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Abstract. Distributed query processing (DQP) has been widely used
in data intensive applications where data of relevance to users is stored
in multiple locations. This paper argues: (i) that DQP can be important
in the Grid, as a means of providing high-level, declarative languages
for integrating data access and analysis; and (ii) that the Grid provides
resource management facilities that are useful to developers of DQP sys-
tems. As well as discussing and illustrating how DQP technologies can
be deployed within the Grid, the paper describes a prototype implemen-
tation of a DQP system running over Globus.

1 Introduction

To date, most work on data storage, access and transfer on the Grid has focused
on files. We do not take issue with this – files are clearly central to many ap-
plications, and it is reasonable for Grid middleware developers to seek to put in
place effective facilities for file management and archiving. However, database
management systems provide many facilities that are recognised as being impor-
tant to Grid environments, both for managing Grid metadata (e.g., [3]) and for
supporting the storage and analysis of application data (e.g., [18]).

In any distributed environment there are inevitably multiple related data
resources, which, for example, provide complementary or alternative capabil-
ities. Where there is more than one database supported within a distributed
environment, it is straightforward to envisage higher-level services that assist
users in making use of several databases within a single application. For exam-
ple, in bioinformatics, it is commonly the case that different kinds of data (e.g.,
DNA sequence, protein sequence, protein structure, transcriptome) are stored
in different, specialist repositories, even though they are often inter-related in
analyses.

There are perhaps two principal functionalities associated with distributed
database access and use – distributed transaction management and distributed
query processing (DQP) [12]. This paper is concerned with DQP on the Grid,
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and both: (i) discusses the role that DQP might play within the Grid; and (ii) de-
scribes a prototype infrastructure for supporting distributed query optimisation
and evaluation within a Grid setting.

There is no universally accepted classification of DQP systems. However,
with a view to categorising previous work, we note that DQP is found in several
contexts: in distributed database systems, where an infrastructure supports the
deliberate distribution of a database with some measure of central control [13];
in federated database systems, which allow multiple autonomous databases to
be integrated for use within an application [11]; and in query-based middlewares,
where a query language is used as the programming mechanism for expressing
requests over multiple wrapped data sources (e.g., [9]). This paper is most closely
related to the third category, in that we consider the user of DQP for integrating
various Grid resources, including (but not exclusively) database systems.

Another important class of system in which queries run over data that is
distributed over a number of physical resources is parallel databases. In a paral-
lel database, the most common pattern is that data from a centrally controlled
database is distributed over the nodes of a parallel machine. Parallel databases
are now a mature technology, and experience shows that parallel query processing
techniques are able to provide cost-effective scaleability for data-intensive appli-
cations (e.g., [15]). This paper, as well as advocating DQP as a data integration
mechanism for the Grid, also shows that techniques from parallel database sys-
tems can be applied in support of data access and analysis for Grid applications.

The claims of this paper with respect to DQP and the Grid are as follows:

1. In providing integrated access to multiple data resources, DQP in and of
itself is an important functionality for data intensive Grid applications.

2. The fact that certain database languages can integrate operation calls with
data access and combination operations means that DQP can provide a
mechanism for integrating data and computational Grid services.

3. Given (1) and (2), DQP can be seen to provide a generic, declarative, high-
level language interface for the Grid.

4. By extending technologies from parallel databases, implicit parallelism can
be provided within DQP environments on the Grid.

The paper makes concrete how these claims can be supported in practice by
describing a prototype DQP system, Polar*, which runs over the Globus toolkit,
and illustrates the prototype using an application from bioinformatics.

The remainder of this paper is structured as follows. Section 2 presents the
principal components of a DQP system for the Grid, in particular indicating how
this relates to other Grid services. Sections 3 and 4 describe, respectively, how
queries are planned and evaluated within the architecture. Section 5 illustrates
the proposal using an example involving bioinformatics databases and analysis
tools. Finally, Section 6 presents some conclusions and pointers to future work.
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2 Architecture

The two key functions of any DQP system are query compilation and query
execution. In the Polar* system described in this paper, both these components
are based on those designed for the Polar project [16]. Polar is a parallel object
database server that runs on a shared-nothing parallel machine. Polar* exploits
Polar software components where possible, but as Polar* must provide DQP over
data repositories distributed across a Grid, there are a number of key differences
between query processing in the two systems. These include:

1. The data dictionary must describe remote data storage and analysis re-
sources available on the Grid – queries act over a diverse collection of appli-
cation stores and analysis programs.

