Proceedings of the 14th IASTED International Conference on Applied Informatics (Innsbruck, Feb. 1996),

TASTED-ACTA Press, pp. 190-192.

Towards a Parallelising COBOL Compiler

Rizos Sakellariou and Michael O’Boyle
Department of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom

Abstract

This paper briefly describes some of the fundamental
issues in developing an automatic parallelising COBOL
compiler. The rationale for such a tool and its connection
with research in scientific computing is described. This is
followed by an account of the useful forms of parallelism
to be found in a COBOL program and how they may be
detected using dependence analysis. Finally, transforma-
tions to uncover parallelism and how this can be mapped
onto a parallel architecture are outlined.

Key words: Automatic parallelisation, parallel COBOL.

1 Introduction

Parallel computing has received considerable interest as
a means of obtaining increased computer performance.
In order to overcome the difficulties associated with
programming parallel computers, parallelising compilers
have been promoted as a means of emancipating the pro-
grammer from this task [1, 2]. In its full concept, a par-
allelising compiler accepts as an input a sequential pro-
gram and transforms it to a parallel one tailored to the
requirements of a specific parallel architecture. This pro-
cess, known as automatic parallelisation [3], can be re-
garded as a mainly two stage process: in the first stage the
compiler identifies modules which can be run in parallel
and applies program restructuring transformations to im-
prove program’s performance. The result of this phase is
a semantically equivalent parallel program, which, in the
second stage, is mapped onto a parallel architecture.
Most of the current research in automatic parallelisa-
tion has been targeted around the parallelism encountered
in FORTRAN-like loop structures, i.e. parallelism which
results from the repeated execution of the same instruc-
tions on different data; this is known as the data parallel
paradigm [4]. Our motivation for this paper stems from
the fact that COBOL programs perform a similar process;
in many cases a set of identical program actions are ap-
plied to a large number of data records. Given the high
number of COBOL program lines currently in use and the
slow transition of existing code to more potentially effi-

cient programming paradigms, such as the object-oriented
[5], automatic parallelisation of existing programs may
provide an alternative source of increasing performance.
Considerable research has been directed into parallelis-
ing SQL statements [6]; these results may be used for
the parallelisation of COBOL programs making access to
database files, however, not all programs include this op-
tion. Some preliminary work in identifying those char-
acteristics amenable to parallelism has been described in
(71.

In this paper we attempt to transplant experience drawn
from the development of a parallelising compiler for FOR-
TRAN programs [8] into COBOL and our objective is to
highlight the feasibility of a parallelising COBOL com-
piler. Issues concerning the parallelism encountered in
CoBOL programs and its detection and mapping onto a
parallel architecture are discussed.

2 Parallelism Detection

Two types of parallelism are usually found in computer
programs written in conventional sequential languages:
task parallelism results from the concurrent execution of
different parts of a program, while data parallelism re-
sults from the concurrent execution of the same program
statements on different elements of data.

CoBOL applications are characterised by the need of
handling large amounts of data; thus, although task paral-
lelism may be present, we confine our discussion to the
detection of data parallelism. We distinguish between
three different types: file parallelism exists when running
the same program using different files; record parallelism
refers to the parallelism encountered when processing dif-
ferent records of the same file, for instance as a result
of reading a master file to print a name list; and array
parallelism is associated with the parallelism existing on
computations involving arrays. A distinction is also made
for the parallelisation of certains constructs like SORT or
SEARCH which can be parallelised by means of appropri-
ately written external library routines; for instance, a par-
allel sorting algorithm is described in [9]. From a com-
piler point of view, interest is focused on the first two
forms of parallelism.



A necessary requirement for the parallelised program is
to preserve the semantics of the original sequential pro-
gram; thus, two statements can be executed in parallel
only if there is no relationship between them which places
constraints on their execution order. Such constraints are
identified by means of a data dependence analysis [3]. In
our case, it is important to identify dependences between
different loop iterations (loop-carried dependences). As-
suming than an iteration i; precedes an iteration i, then
three types of data dependence may exist: a data flow
dependence denotes that a variable which is computed
(written) in iteration i1 is read in iteration i»; a data anti-
dependence denotes that a variable which is read in iter-
ation i is computed in iteration i»; and a data output de-
pendence denotes a variable which is computed in both i}
and i5.

To illustrate the above, consider the code fragment
shown below, which implements the process of updating
an indexed master file from a sequential transaction file:

MOVE "N" TO END-FILE.
PERFORM P500-UPDATE UNTIL END-FILE="Y".

P500-UPDATE.
READ TRANS AT END MOVE "Y" TO END-FILE.
IF END-FILE NOT = "Y"
(...read master according to trans-rec
update master-rec fields...)
WRITE MASTER-REC.

