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Abstract

The problem of scheduling a single DAG onto hetero-
geneous systems has been studied extensively. In this
paper, we focus on the problem of scheduling more than
one DAG at the same time onto a set of heterogeneous
resources. The aim is not only to optimize the overall
makespan, but also to achieve fairness, defined on the
basis of the slowdown that each DAG would experience
as a result of competing for resources with other DAGS.
Two policies particularly focussing to deliver fairness
are presented and evaluated along with another four
policies that can be used to schedule multiple DAGS.

1 Introduction

The problem of scheduling a directed acyclic graph
(DAG) onto a set of heterogeneous machines has been
well studied and a number of heuristics have been pro-
posed in the literature [12, 15, 1, 6, 9, 13, 19]. Interest
in the topic has increased in recent years, partly as a
result of the emergence of the so-called workflow ap-
plications as an important use case in the context of
Grid Computing; some of those workflow applications
can be represented by a DAG [2, 10, 20]. Grid com-
puting provides an initial motivation for this work too.
Virtually all existing work on DAG scheduling deals
with the problem of scheduling a single DAG. It is rea-
sonable to envisage a scenario where more than one
DAG need to be scheduled onto resources at the same
time. The only relevant work, which considers multiple
DAGs, focuses on environment-related aspects but not
on the appropriateness of different scheduling policies
[5, 7]. This problem of scheduling multiple DAGs onto
heterogeneous resources is addressed in this paper.

When scheduling multiple DAGs, those DAGs com-
pete for the same resources. In this situation, although
one objective would still be the minimization of the
overall makespan (that is, start time of the first task

of the first DAG in the set of multiple DAGs to finish
time of the last task of the last DAG in the set of mul-
tiple DAGs), another objective could be to achieve a
certain level of Quality of Service for the given DAGs.
Such a level of Quality of Service could be based on
priorities (for instance, one requirement could be to
complete the execution of one DAG as soon as possi-
ble) or other constraints. In this paper, we focus on
fairness, which is defined on the basis of the slowdown
that each DAG would experience (as a result of sharing
the resources with other DAGs as opposed to having
the resources on its own); to achieve fairness, the aim
is to make this slowdown equal for all DAGs, yet with-
out affecting the overall makespan of the multiple DAG
schedule. The paper describes two policies to schedule
multiple DAGs, especially targeting at fairness. These
are evaluated along with four other policies to sched-
ule multiple DAGs (without a special consideration of
fairness).

The remainder of this paper is organized as follows.
Section 2 considers some basic approaches for schedul-
ing multiple DAGs. Section 3 presents two scheduling
policies which aim to deliver fairness in the schedule
generated. Section 4 evaluates the methods proposed
and Section 5 concludes the paper.

2 An Initial Approach

The model we use to represent a DAG, and its pa-
rameters (e.g., estimated execution time of tasks and
communication costs) has been widely used in other
heterogeneous computing scheduling studies [15, 18,
12]. A DAG consists of nodes and edges, where nodes
(or tasks) represent computation and edges represent
precedence constraints between nodes. Each DAG has
a single entry node and a single exit node. There is
also a set of machines (resources) on which nodes can
execute (the execution time may be different on each
machine) and which may need a varying amount of
time to transmit data. A machine can execute only
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(a) Example DAG A (b) Example DAG B

Figure 1. Two example DAGs.

one task at a time, and a task cannot start execution
until all data from its parent nodes is available. The
estimated execution time of each task on each machine
is given. Similarly, the amount of data that needs to
be communicated between tasks is also given; along
with an estimate for the communication cost between
different machines, those two values (amount of data
and communication cost between two machines) pro-
vide the estimated data communication cost between
two tasks that have a direct precedence constraint (that
is, they are linked with an edge in a DAG) and they are
running on specific (different) resources. Throughout
the paper, we always assume that only one task at a
time can use a resource.

An obvious solution to scheduling multiple DAGs is
to schedule the DAGs one after the other using any
single-DAG scheduling algorithm [18, 15]; that is, one
DAG starts execution after another finishes. The po-
tential problem with this approach is that it may leave
the resources idle for some period of time (depending
on the structure of the DAG), thus resulting in a long
overall makespan. A better solution is to start schedul-
ing the tasks of each of the DAGs at the earliest pos-
sible time; thus, any idle slots in the schedule of the
DAGs already scheduled might be filled by the DAGs
that remain to be considered. In this situation, the or-
der that the DAGs are scheduled may make a difference
(for instance, one could start with the DAG that has
the shortest makespan when running on the resources
on its own, or the DAG that has the longest makespan
when running on the resources on its own).