2. The scheduler must take account of the computational facilities available on
the Grid, along with their variable capabilities – queries are evaluated over
a diverse collection of computational resources.

3. The data stores and analysis tools over which queries are expressed must be
wrapped so that they look consistent to the query evaluator.

4. The query evaluator must use Grid authentication, resource allocation and
communication protocols – Polar* runs over Globus, using MPICH-G [5].

A representative query over bioinformatics resources is used as a running ex-
ample throughout the paper. The query accesses two databases: the Gene Ontol-
ogy Database GO (www.geneontology.org) stored in a MySQL (www.mysql.com)
RDBMS; and GIMS [2], a genome database running on a Polar parallel object
database server. The query also calls a local installation of the BLAST sequence
similarity program (www.ncbi.nlm.nih.gov/BLAST/) which, given a protein se-
quence, returns a set of structs containing protein IDs and similarity scores. The
query identifies proteins that are similar to human proteins with the GO term
8372:

select p.proteinId, Blast(p.sequence)
from p in protein, t in proteinTerm
where t.termID=’8372’ and p.proteinId=t.proteinId

In the query, protein is a class extent in GIMS, while proteinTerm is a table
in GO. Therefore, as illustrated in Figure 1, the infrastructure initiates two sub-
queries: one on GIMS, and the other on GO. The results of these sub-queries are
then joined in a computation running on the Grid. Finally, each protein in the
result is used as a parameter to the call to BLAST.

One key opportunity created by the Grid is in the flexibility it offers on
resource allocation decisions. In the example in Figure 1, machines need to be
found to run both the join operator, and the operation call. If there is a danger
that the join will be the bottleneck in the query, then it could be allocated to a
system with large amounts of main memory so as to reduce IO costs associated
with the management of intermediate results. Further, a parallel algorithm could
be used to implement the join, and so a set of machines acquired on the Grid
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Fig. 1. Evaluating the example query.
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Fig. 2. The components of Polar* query compiler.

could each contribute to its execution. Similarly, the BLAST calls could be
speeded-up by allocating a set of machines, each of which can run BLAST on a
subset of the proteins.

The information needed to make these resource allocation decisions comes
from two sources. Firstly, the query optimiser estimates the cost of executing
each part of a query and so identifies performance critical operations. Secondly,
the Globus Grid infrastructure provides information on available resources. Once
a mapping of operations to resources has been chosen, the single sign-on capa-
bilities of the Grid Security Infrastructure simplify the task of gaining access to
those resources.

3 Query Planning

Polar* adopts the model and query language of the ODMG object database
standard [1]. As such, all resource wrappers must return data using structures
that are consistent with the ODMG model. Queries are written using the ODMG
standard query language, OQL.

The main components of the query compiler are shown in Figure 2. The
Polar* optimiser has responsibility for generating an efficient execution plan for
the declarative OQL query which may access data and operations stored on
many nodes. To do this, it follows the two-step optimisation paradigm, which
is popular for both parallel and distributed database systems [12]. In the first
phase, the single node optimiser produces a query plan as if it was to run on one
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Fig. 3. Example query: (a) single-node logical plan, (b) single-node physical plan (c)
multi-node physical plan.

processor. In the second phase, the sequential query plan is divided into several
partitions or subplans which are allocated machine resources by the scheduler.

Figure 3(a) depicts a plan for the example query expressed in the logical
algebra of Fegaras and Maier [4], which is the basis for query optimisation and
evaluation in Polar*. The logical optimiser performs various transformations on
the query, such as fusion of multiple selection operations and pushing projects
(called reduce in [4] and in the figures) as close to scans as possible.

The physical optimiser transforms the optimised logical expressions into
physical plans by selecting algorithms that implement each of the operations
in the logical plan (Figure 3(b)). For example, in the presence of indices, the op-
timiser prefers index scans to seq scans. Operation calls, like the call to BLAST,
are encapsulated by the operation call physical operator. For each OQL query,
many physical plans are produced, and the physical optimiser ranks these ac-
cording to a cost model.