The repeated executions of the P500 paragraph define a
loop; the objective is to examine whether any record par-
allelism may be exploited by assigning different iterations
on different processors. Clearly, the scalars representing
the fields of the master record define a data output depen-
dence, since they are computed in any two iterations of the
loop, while the scalars representing the fields of the trans-
action record define a data anti-dependence; applying a
technique known as privatisation [3], where each proces-
sor has its own copy of the variables, both output and anti
dependences can be removed. Thus, parallelism may be
constrained by data-flow dependences which, in our ex-
ample, may arise when a record of the master file which
has been written in an earlier iteration is read again by a
subsequent iteration; this possibility may be eliminated if
there are not any two records of the transaction file refer-
ring to the same record of the master file. If this is not
the case, then updates to the same record of the master file
must be executed by the same processor or a synchronisa-
tion mechanism must safeguard the order of the execution.
Sorting the transaction file before updating the master file
may also provide a solution whenever there are multiple
records in the transaction file referring to the same record
of the master file; then, the transaction file may be split
into subfiles, with no two of them referring to the same
record of the master file, and exploit file parallelism.

In general, by viewing COBOL files as arrays (where the
first record of a file is the first element of an array, and so
on), the abstract representation framework and the tech-
niques used in the context of scientific applications can

be also applied here. The additional requirement posed is
that in certain cases, as in the previous example to ensure
that there are no data-flow dependences, some knowledge
on the value of the records may also be needed; this may
be a complicated issue in the case of loops performing op-
erations on several master files. However, it appears that
for programs involving sequential operations on files, their
parallelisation is straightforward.

3 Optimising Transformations

It may not be always possible for the compiler to detect
directly the parallelism present in programs. Assume, for
instance, that the example code illustrated in the previous
section was written as:

READ TRANS AT END MOVE "Y" TO END-FILE.
PERFORM P500-UPDATE UNTIL END-FILE="Y".

P500-UPDATE.
(...read master according to trans-rec
update master-rec fields...)
WRITE MASTER-REC.
READ TRANS AT END MOVE "Y" TO END-FILE.

Then, the scalars representing the fields of the transaction
record show a data flow dependence since they are getting
values (READ statement) at the iteration preceding the one
where they are used. To uncover the parallelism, the com-
piler must be able to restructure the source code to the
form shown earlier; similar transformations to eliminate
dependences have been studied in the context of array-
based scientific codes [3]. Restructuring may also involve
a series of transformations to increase the functionality of
the source code, such as the removal of GO TO statements
[10].

It must be noted though that any restructuring transfor-
mations should be applied subject to increasing program’s
execution time. The latter, i.e. the execution time of the
parallel program, 7,, can be modelled as 7, =1, +t;/p,
where ¢, is the time spent on overheads due to parallel
execution, f; is the time needed to execute the program
sequentially, and p is the number of processors used in
the parallel implementation; overheads may be primarily
due to communication or synchronisation requirements,
and/or load imbalance [8]. Usually, parallelism trades off
against overheads; thus an attempt to uncover parallelism
may increase some other sources of overhead. Using this
model, the parallelising compiler must decide whether the
parallelisation of a code may result in a faster execution
time (i.e. f, < ;). For instance, assuming that a synchro-
nisation mechanism is used to safeguard the order of ex-
ecution in the example of the previous section, the time
that the processors spent waiting to acquire a lock should
be less than #;(1 — 1/p) in order to have faster execution
time. Further issues on modelling these overheads are dis-
cussed in [11].



4 Mapping

In the mapping phase, the parallelism available is mapped
onto processors in such a way that overheads are min-
imised. The approaches traditionally used for DO. . ENDDO
type of loops in scientific applications are either to assign
a specific number of iterations to each processor (loop
partitioning) or to distribute the data amongst processors
(data partitioning) and then having each processor com-
puting the values of the data it owns (owner-computes
rule); the former approach is usually preferable on shared
memory and the latter on distributed memory parallel
computers. In the case of COBOL programs, where data
reside on a disk, analogies can be drawn with the shared-
disk and shared-nothing paradigms respectively, which
are employed in parallel database technology [6, 9].