An alternative approach to the above approaches
for scheduling the multiple DAGs is to schedule all the
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Figure 2. Composition approach 1: common
entry and common exit node technique.

DAGs at the same time. There are many ways to do
this; below, we focus on four approaches, which are
based on merging all the DAGs into a single, compos-
ite DAG, where any single-DAG scheduling algorithm
can be applied. Each of these approaches, by retaining
some information from the original DAGs, can place ex-
tra constraints to the single-DAG scheduling. In order
to illustrate the four approaches, consider the example
DAGs in Figure 1(a) and Figure 1(b).

C1: Common Entry and Common Exit Node:
This approach creates the composite graph by making
the entry nodes of all the DAGs immediate successors
of a new entry node, and all the exit nodes of the DAGs
immediate ancestors of a new exit node, as shown in
Figure 2. These two extra nodes (i.e., new entry and
new exit node) have no computation and no communi-
cation between them and other nodes.

C2: Level-Based Ordering: This approach cre-
ates a composite graph in the same way as before; how-
ever, the new graph is grouped into levels as shown in
the example in Figure 3. Scheduling takes place in
levels; clearly, within each level, there are only inde-
pendent tasks to be scheduled; these may be sched-
uled using any algorithm for scheduling independent
tasks (see [3] for a comparison of several heuristics, or,
BMCT, the heuristic suggested in [15]).
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Figure 3. Composition approach 2: level-

based ordering.

C3: Alternating DAGs: This approach creates
a composite DAG in the same way as above; however,
scheduling considers tasks from each DAG in a round-
robin fashion. Thus, if at a certain point in time, the
task being scheduled belongs to one DAG, tasks of the
same DAG will not be considered for scheduling until a
task from each of the other DAGs has been considered.
To illustrate this, consider Figure 2; a possible order of
scheduling might be A1, B1, A2, B2, A3, B3, etc.

C4: Ranking-Based Composition: The idea be-
hind this approach is to take into account the struc-
ture of each DAG and the execution time of every task
when linking the exit nodes. Thus, the exit node of
a short DAG (that is, a DAG whose makespan when
scheduled on its own is short) would be linked to that
task of a long DAG, whose longest path from its en-
try node is about the same to the longest path of the
short DAG. Longest paths can be found using upward
ranking. Thus, the upward rank, r,(7), of a task i is
recursively defined by

ru(i) = f@? . w™, L wMTh) +
' M—1,M— .
max(f (e, o, ™ ey T 4ru(),

VjEeS;

where w™ is the (estimated) computation cost of task
i on machine m, 0 <m < M (M is the total number of

DAG Rank

Al 50| A4 20
DAGA | A2 42| A5 6
A3 36
Bl 200 | B5 45
DAGB | B2 152 | B6 63
B3 122 | B7 13
B4 140

Table 1. The rank of each task of the two
DAGs in Figure 1 using upward ranking [21].
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Figure 4. Composition approach 4: ranking-
based composition technique.

machines available), the function f returns the average
value of its parameters, S; is the set of the immediate
successors of task i, and cz’»?m’ is the communication
cost between nodes ¢ and j when i is executed by ma-
chine m and j by machine m', 0 < m,m' < M (see
[21] for a more detailed specification). To illustrate
this, consider the two DAGs in Figure 1, and assume
that the rank of each task is as shown in Table 1. The
longest path of the first DAG is 50; it can be noted
that node B2 of the second DAG has a difference in
terms of its rank and the rank of the entry node of
the second DAG of 48. Thus, the exit node of DAG A
would be linked to node B2 by adding an edge of zero



C1 C2 C3 C4 OnebyOne | MinMax | MaxMin
Hyb.BMCT | 928.38 | 942.27 | 949.93 | 968.74 1420.65 1354.50 | 1285.74
HEFT 1059.15 | 1071.16 | 1088.85 | 1079.20 1689.92 1615.58 | 1533.26

Table 2. Average makespan, over 100 runs, of 7 different methods for multiple DAG scheduling with
2-10 randomly generated DAGs, each containing 10 to 50 tasks, running on 3 to 8 machines.

communication cost as shown in Figure 4.

