
Towards Service Level Agreement Based Scheduling on the Grid∗

Jon MacLaren, Rizos Sakellariou,
Krish T. Krishnakumar

University of Manchester
Oxford Road

Manchester M13 9PL
United Kingdom

Jon Garibaldi and Djamila Ouelhadj
University of Nottingham

Jubilee Campus
Nottingham NG8 1BB

United Kingdom

Abstract

The orchestration of complex workflows on the Grid is
emerging as a key goal for the Grid community. It is nec-
essary for these workflows to be executed reliably, respecting
any dependences; it is also desirable for the user to know (al-
beit approximately) when the workflow will complete. The
authors argue that meeting these goals will necessitate a ma-
jor shift in the underlying scheduling technology, which is
ultimately used to execute any computational tasks contained
in these workflows.
This position paper describes a recently funded project that
aims to establish a fundamental new infrastructure for effi-
cient job scheduling on the Grid, based on a notion of Service
Level Agreements. These are negotiated between the client
(user, superscheduler, or broker) and the scheduler, contain
information on acceptable job start and end times, and may
be re-negotiated during runtime.

Introduction
Within the Grid community at present, there is a keen
focus on the management and scheduling of workflows,
i.e. complex jobs, consisting multiple computational tasks,
connected either in a Directed Acyclic Graph (DAG), or
in a more general graph, incorporating conditionals and
branches. In order for a workflow enactment engine, such
as the GriPhyN Project’s Pegasus (PEGASUS 2004), or the
UNICORE Grid middleware (UNICORE 2004), to success-
fully orchestrate these workflows, it must be possible to
schedule multiple computational tasks onto (possibly) dis-
tributed resources, while still respecting any dependences in
the workflow. Current methods employed to schedule work
on compute resources within the Grid are unsuitable for this
purpose.

Although there has been a considerable amount of
work related to scheduling DAGs onto heterogeneous sys-
tems (Sakellariou & Zhao 2004; Topcuoglu, Hariri, & Wu
2002) this is not directly applicable in the Grid context
since it assumes a static environment where execution costs
are well-known in advance; only limited attempts have

∗This work is funded by the EPSRC Fundamental Computer
Science for e-Science initiative (Grant GR/S67654/01), whose sup-
port we are pleased to acknowledge.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

been made to consider situations where run-time changes
in the estimated costs may require some reconsideration of
scheduling decisions (Zhao & Sakellariou 2004). As a re-
sult, at the moment, the enactment of a workflow has to
rely on traditional, queue-based scheduling systems. Such
scheduling systems (often called “batch” schedulers) are
queue-based, and provide only one level of service, namely
‘run this when it gets to the head of the queue’, which ap-
proximates to ‘whenever’. This uncertainty means that any
workflow enactment engine must wait for components of the
workflow to complete beforebeginningto schedule depen-
dent components. This approach fails to hide the latencies
resulting from the length of the job queues, which then con-
trol and determine the execution time of the workflow.

New patterns of usage arising from Grid computing (and
other areas) have resulted in the introduction of advance
reservation to these schedulers, where jobs can be made to
run at a precise time. However, this is also an extreme level
of service, and is excessive for many workflows, where of-
ten it would be sufficient to know the latest finish time, or
perhaps the soonest start time and latest end time. Advance
reservation (in its current form) is also unsuitable for any
scenario involving the simultaneous scheduling of multiple
computation tasks, either as a sequence, or tasks that must be
co-scheduled. In such cases, a client (superscheduler or bro-
ker) must be able to simultaneously negotiate with a num-
ber of resources, only committing to suitable arrangements.
Current advance reservation APIs only allow the request of
a reservation, with a yes/no answer, where ‘yes’ denotes a
booking. This is inadequate, as good guessing is required
to book all the resources for suitable times, the difficulty in-
creasing exponentially with the number of resources.

Also, in its current form, advance reservation has several
disadvantages for the resource owner. When an advance
reservation is made, the scheduler must place jobs around
this fixed job. Typically, this is done using backfilling (Lifka
1995), which increases utilisation by searching the work
queues for small jobs, which can plug the gaps. In prac-
tice, this rarely works perfectly, and so the scheduler must
either leave the reserved processing elements empty for a
time, or suspend or checkpoint active jobs near to the time
of the reservation. These processes are not instantaneous;
e.g. checkpointing a 64 processor Unified Weather Model
job on an O3800 takes about 12 minutes, despite a small



total memory footprint of 3Gb; the checkpointing of capa-
bility 256 processor jobs can exceed one hour. Suspension
is faster, but can adversely affect the performance of the in-
coming job, due to the cost of swapping out memory used by
the suspended job when it is required by the incoming job.
Either way, there are gaps in the schedule, i.e., CPU time
which is not processing users’ work. As utilisation often
represents income for the service owner, there is a tendency
to offset the cost of the unused time by charging for advance
reservation jobs at a considerably higher tariff. As these new
patterns of usage increase, utilisation will fall further. While
it is possible to set tariffs high enough to compensate, this
brute-force solution is inefficient in terms of resources, and
undesirable for both users, who pay higher prices, and for
resource owners, who must charge uncompetitive prices.