Using a shared-nothing model, parallelism may be ex-
ploited by splitting the data files into subfiles which are
stored in a disk assigned to a particular processor (file
parallelism). In order to reduce any communication over-
heads it is essential that all the records which are accessed
at the same loop iteration are located in the same disk. In
several cases this may not be possible and an algorithm to
reduce any transfers should be devised; such an algorithm
is expected to be a simplified version of algorithms used
to minimise overheads for FORTRAN programs as the one
outlined in [8]. Considering the code fragment shown in
section 2, sorting and splitting the transaction file into sub-
files of equal size and storing them in the same disk with
subfiles of the master file which has been split (assum-
ing it is sorted as the transaction file) at the points where
the transaction file is split, may provide a communication-
free parallel execution. However, the sorting and splitting
phases pose an overhead which should be considered by
the compiler before these phases are applied (cf section
3).

In a shared-disk model, loop iterations can be assigned
in a round-robin fashion to processors, or they may be
assigned to the first idle processor. While both these
strategies guarantee a fair distribution of the workload
amongst processors, they may suffer from extensive I/O
contention. Thus, it is preferable to assign consecutive
loop iterations to each processor; considering again the
example presented in section 2, this approach ensures
that there will be no ‘interleaving’ in the way that pro-
cessors access the records of the transaction file. How-
ever, in order to partition the iterations as evenly as pos-
sible, it is necessary to know their total number; know-
ing the file size, f, and the record size, r, of the trans-
action file and assuming that p processors are available,
each processor is allocated approximately f/rp iterations.
Thus, the PERFORM. . UNTIL construct may be treated as a
PERFORM. .N TIMES, where N=f/r; then, the first proces-
sor executes iterations 1 through n/p, in general processor
i executes iterations (i — 1)n/p + 1 through in/p (assum-
ing that p divides n).

From an abstract point of view, the process of map-
ping data located in a disk can be modelled by means of a
memory hierarchy model where disk access is associated

with the most expensive level in the hierarchy. A possible
way of minimising these costs would be to move blocks
which are more often accessed (e.g. the records of a mas-
ter file) to a less expensive level; this strategy, also dis-
cussed in [7], needs careful consideration in the selection
of the blocks to avoid continuous transfers back and forth.

5 Concluding Remarks

This paper forms the starting point of our research into
building an auto-parallelising COBOL compiler. Only a
brief outline of the issues involved in parallelising sequen-
tial COBOL has been made. It appears that there is a sig-
nificant connection with well known techniques applied
for the automatic parallelisation of scientific programs.
Further work is necessary in describing COBOL actions in
a representation amenable to analysis, transformation and
parallelisation. The impact on data storage and interaction
between applications must also be investigated.

References

[1] M. Wolfe, High Performance Compilers for Parallel Com-
puting (Addison-Wesley, 1996).

[2] H. Zima, B. Chapman, Supercompilers for Parallel and
Vector Computers (ACM Press, 1990).

[3] U. Banerjee, R. Eigenmann, A. Nicolau, D. Padua, “Auto-
matic Program Parallelization”, Proceedings of the IEEE,
81 (2), 1993, 211-243.

[4] V. Adve, A. Carle, E. Granston, S. Hiranandani, K.
Kennedy, C. Koelbel, U. Kremer, J. Mellor-Crummey,
S. Warren, “Requirements for Data-Parallel Programming
Environments”, IEEE Parallel & Distributed Technology,
2 (3), 1994, 48-58.

[5] L.J.Pinson, “Moving from COBOL to C and C++: OOP’s
biggest challenge”, Journal of Object-Oriented Program-
ming, 7 (6), 1994, 54-56.

[6] D. DeWitt, J. Gray, “Parallel Database Systems: The Fu-
ture of High Performance Database Systems”, Communi-
cations of ACM, 35 (6), 1992, 85-98.

[71 L. Richter, “Restructuring of Cobol-Applications for
Coarse Grain Parallelization”, Proceedings of the work-
shop on Commercial Applications of Parallel Processing
Systems (CAPPS) 93 (Austin, Texas: MCC Technical Cor-
poration, 1993).

[8] F. Bodin, M. O’Boyle, “A Compiler Strategy for Shared
Virtual Memories”, in B. K. Szymanski, B. Sinharoy
(eds.), Languages, Compilers and Run-Time Systems for
Scalable Computers (Kluwer Academic Publishers, 1995),
57-69.

[9] A. Kumar, T. Lee, V. Tsotras, “A Load-Balanced Paral-
lel Sorting Algorithm for Shared-Nothing Architectures”,
Distributed and Parallel Databases, 3 (1), 1995, 37-68.

[10] J. C. Miller, B. M. Strauss III, “Implications of Automated
Restructuring of COBOL”, ACM SIGPLAN Notices, 22
(6), 1987, 76-82.

[11] M. E. Crovella, T. J. LeBlanc, “Parallel Performance
Prediction Using Lost Cycles Analysis”, in Proceedings
of Supercomputing '94 (IEEE Computer Society Press,
1994), 600-609.



