Compile-Time Minimisation of Load Imbalance in Loop Nests

Rizos Sakellariou, John R. Gurd
Department of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, U.K.
e-mail: {rizos, john}@cs.man.ac.uk

Abstract

Parallelising compilers typically need some performance es-
timation capability in order to evaluate the trade-offs be-
tween different transformations. Such a capability requires
sophisticated techniques for analysing the program and pro-
viding quantitative estimates to the compiler’s internal cost
model. Making use of techniques for symbolic evaluation
of the number of iterations in a loop, this paper describes
a novel compile-time scheme for partitioning loop nests in
such a way that load imbalance is minimised. The scheme
is based on a property of the class of canonical loop nests,
namely that, upon partitioning into essentially equal-sized
partitions along the index of the outermost loop, these can
be combined in such a way as to achieve a balanced dis-
tribution of the computational load in the loop nest as-a-
whole. A technique for handling non-canonical loop nests is
also presented; essentially, this makes it possible to create a
load-balanced partition for any loop nest which consists of
loops whose bounds are linear functions of the loop indices.
Experimental results on a virtual shared memory parallel
computer demonstrate that the proposed scheme can achieve
better performance than other compile-time schemes.

1 Introduction

In order to evaluate the performance trade-offs of different
transformations, parallelising compilers are usually armed
with some performance estimation capability; this issue has
been addressed recently by a number of researchers [3, 7, 19].
Although the implementation details of these schemes vary,
generally they attempt to identify sources of performance
loss, such as load imbalance, interprocessor communication,
cache misses, etc. {4, 6]. This has two implications for a
parallelising compiler. Firstly, the compiler must be capa-
ble of extracting quantitative information from programs —
since parallelising compilers usually target the parallelisa-
tion of loop nests, significant information lies in the number
of times each loop will be executed; this can be used, for
instance, to estimate the amount of work assigned to each
processor, or the number of non-local accesses to data [7].

Penmission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advanage. the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or 10 redistribute to lists, requires specific
permission and/or fee

JCS 97 Vienna Ausltria
Copyright 1997 ACM 0-89791-902-5/97/7..83.50

Secondly, the compiler should avoid postponing critical de-
cisions concerning the parallelisation process until run-time,
since doing so reduces the information available and, con-
sequently, the accuracy of its performance prediction. One
such critical decision is the mapping of loop nests onto a par-
allel architecture; that is, the way that the loop iterations
are allocated to processors for execution.

The problem of mapping loop nests has attracted sig-
nificant interest; traditionally, researchers have inclined to-
wards run-time based schemes [8, 11, 13, 18]. Their under-
lying argument has been that information not available at
compile-time may permit a more balanced distribution of the
workload, especially in cases where different iterations of the
parallel loop perform different amounts of work. Although
the balanced distribution may be achieved at the expense
of other overheads (e.g., increasing the number of memory
accesses so as to balance the computational work), run-time
mapping schemes seem to be preferable whenever the exe-
cution of the loop nest depends on expressions whose value
is unknown at compile-time. However, in a number of cases,
the resulting pattern of workload variation is highly regu-
lar, and it may be feasible to devise compile-time mapping
schemes. This is the case, for example, when each iteration
of the parallel loop performs a different amount of work as
a result of enclosed loops whose execution depends on the
value of the index of the parallel loop.

This theme has been investigated by Haghighat and Poly-
chronopoulos [9, 10], who suggest that symbolic cost es-
timates can be used to design robust compile-time strate-
gies for mapping loop nests. They propose balanced chunk
scheduling, a mapping scheme for triangular perfect loop
nests; the main idea is to partition the outermost loop in
such a way that each processor executes the innermost loop
body the same (or almost the same) number of times. How-
ever, balanced chunk scheduling can only be applied to a
limited class of loop nests and, in practice, it is often more
desirable that the outermost, parallel loop be distributed in
equal-sized partitions; for instance, in a data parallel envi-
ronment, if a triangular loop nest is followed by a rectangular
loop nest in which the same arrays are involved, an unequal
partitioning (in this respect) would lead to significant com-
munication and/or load imbalance overhead.