These two current levels of service, ‘run this job when-
ever’ and ‘run this job at this precise time’ are two extremes
on a scale. A recently funded project aims to establish a fun-
damental new infrastructure for efficient job scheduling on
the Grid, based on a notion of Service Level Agreements;
these are negotiated between the client (user, supersched-
uler, or broker) and the scheduler, contain information on
acceptable job start and end times, and may be re-negotiated
during runtime. The approach followed in the project, which
allows a free exploration of the space between the aforemen-
tioned extremes, is briefly described below.

Approach
Service Level Agreements (SLAs) (Kelleret al. 2002) are
emerging as the standard concept by which work on the
Grid can be arranged and co-ordinated. An SLA is a bi-
lateral agreement, typically between a service provider and
a service consumer. These form a natural choice for rep-
resenting the agreed constraints for individual jobs. While
there are technologies for composing SLAs in XML-based
representations, e.g. WSLA (Ludwiget al. 2002), these em-
bed domain-specific terms; no terms for resource reservation
have yet been proposed within the Grid community. In any
case, it is certain that SLAs can be designed to include ac-
ceptable start and end time bounds and a simple description
of resource requirements. SLAs expressing conventional re-
quirements of “at time HH:MM” or “whenever” could still
be used where necessary, although these—especially the
latter—may not be accepted by the scheduler. The GGF
GRAAP Working Group (GRAAP 2004) is interested in
SLA terms for resource reservation, but has not yet put for-
ward any designs for what these SLAs should look like. It
is intended that the project will feed back a design of these
SLA terms to the community, contributing to the standard-
isation process. The project team expects to be able to use
existing negotiation schemes such as Contract Net (Smith
1980), while also contributing to and influencing the devel-
opment of emerging technologies, such as the negotiation
protocol WS-Agreement (Czajkowskiet al. 2003a), which
is being defined by the GGF GRAAP Working Group.

The Contract Net protocol is a high-level protocol for
achieving efficient cooperation in agent-based systems (Fer-
ber 1999; Wooldridge 2002) based on a market-like proto-
col. In this approach, a manager agent advertises a task to

execute by a task announcement to other agents in the net. In
response, contracting agents evaluate the task with respect to
their abilities and engagements and submit bids. The man-
ager agent evaluates the submitted bids and selects the most
appropriate bidder to execute the task, which leads to award-
ing a contract to the contractor with the most appropriate bid.

Advantages of the Contract Net protocol include the fol-
lowing: dynamic task allocation via self-bidding which
leads to better agreements; natural load balancing as busy
agents need not bid; flexibility as agents can be introduced
and removed dynamically; and reliability since it provides
a robust mechanism for distributed scheduling and failure
recovery.

Scheduling algorithms that offer a fundamentally more
advanced degree of flexibility will be required in order to
take full advantage of both the new timing information, and
of the SLA negotiation and re-negotiation processes. These
algorithms will have to optimize with standard criteria, such
as resource utilisation, but they must also be able to evaluate
a proposed SLA with respect to its current set of accepted
SLAs, and be able to indicate whether or not the SLA was
acceptable, returning a proposed SLA with additional infor-
mation in the affirmative case, or with suggested altered pa-
rameters in the negative case; this forms the scheduler’s abil-
ity to negotiate.

Scheduling models based on fuzzy methods have recently
attracted interest among the scheduling research commu-
nity (Slowinski & Hapke 2000). Often, scheduling research
employs a single evaluation function based on how well a
schedule meets a combination of various constraints, but
this approach overlooks the fact that a user may wish to
evaluate a schedule by multiple criteria (e.g., the user may
prefer an SLA offering high-cost / quick and reliable turn-
around over an alternative offering low-cost / uncertain turn-
around). The proposed scheduler will have the capability
of efficiently matching flexible user requirements expressed
within SLAs with available resources, initially based on the
assumption of perfect information and then extended to in-
corporate fuzzy, multi-criteria approaches.

The project will also consider the renegotiation of re-
sources by running jobs. Re-negotiation has been identified
as a long-term goal of the RealityGrid UK e-Science Pilot
Project (Czajkowskiet al. 2003b, Sec. 4.2); here, simula-
tions may be collaboratively visualized and steered as the
simulation runs. Renegotiation is required for multiple rea-
sons: to extend the running time of an increasingly interest-
ing simulation; to increase the computational resources ded-
icated to either the simulation, thereby accelerating the ex-
periment, or to the visualization, in order to improve the res-
olution of the rendering; resources might also be given back
when the improved speed or picture quality was no longer
required. Also, more generally, resources may fail unpre-
dictably, high-priority jobs may be submitted, etc. In a busy
Grid environment, SLAs would be constantly being added,
altered or withdrawn, and hence scheduling would need to
be a continual, dynamic and uncertain process. The intro-
duction of re-negotiation, permitted during job execution (as
well as before it commences) makes the schedule more dy-
namic, requiring more frequent rebuilding of the schedule.