For an initial evaluation of the makespan of the ap-
proaches above we carried out a small experiment using
our custom-made simulator for DAG scheduling [15].
We repeated 100 times an experiment where 2 to 10
randomly generated DAGs, each containing 10 to 50
tasks, had to be scheduled at the same time. Ran-
dom graphs are generated using the procedure also ex-
plained in [21, 15]. Thus, to generate a DAG with a
number of nodes, we first generate a single entry and
exit node; all other nodes are divided into levels, with
each level having at least two nodes. Levels are cre-
ated progressively; the number of nodes at each level is
randomly selected up to half the number of the remain-
ing to be generated nodes. Care is taken so that each
node at a given level is connected to at least one node
of the successor level and wvice versa. It is recognized
that random graphs may not always be representative,
however, the diversity they provide is sufficient for this
experiment,.

We evaluated seven approaches: the four approaches
presented above to generate a composite DAG (denoted
by C1, C2, C3, C4), the naive approach of scheduling
DAGs one after the other (‘OnebyOne’), and two ap-
proaches for scheduling DAGs in order, but starting
all of them from the earliest possible time depending
on whether we start with the shortest DAG and pro-
ceed with the next DAGs in ascending order of their
makespan (‘MinMax’) or the longest DAG (‘MaxMin’).
We use two heuristics for scheduling a single DAG: Hy-
brid. BMCT [15] and HEFT [18]. Briefly, both heuris-
tics are based on traditional list scheduling where some
prioritization of the nodes of the DAG takes place first
(for example, ranking the nodes using upward rank-
ing as above); then, following their priority order (that
is, the rank of each node), each node is scheduled on
the machine that gives the earliest finish time. The
additional characteristic of Hybrid.BMCT is that it
relaxes the priority order by considering independent
tasks with adjacent priority as a group (see [15] for
more details). The average makespan, from 100 runs,
is shown in Table 2. It is worth noticing that there
is a significant difference between the methods based

on a composite DAG (C1, C2, C3, C4) and the other
methods; as a result, the latter will be omitted from
any further evaluation. Another interesting remark is
that the schedules generated by Hybrid.BMCT lead to
a significantly better makespan than the schedules gen-
erated by HEFT.

3 Dealing with Fairness
3.1 Metrics

In the context of scheduling, fairness has been used
in various ways [8, 11, 14, 17]. The definition we
adopted in this paper defines fairness on the basis of
the slowdown each DAG would experience as a result of
sharing the resources with other DAGs (as opposed to
the makespan when the DAG is having the resources on
its own). Fairness implies that each DAG experiences
the same (or similar) slowdown. A similar definition
is used in the context of resource sharing in simultane-
ous multithreaded architectures (SMT) where threads
compete for the same resources [4].

Thus, to define the slowdown, consider a DAG a
in a given set of DAGs A, a set of resources R and a
schedule which allocates A to R. The slowdown value
of the DAG a, Slowdown(a), in this schedule is defined
as

SlOU}dOU}n(G) = Mown(af) /Mmulti (a),

where M, is the makespan of the DAG when it
has the available resources on its own (later, some times
referred to as original makespan), and M,.,;1; is the
makespan of the same DAG when scheduled onto re-
sources along with all the other DAGs in the set A.
The slowdown definition can also be applied to each
individual task as the ratio between the finish time
of a given task in the schedule where the DAG can
use the resources on its own and the finish time of the
same task in the schedule where the DAG shares the re-
sources with other DAGs (assuming that in both cases
the start time of the entry node in the schedule is the
same). It is expected that slowdown values will be be-
tween 0 and 1 with values closer to 1 indicating a small
slowdown.