In this paper we develop a general approach for compile-
time mapping of parallel outer loops in the body of which
there are inner loops whose execution depends on the outer
loop index. We make use of symbolic cost estimates as
a means of evaluating our strategy, and minimisation of
load imbalance is the main objective. By avoiding options
which would tend to increase other sources of overhead, this

277

scheme achieves good practical results.

The remainder of the paper is structured as follows: Sec-
tion 2 provides a brief background on measuring load imbal-
ance and on symbolic counting of the number of loop iter-
ations. Section 3 forms the main body of this paper; after
first describing a strategy for mapping the class of canonical
loop nests, we then show how to transform non-canonical
loop nests into multiple canonical loop nests. This strategy
is evaluated and compared with other mapping schemes in
Section 4. Section 5 summarises the paper and its results.

2 Background

2.1 Load Imbalance

We define the total (computational) workload in a parallel
code fragment (in this paper, this will always be a parallel
loop nest) to be Wiy, distributed among p Pprocessors in
such a way that each processor i, 0 £ i < p, is assigned

a workload equal to W;.} Clearly, Y7~ ' W: = Wioe. This
distribution embodies a load imbalance, i given by
L= max(W. - Wtot) = Wmaz - “;:ot’ (1)
and a reletive load imbalance, Lgr, defined as
L Wimaz — Wiot/p Wiot
Lg= = =1~ . 2
R Winaz Wiaz PWmaz ()

where Wper = max(Wo,Ws,...,Wp_1). It can be easily
shown that Lg takes values in the interval [0, 1—1/p]; values
close to zero denote a small impact on performance. When,
L = Ly = 0, that is, for all ¢, W; = W,ot/p, the code

exhibits perfect load balance.

2.2 Counting the Number of Loop Iterations

In the case of loops, an estimate for the values of W; in (1)
can be derived by considering the number of times that each
part of the loop body is executed. This corresponds to the
(complex) problem of enumerating the integer points of a
polytope [1]. In the context of loop nests, some techniques
to compute this are described in [5, 14, 17].

In general, the number of times, n, that a single state-
ment surrounded by m loops is executed is given by:

u) ug Um
DIV It

iy=ly dg=lp

3)

tm=lm

where I}, u; are the lower and upper bounds, respectively, of
the j-th loop, 1 < j < m. If, for every loop, the loop bounds
are constant, integer expressions whose values are known at
compile-time, the loop nest is rectangular (in m-dimensions)
and it is trivial to show that n = ;"=l :‘J_’zli 1. How-
ever, in a variety of situations, the loop bounds may be
non-constant (for instance, dependent on the index of an
outer loop), or may contain expressions whose value is not
known at compile-time. For the latter, it is important to
know, when evaluating sums such as those in (3), whether
u; 2 ;. In this paper, whenever this is the case, we split the
loop iterations in such a way that the upper bound is always
greater than or equal to the lower bound; this is discussed
in Section 3.4.

! The units of workload may be the number of operations executed,
or the CPU cycles needed to execute the code on some machine.

278

3 Partitioning for Load Balance

3.1 Rectangular Loop Nests

Based on the discussion in Section 2, the problem of par-
titioning the iterations of a single loop with lower bound [
and upper bound u among p processors can be expressed as
that of finding Iy, ux,0 < k < p, such that

Yp_] -1 u
21—21+21+ +p21_p2i1
i=lg i=l, k=0 j=I,

where lp = |, ux = lgg1 — 1, for 0 <k <p-1, up_1 = u,
and, for all lk,uk,

HE

where n = v — I + 1. The following satisfy both (4) and (5):

21<

=l

()

o Partitioning by decreasing order:

lg =1+ k|n/p) + min(nmod p, k), k=0,1,2,...,p—1,
where the first (n mod p) partitions contain [n/p) iterations,

while the rest contain |n/p].
e Partitioning by increasing order:

ly =l+k|n/p]+max(0, k—p+(n mod p)), k=0,1,2,...,p—1,
where the last (n mod p) partitions contain [n/p] iterations,
while the rest contain |n/p]|.