Shift in Problem Domain
In attempting to guarantee start and finish bounds for
all jobs, the scheduling problem becomes significantly
changed. In the traditional batch processing model, jobs run
until they fall over, finish, or run over time and are killed by
the scheduler. As there is little advance planning required,
when a job completes far ahead of time, the schedule can
be revised; there is no impact on other jobs, as there is no
expected Quality of Service. However, if the scheduler has
made assurances regarding each job in the system, the early
termination of a job could result in either resources being
left idle, or SLAs being broken. To avoid this, the sched-
uler may try to ensure that there are always a number of
“flexible” SLAs in its schedule, i.e. those with easily-met
constraints. In addition, the scheduler must also allow for
uncertainties in the data supplied by the user, e.g. expected
run time.

Given the fact that there is always a significant percentage
of jobs which fall over immediately (due to problems stem-
ming from the job submission script, such as, syntax errors,
incorrectly specified files, etc), the scheduler would likely
employ overbooking to some extent. There are many sim-
ilarities between this problem and scenarios such as airline
seat and hotel room booking. However, there are two fea-
tures to this problem that make it more complex than either
of these scenarios, placing it on the cutting edge of schedul-
ing research: first, the permitted renegotiation of resources,
which makes the problem very dynamic; and secondly, the
time constraints in which the schedule must be solved.

A scheduler will also want to retain some flexibility so
that it can accept short-notice jobs, for which a high price
would be charged. It is also possible that a scheduler would
decide to break a few smaller or cheaper SLAs in order to
get such work. Regardless of the optimisation objective in
such cases, something that the scheduler would have to cope
with, a model of client behaviour might also be needed to
retain flexibility.

Conclusion
To conclude, the enormous potential of the Grid cannot be
fully realised until fundamental development of powerful
new scheduling algorithms has taken place. This project
will investigate and develop novel scheduling approaches
which will address the critical issues of flexibility and re-
negotiation of user requests and will seek to address the
problem of handling uncertainty and imprecision in both
compute resources and user requirements. The method will
have to negotiate a Service Level Agreement with the sub-
mitter of each job; the SLAs will include the possibly im-
precise acceptable job start and end times. This paradigm
shift will enable users and super-schedulers alike to success-
fully schedule and orchestrate complex multi-part Grid jobs
across multiple resources.

References
Czajkowski, K.; Dan, A.; Rofrano, J.; Tuecke, S.; and Xu,
M. 2003a. Agreement-based Service Management (WS-

Agreement). Draft Global Grid Forum Recommendation
Document.
Czajkowski, K.; Pickles, S.; Pruyne, J.; and Sander, V.
2003b. Usage Scenarios for a Grid Resource Allocation
Agreement Protocol.Draft Global Grid Forum Informa-
tional Document.
Ferber, J. 1999.Multi-agent systems: Introduction to Dis-
tributed Artificial Intelligence. London: Addison-Wesley.
GRAAP. 2004. GRAAP-WG, Grid Re-
source Allocation Agreement Protocol Work-
ing Group in the Global Grid Forum. Website:
https://forge.gridforum.org/projects/
graap-wg/ .
Keller, A.; Kar, G.; Ludwig, H.; Dan, A.; and Hellerstein,
J. L. 2002. Managing Dynamic Services: A Contract Based
Approach to a Conceptual Architecture.Proceedings of
the 8th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2002)513–528.
Lifka, D. A. 1995. The ANL/IBM SP Scheduling System.
Proceedings of the IPPS ‘95 Workshop “Job Scheduling
Strategies for Parallel Processing”949:295–303.
Ludwig, H.; Keller, A.; Dan, A.; and King, R. 2002. A Ser-
vice Level Agreement Language for Dynamic Electronic
Services.Proceedings of the 4th IEEE International Work-
shop on Advanced Issues of E-Commerce and Web-Based
Information Systems (WECWIS 2002)25–32.
PEGASUS. 2004. The Pegasus Project:
Planning for Execution in Grids. Website:
http://www.isi.edu/˜deelman/pegasus.htm .
Sakellariou, R., and Zhao, H. 2004. A Hybrid Heuristic for
DAG Scheduling on Heterogeneous Systems.Proceedings
of the 13th International Heterogeneous Computing Work-
shop.
Slowinski, R., and Hapke, M. 2000.Scheduling under
Fuzziness. Physica Verlag.
Smith, R. G. 1980. The Contract Net Protocol – High-
level Communication and Control in a Distributed Problem
Solver. IEEE Transactions on Computers29(12):1104–
1113.
Topcuoglu, H.; Hariri, S.; and Wu, M. 2002. Performance-
effective and low-complexity task scheduling for hetero-
geneous computing.IEEE Transactions on Parallel and
Distributed Systems13(3):260–274.
UNICORE. 2004. The UNICORE Grid Middle-
ware. Available from the UNICORE Forum website:
http://www.unicore.org/ .
Wooldridge, M. 2002.An Introduction to Multi-agent Sys-
tems. Winchester, England: John Wiley and Sons Ltd.
Zhao, H., and Sakellariou, R. 2004. A Low-Cost
Rescheduling Policy for Dependent Tasks on Grid Com-
puting Systems.Proceedings of the 2nd Across Grids Con-
ference.