Input: a set of DAGs A, a set of resources R, and a
selected list scheduling algorithm alg

Fairness policy:
(1) Run each DAG alone on R with algorithm alg. Store
the schedule for each DAG in set Syun.
(2) Mark each DAG as unexecuted U, and mark every task in
each DAG as unexecuted. Set the slowdown value of each
DAG as 0, and sort DAGs in descending order of
their total makespan in Sgqyp.
(3) Spuiti ¢ stores the multiple DAG schedule
While there are unexecuted DAGs do
a ¢« first DAG in unexecuted set U
t + first (ready) task that has not been executed on a

if (¢ is the last task of a)
remove a from U
else

sd(a) < ftown(t)/ ftmutei(t)

endwhile

m < the allocated machine for ¢t with algorithm alg

Sftmuii(t) < the finish time of task ¢ in the multiple DAG schedule
ftown(t) < the finish time of task ¢ in Spun

Sort U in ascending order of the slowdown value of each DAG

if (two DAGs have the same slowdown value)
compare the remaining makespan for the unexecuted tasks, the one
with the highest value is scheduled before the other

Figure 5. A Fairness Policy based on Finish Time

As mentioned above, fairness indicates that each
DAG experiences the same (or similar) slowdown. Con-
sequently, unfairness indicates that different DAGs ex-
perience a large variation in their individual slowdown.
Thus, unfairness can be defined on the basis of the ab-
solute value of the difference between the slowdown of
each DAG and the average slowdown of all the DAGs.
Hence, the unfairness of a schedule S of multiple DAGs
is given by

Unfairness(S)= Z |Slowdown(a) — AvgSlowdown),
VacA

where A is a set of given DAGs, and AvgSlowdown
is the average slowdown value for all DAGs in A given
by

1

AvgSlowdown = —
| 4]

Z Slowdown(a),

YacA

where |A| denotes the cardinality of set A. A low
value for unfairness may indicate that the slowdown
difference between DAGs is small, i.e., the schedule is
reasonably fair to each DAG.

The next section proposes two fairness policies that
can be applied to generate a fair schedule for given
DAGs.

3.2 Scheduling for Fairness

In this section we are going to describe two policies
which aim to schedule the multiple DAGs optimizing
both their makespan and fairness (that is, to minimize
unfairness as defined above). The key idea is to eval-
uate, after scheduling a task, the slowdown value of
each DAG against other DAGs and make a decision on
which DAG should be considered next (that is, from
which DAG a task will be picked to schedule) on the
basis of which DAG shows the smallest slowdown value
at this point in time. This selection policy can be ap-
plied to select the next DAG to be considered by any
single DAG list scheduling algorithm.

As the tasks of given DAGs are allocated, the sched-
uler maintains a list that keeps track of the current
slowdown value for each DAG, and sorts them in an
ascending order of their value. The next DAG to be
considered will be the DAG which currently has the



selected list scheduling algorithm alg

Fairness policy:

(3) While there are unexecuted DAGs do
a + first DAG in unexecuted set U

if (¢ is the last task of a)
remove a from U
else

for all DAGs in U
app < select a DAG from U

sd(app) + ctown(task)/ct
store sd(app) into SD
endfor

endwhile

Input: a set of DAGs A, a set of resources R, and a

(1) Run each DAG alone on R with algorithm alg. Store the
finish time for each task of the DAG and the schedule, Spri4.

(2) Mark each DAG as unexecuted U, and mark every task in

each DAG as unexecuted. Set the slowdown value of each

DAG as 0, and sort DAGs in descending order of

their total makespan S,y assigning to set SD.

t + first (ready) task that has not been executed on a
m < the allocated machine for ¢ with algorithm alg

ct + the current time, i.e. finish time of ¢

task < the task which is running at time ct from DAG app
ctown(task) < schedule length including the proportion of task that has been executed

sort U in ascending order of the slowdown value in SD for all DAGs
if (two DAGs have the same slowdown value)
compare the remaining makespan for the unexecuted tasks, the one
with the highest value is scheduled before the other

Figure 6. A Fairness Policy based on Current Time.

smallest slowdown value. There can be different ways
to calculate the slowdown value on-the-fly, that is, after
each task is scheduled; two policies are proposed here.
In both policies, the component M,,,ti(a) in comput-
ing the slowdown consists of the difference between the
finish time of the last task that has been scheduled in
the schedule with the multiple DAGs and the start time
of the entry node; similarly, the component M, (a)
considers only the schedule length of the corresponding
tasks (and not the whole makespan), that is, only those
tasks that have already been scheduled in the sched-
ule with the multiple DAGs. The difference in the two
policies is that the first policy, later denoted by F1, cal-
culates the slowdown value of a DAG only at the time
the last task that was scheduled for this DAG finished
(this slowdown value will be calculated with respect
to the finish time of that task in the schedule of this
DAG on its own and the task’s finish time in the sched-

ule which is constructed along with other DAGs). In
contrast, the second policy re-calculates the slowdown
value of every DAG at the time the last task (of any
DAG) in the schedule of the multiple DAGs finished.
This task may, of course, belong to any of the origi-
nal DAGs; at the same time, tasks that belong to the
other DAGs may be half way through their execution.
Then, in order to calculate the slowdown of each DAG,
the corresponding proportion of the task that can be
considered as completed at this point in time will be
taken into account. The motivation for the second pol-
icy is that it would lower the slowdown of those DAGs,
which did not have a task considered for scheduling for
some time. The two policies are shown in Figure 5 and
Figure 6, respectively.