A single-node plan is transformed into a multi-node one by inserting paral-
lelisation operators into the query plan, i.e., Polar* follows the operator model
of parallelisation [7]. The exchange operator encapsulates flow control, data
distribution and inter-process communication. The partitioner firstly identifies
whether an operator requires its input data to be partitioned by a specific at-
tribute when executed on multiple processors (for example, so that the poten-
tially matching tuples from the operands of a join can be compared [10]). Sec-
ondly, it checks whether data repartitioning is required, i.e., whether data needs
to be exchanged among the processors, for example for joining or for submitting
to an operation call on a specific machine.

The exchanges are placed immediately below the operators that require the
data to be repartitioned. For each exchange operator, a data distribution policy
needs to be defined. Currently, the policies Polar* supports include round robin,
hash distribution and range partitioning. A multi-node query plan is shown in
Figure 3(c), where the exchanges partition the initial plan into many subplans.
The physical algebra extended with exchange constitutes the parallel algebra
used by Polar*.
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The final phase of query optimisation is to allocate machine resources to each
of the subplans derived from the partitioner, a task carried out by the scheduler
in Figure 2 using an algorithm based on that of Rahm and Marek [14]. For
running the example query, six machines were available. Three of the machines
host databases (numbers 2 and 3 for the GIMS database, and 6 for the GO
database). For the hash join, the scheduler tries to ensure that the relation used
to construct the hash table can fit into main memory, for example, by allocating
more nodes to the join until predicted memory requirements are satisfied. In the
example, nodes 3 and 6 are allocated to run the hash join. As some of the data
is already on these nodes, this helps to reduce the total network traffic.

The data dictionary records which nodes support BLAST, and thus the
scheduler is able to place the operation call for BLAST on suitable nodes (4
and 5 in Figure 3(c)). The scheduler uses a heuristic that may choose not to use
an available evaluator if the reduction in computation time would be less than
the increase in the time required to transfer data (e.g., it has decided not to use
machine 1 in the example).

4 Query Evaluation

4.1 Evaluating the Parallel Algebra

The Polar* evaluator uses the iterator model of Graefe [8], which is widely seen
as the model of choice for parallel query processing. In this model, each operator
in the physical algebra implements an interface comprising three operations:
open(), next() and close(). These operations form the glue between the nodes
of a query plan. An individual node calls open() on each of its input nodes
to prompt them to begin generating their result collections. Successive calls to
next() retrieve every tuple from that result collection. A special eof tuple marks
the end of a result collection. After receiving an eof from an input, a node calls
close() on that input to prompt it to shut itself down.

We note that although the term tuple is used to describe the result of a call to
next(), a tuple in this case is not a flat structure, but rather a recursive structure
whose attributes can themselves be structured and/or collection valued.

To illustrate the iterator model, Figure 4 sketches an iterator-based imple-
mentation of a hash join operator. open() retrieves the whole of the left hand
operand of the join and builds a hash table, by hashing on the attributes for
which equality is tested in the join condition. In next(), tuples are received from
the right input collection and used to probe the hash table until a match is found
and all predicates applying to the join result are satisfied, whereupon the tuple
is returned as a result.

The iterator model can support a high degree of parallelism. Sequences of
operators can support pipeline parallelism, i.e., when two operators in the same
query plan are independent, they can execute concurrently. Furthermore, when
invocations of an operation on separate tuples in a collection are independent,
the operation can be partitioned over multiple machines.
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class HashJoin: public Operator {
private:

Tuple *t; HashTable h; Predicate predicate;
Operator *left; set<Attribute> hash_atts_left;
Operator *right; set<Attribute> hash_atts_right;

public:
virtual void open() {

left->open(); t = left->next();
while (! t->is_eof()) {

h.insert(t, hash_atts_left); t = left->next();
}
left->close(); right->open(); t = right->next();

}
virtual Tuple *next() {

while (! t->is_eof()) {
if (h.probe(t, hash_atts_right) && t->satisfies(predicate))

return t;
delete t; t = right->next();

}
return t;

}
virtual void close() {

right->close(); h.clear();
}

};

Fig. 4. Implementing hash-join as an iterator.

