. Mackert and G. M. Lohman. R* optimizer validation
and performance evaluation for distributed queries. In W. W.
Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, editors,
VLDB’86, pages 149–159. Morgan Kaufmann, 1986.

[17] M. Ozsu and P. Valduriez, editors. Principles of Distributed
Database Systems (Second Edition). Prentice-Hall, 1999.

[18] V. Raman, B. Raman, and J. Hellerstein. Online dynamic re-
ordering for interactive data processing. Proc. of 25th VLDB
Conference, pages 709–720, 1999.

[19] D. Thain, T. Tannenbaum, and M. Livny. Condor and the
grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-
puting: Making the Global Infrastructure a Reality. John
Wiley & Sons Inc., 2003.

[20] P. Watson. Databases and the grid. In F. Berman, G. Fox,
and T. Hey, editors, Grid Computing: Making The Global
Infrastructure a Reality. John Wiley & Sons Inc., 2003.

[21] R. Wolski, N. T. Spring, and J. Hayes. The network weather
service: a distributed resource performance forecasting ser-
vice for metacomputing. Future Generation Computer Sys-
tems, 15(5–6):757–768, 1999.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 


	footer1: 