3.3 An Example

To illustrate the two policies, we consider the two
DAGs in Figure 1; suppose that we have obtained a
schedule for each DAG (when scheduled on its own)
with the HEFT algorithm. The multiple DAG sched-
ule needs to make a decision at time ¢ (see Figure 7).
By that time, tasks A1, A2, A3 and A4 from the first
DAG have been scheduled as well as tasks B1, and B2
from the second DAG. At time ¢ also (which corre-
sponds to time 53, starting from 0, the start time of
tasks Al and B1), both tasks A4 and A3 terminate.
Using the first policy for fairness above, the slowdown
value of the first DAG at time ¢ is 45/53 ~ 0.849, the
value of 45 corresponding to the finish time of task A4
in the original schedule. With respect to the second
DAG, the slowdown value would be the finish time of
the last scheduled task, which is task B1; this would
give a slowdown value of 31/31 = 1. It is noted here
that this approach would create large variations in the
slowdown values as the schedule is being generated and
make them less representative of the real slowdown.
In this particular example, as long as the slowdown
value of the second DAG is 1, a task from the sec-
ond DAG would be scheduled only if there is an empty
resource and there is no task available (for instance,
due to precedence constraints to be taken into account)
from the first DAG (as it is the case when task B2 is
scheduled).

Using the second policy for fairness above, the slow-
down value of the first DAG would remain the same
(since the last task of this DAG finishes at exactly the
time being considered, t), however, the slowdown value
of the second DAG would be 37/53 ~ 0.698. This
would be calculated by considering the current time,
t, for the denominator and, with respect to the origi-
nal schedule, the time corresponding to task B2 (as a
percentage that has been executed), which is being ex-
ecuted at time ¢t. Given that B2 started at time 47 and
its predicted running time on machine M1 is 40, the
percentage of its execution that has been completed is
15%. In the original schedule, task B2 would start at
time 31, hence, the value of 37 = 31 + 15% x 40 in the
numerator.

4 Experimental Results
4.1 The Setting

In this section, we evaluate the performance of the
two scheduling policies aiming for fairness (denoted
by F1 and F2) along with the four policies to cre-
ate a composite DAG described in Section 2 (denoted
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Figure 7. The schedule at time ¢ for allocating
the two given DAGs.

by C1, C2, C3, C4). For the single DAG scheduling
phase of all these policies we use Hybrid. BMCT [15]
and HEFT [18]. Performance is evaluated on the ba-
sis of four metrics: unfairness value, schedule length,
machine utilization and running time. We use four dif-
ferent types of DAGs, random (generated as explained
in [21]), Laplace, Fork-Join, and FFT commonly used
in other similar studies (see [16, 15]). In each case, we
randomly generate 2-10 DAGs, each DAG consisting of
approximately 10 to 50 tasks (depending on the type
of the DAG used), and there are 3 to 8 different het-
erogeneous machines. For each task in the DAGs, the
estimated execution time on each different machine is
randomly generated from a uniform distribution in the
interval 50 to 100 time units, while the communication-
to-computation ratio (CCR) is also randomly chosen
from the interval 0.1 to 1.

4.2 Fairness

The graphs comparing unfairness for the six schedul-
ing approaches are shown in Figure 8, Figure 9, Figure
10 and Figure 11, for randomly generated, Laplace,
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Figure 8. Unfairness value, averaged over 100 runs, comparing 6 different scheduling techniques
and two single DAG scheduling algorithms with 2-10 randomly generated DAGs, each containing
10-50 tasks, running on 3-8 machines.