Whereas data manipulation operators tend to run in a request-response
mode, exchange differs in that, once open() has been called on it, the producers
can run independently of the consumers. Because tuples are complex structures,
they are flattened for communication into buffers whose size can be configured.
Underlying an instance of exchange is a collection of threads managing pools of
such buffers so as to constrain flow to a lagging consumer, but to permit flow
to a quicker consumer, within the constraints of the buffer pools. This policy is
very conveniently implemented in MPI [17] where the tightly defined message
completion semantics permit the actual feedback to be hidden within its layer.
This use of MPI has enabled the Polar exchange to port easily to MPICH-G [5],
for use with Globus.

Since MPICH-G is layered above Globus, a parallel query can be run as
a parallel MPI program over a collection of wide area distributed machines,
oblivious of the difficulties inherent in such meta-computing, which are han-
dled by the underlying Globus services. A parallel program running over such
a Grid environment has to find suitable computational resources, achieve con-
current login, transfer of executables and other required files, and startup of
processes on the separate resources. In the Polar* prototype, concurrent login to
separate accounts is achieved through GSI, and executable staging across wide
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class PhysicalOperationCall: public PhysicalOperator {
private:

string signature; // operation to call
list<expr*> expression; // select args from tuple
list<genform*> *predicate; // predicate on output tuple
int key; // from cross ref in oplib
vector<concrete_object*> arg; // sized appropriately
class operation_library_stub; // functions etc in shared library
operation_library_stub *stub;

public:
virtual void open() {

input->open(); // input is pointer to operator
const d_Operation *oper = search_metadata(signature);
stub = load_operation_library(oper->operation_library_name());
key = stub->xref(signature);

}
virtual tuple_object *next() {

while (! t->eof()) {
tuple_object *t = input->next();
for (list<expr>::iterator it = expression.begin();

it != expression.end(); it++)
arg[i+1] = t->evaluate(*it); // leave arg[0] for result

stub->call_operation(key, arg); t->insert(arg[0]);
if (t->evaluate(predicate)) return t;

}
return t;

}
virtual void close() {

unload_operation_library(stub); input->close();
}

}

Fig. 5. The iterator-based implementation of external operation calls.

area connections through GASS, but all these features are accessed through the
MPICH-G interface rather than in a lower level way.

4.2 Accessing Computational and Data Resources
during Query Evaluation

From the point of view of the evaluator, both database and analysis operations
referred to within a query are external resources, which must be wrapped to
enable consistent passing of parameters and returning of results during query
evaluation.

To support access to external tools such as BLAST, Polar* implements, in
iterator style, the operation call operator in Figure 5. While concerns regarding
the integrity of the evaluator lead to an isolation of such an operation call within
a separate user context in some databases, the view taken so far in Polar* is that
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Fig. 6. Query plan for the example in Section 5.

higher performance is achievable when a user can in good faith code an operation
to be executed in the server’s own context. Thus, such operations are linked
into dynamically loadable modules, with stub code generated by the Polar*
system to perform the translation of types between tuple format and the format
of the programming language used to implement the operation. At runtime,
operation call loads the appropriate module in its open() call and unloads it in
close(). Within next(), the operator passes attributes from the current tuple to
the stub code which assembles required parameters, makes the call and translates
the result, which may be collection valued and/or of structured type, back to
tuple format before passing it back as the result of the operator.

By making such an application available for use in a Polar* schema, the
owner does not provide unrestricted, and thereby unmanageable, access on the
internet. By contrast, since Polar* sits above Globus, a resource provider must
have granted access rights to a user, in the form of a local login, which they
can revoke. Subsequent accesses, while convenient to the user through the single
sign-on support of Globus, are authenticated through the GSI.

A specific case that requires access to external operations is the provision
of access to external, i.e. non Polar*, repositories. For example, the runtime
interface to a repository includes an external scan operator, which exports an
iterator style interface in common with other operators. However, below the
level of external scan the interface to an arbitrary external repository requires
special coding. When an external collection is defined in the schema, the system
generates the definition of a class, which has the three operations of the itera-
tor interface plus other operations to gather statistics and set attributes of the
interface such as a query language and the syntax of results generated by the
external repository.