0.6 0.8
C1 —— C1 ——
C2 - C2 -
05 FF{ ——m- 1 F1 ——m
F2 --e- F2 --e- S
0.6 |
0.4 | b
05 | b
@ @
g g
c o c
£ o3f g 1 5 oa4f 1
= e —
e T 0.3 -
02 s o
4 T AT g
va [ S— 02 r i |
o1t 7 B "
4 e 0.1 . R
e e
o f e ) ) ) , 0 L . I I L
0 2 4 6 8 10 0 2 4 6 8 10
Number of DAGs Number of DAGs
(a) Hybrid.BMCT (b) HEFT

Figure 9. Unfairness value, averaged over 100 runs, comparing 6 different scheduling techniques
and two single DAG scheduling algorithms with 2-10 Laplace DAGs, each containing 9-49 tasks,
running on 3-8 machines.
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Figure 10. Unfairness value, averaged over 100 runs, comparing 6 different scheduling techniques
and two single DAG scheduling algorithms with 2-10 Fork-Join DAGs, each containing 7-44 tasks,
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Figure 11. Unfairness value, averaged over 100 runs, comparing 6 different scheduling techniques
and two single DAG scheduling algorithms with 2-10 FFT DAGs, each containing 15-40 tasks, running
on 3-8 machines.
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Figure 12. Average makespan (over 100 runs with 2-10 randomly generated DAGs on 3-8 machines)
of six different techniques with two single DAG scheduling algorithms.
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Figure 13. Average makespan (over 100 runs with 2-10 Laplace DAGs on 3-8 machines) of six different
techniques with two single DAG scheduling algorithms.
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Figure 15. Average makespan (over 100 runs with 2-10 FFT DAGs on 3-8 machines) of six different
techniques with two single DAG scheduling algorithms.
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Figure 16. Average running time of each scheduling policy over 100 runs on Randomly Generated

DAGs using Hybrid.BMCT and HEFT.

F1 F2 C1 C2 C3 C4
Hyb.BMCT | 95.3 | 96.5 | 92.2 | 89.6 | 93.7 | 88.2
HEFT 94.2 | 95.7 | 92.1 | 90.1 | 92.0 | 88.6

Table 3. Average percentage (over 100 runs)
of resource utilization with 4 Random DAGs,
each containing 10 to 50 tasks, on 6 ma-
chines.

Fork-join and FFT graphs, respectively. From the
graphs it can be seen that the schedules generated by
F2 generally outperform other policies with both Hy-
brid.BMCT and HEFT algorithms. F1’s performance
is similar to F2 when the Hybrid. BMCT algorithm is
used; however, it does not perform well with HEFT in
most cases. Instead, C4 perform well with HEFT algo-
rithm in Laplace and Fork-join graphs. An interesting
remark from the figures is that C1, which is shown
in Section 2 with the shortest makespan, is the worst
method in terms of fairness (that is, the most unfair).

4.3 Makespan

The schedule length for the corresponding examples
presented above is shown in Figure 12, Figure 13, Fig-
ure 14 and Figure 15, respectively. It can be seen that
the makespan of the two variants for fairness is com-
petitive to the makespan of the four composition tech-
niques. In particular, F2 outperforms all other meth-
ods when FFT graphs are used. In addition, C3 and
C4, which have reasonably good performance in terms
of fairness, have generally longer makespan than F1

and F2.
4.4 Resource Utilization

In this case, we examine resource utilization, de-
fined as a percentage of the machine time used for a
task during the overall execution; results for random
DAGs only are shown in Table 3. F1 and F2 seem to
outperform other techniques.

4.5 Running Time

The average running time to execute our scheduling
policies, averaged over 100 runs using randomly gener-
ated DAGs with Hybrid. BMCT and HEFT, is shown
in Figure 16. The two policies based on fairness are
slightly slower, whereas the running time appears to
grow linearly with the number of DAGs being consid-
ered at the same time.

5 Conclusion

This paper considered the problem of scheduling
multiple DAGs onto heterogeneous machines at the
same time. A number of scheduling methods were pre-
sented; their focus was not only to minimize the overall
makespan, but to achieve fairness. It was experimen-
tally demonstrated that it is possible to achieve fair-
ness based on an equal distribution of the slowdown
amongst the DAGs, without this happening at the ex-
pense of the overall makespan. We think that this
paper provides an initial only study of heuristics for
multiple DAG scheduling. Further research is needed



to consider different definitions of fairness as well as
other notions of Quality of Service.
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