The generated class is the template within which a user can implement an
iterator style interface to the external repository. The mechanisms used are at
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the discretion of the user, but the pattern in which the operations of this system-
defined class are called is defined by the Polar* system. Fixed attributes, such
as the syntax of result tuples returned, are set at the time the completed access
class is registered with the Polar* system. Because the access class contains in
its instance state a reference to the specification of the wrapped collection in the
data dictionary, application data statistics gathered from the particular external
store can be written into the data dictionary. The open(), next() and close()
operations are simply called by external scan in the usual iterator-based style.
However, the results returned by the next() operation are translated from the
selected syntax into Polar* tuples.

In the running example, the GO database is implemented using MySQL, so
access to it is through such a system-specified user-defined class of operations.
A delegated sub-query such as the access to proteinTerm tuples is expressed in
SQL, and the results are formatted within the MySQLAccess class in Object
Interchange Format (OIF)1. The next() operation of the external scan operator
parses each OIF instance to construct tuples which that returned as results to
the evaluator.

5 Example from Bioinformatics

The example query introduced in Section 2 is straightforward, but has illustrated
how DQP can be used to provide optimisation and evaluation of declarative
requests over resources on the Grid. We note that the alternative of writing such
a request using lower-level programming models, such as MPICH-G or a COG
kit [19] could be quite time consuming. We note also that as the complexity of
a request increases, it becomes increasingly difficult for a programmer to make
decisions as to the most efficient way to express a request.

For example, a more complex request over the same resources as before could
request information about the proteins with the GO term 5554 which are similar
to the proteins with the GO term 8372. In Polar*, such a request can be expressed
as follows:

select p1.proteinId, p2.proteinId
from p1 in protein, t1 in proteinTerm,

p2 in Blast(p1.sequence), t2 in proteinTerm
where p1.proteinId=t1.proteinId and t1.termID=’8372’ and

p2.proteinId=t2.proteinId and t2.termID=’5554’

This query is compiled into the parallel algebraic expression illustrated in Fig-
ure 6. The query plan is decomposed into 6 subplans, each of which is allocated
to many nodes, in particular the data and CPU intensive operators like hash-
join and operation call, for which it is important to exploit parallelism. While
retrieving the data from the GO database, the Polar* engine checks whether
the data satisfies the condition on the termID. In addition, reduce operators are
inserted before data is communicated over the network. These features are key
to reducing the communication cost.
1 OIF is a standard textual representation for ODMG objects.
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6 Conclusions

One of the main hopes for the Grid is that it will encourage the publication of
scientific and other data in a more open manner than is currently the case. If
this occurs then it is likely that some of the greatest advances will be made by
combining data from separate, distributed sources to produce new results. The
data that applications wish to combine will have been created by different re-
searchers or organisations that will often have made local, independent decisions
about both the best database paradigm and design for their data. The role of
DQP in such a setting is to provide high-level, declarative facilities for describing
requests over multiple data stores and analysis facilities.

The ease with which DQP allows such requests to be phrased has been illus-
trated through example queries in Sections 2 and 5. Developing efficient execu-
tion plans for such tasks using existing Grid programming environments would
take a skilled developer a significant time. We believe that DQP can serve an im-
portant role in Grid environments by: (i) increasing the variety of people who can
form requests over multiple Grid resources; (ii) reducing development times for
certain categories of Grid programming task; and (iii) enabling typical requests
to be evaluated efficiently as a result of system-supported query optimisation
and support for implicit parallelism.

This paper has described the Polar* prototype DQP system for the Grid.
The prototype has been implemented over Globus middleware using MPICH-G,
and experiments have been conducted over bioinformatics databases and analy-
sis tools at the authors’ geographically remote sites. Future work will: (i) extend
the range of physical operators in the algebra; (ii) increase the amount of system
information used by the scheduler in query planning; (iii) explore the develop-
ment of more powerful scheduling algorithms; and (iv) conduct performance
evaluations over more and larger databases. We also plan to evolve the Polar*
system to be compliant with the emerging Open Grid Services Architecture [6],
and to make use of standard service interfaces to databases [20] to reduce the
cost of wrapper development.
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