If nn is a multiple of p, both relations reduce to

le=1+knfp, k=0,1,2,... . p—1,

and the loop is divided into equal partitions. In this case,
assuming that the body of the loop nest does not contain
statements whose execution depends on the value of the in-
dex of the outer loop, perfect load balance is achieved. If n
is not a multiple of p, then a relative load imbalance equal
to (p — n mod p)/(n + p — n mod p) is expected, a quantity
which approaches zero if n 3> p.

These partitioning techniques can also be applied to the
outermost loop of a loop nest, whether or not it is perfectly
nested. If the bounds of the inner loops are not a function
of the index of the outer loop, nor are there any conditional
statements in the loop body whose execution depends on
the value of the index of the outer loop, then perfect load
balance may be achieved.

For perfectly nested loops, partitioning may be applied
to the iterations of more than one loop at the same time.
To illustrate this, assume that partitioning for p processors
takes place over two loops, the first being executed n times,
and the second being executed m times. Minimising L in
(1) requires us to find p1, p2, where p = p; - p2, such that
21 [%] is a minimum. Instead of solving this, it may be
preferable to apply loop coalescing [12] before partitioning;
since the inequality [nm/(p1p2)] < [n/p1][m/p2] always
holds [15], the transformed coalesced loop normally results
in L smaller than the original loop nest.

In the following sections, partitioning is considered only
with respect to the index of the outermost loop.

DOALL I=L,U DOALL I=L,A
(statements.1) (statements.1)
IF (I.GT.A) THEN (statements.3)
(statements.2) ENDDO
ELSE DOALL I=A+1,U
(statements.3) (statements.1)
ENDIF (statements.2)
ENDDO ENDDO

a) Loop with conditional. b) After indez set splitting.

N=A-L+1
M=U-A
PARALLEL REGION(NUMTHREADS=P,PRIVATE=I,K,LK,UK)
K=IPR_MID{)
LK=L+K+FLOOR(N/P)+MIN(MOD(N,P) ,K)
UK=L+ (K+1)*FLOOR(N/P)+MIN(MOD(N,P) ,K+1)
DO I=LK,UK
(statements.1)
(statements.3)
ENDDO
LK=A+1+K+*FLOOR(M/P)+MAX (0,K~P+MOD(M,P))
UK=A+1+(K+1)*FLOOR(M/P)+MAX(O,K+1-P+MOD(M,P))
D0 I=LK,UK
(statements.1)
(statements.2)
ENDDOQ
CxKSR* END PARALLEL REGION

C*KSR=*

c) After loop partitioning.

Figure 1: Partitioning loop nests containing conditionals.

3.2 Loop Nests Containing Conditionals

If the loop body contains conditionals whose execution does
not depend on the value of the index of the outer loop, then
the load imbalance resulting from the partitioning schemes
described so far is not affected; each iteration of the outer
loop still performs the same amount of work and, conse-
quently, perfect load balance can be achieved. In the special
case where an inner loop conditional involves the index of
the outer loop and a constant, then, by applying indezr set
splitting [20] prior to partitioning, the conditional may be
removed [2].

For instance, let | < i < u bound the index i of the
outermost, parallel loop, and I, < i < u; correspond to the
logical expression evaluated by a conditional in the inner
loop body. Then, the original loop nest can be split into
three consecutive loop nests, whose indices take values in
the following intervals, respectively:

[, min(l; —1,w)), [max(l,!:), min(u, u:)}, [max(uz+1,1),4}.
6

The second interval contains the values of ¢ which satisfy
both ! < i < uand!l, <1< u;. Insome cases, the upper
bound of an interval will be smaller than its lower bound,
and the corresponding loop nest will never be executed; in
this case, it can be eliminated. Assuming that at least two of
the intervals are non-empty, the question is how to partition
the resulting loop nests. There are two main approaches
which are illustrated in the following example.

Consider the code shown in Figure 1.a;> applying (6)
and assuming that, for the values of L, U, 4, it is known at
compile-time that L<A<U, the code shown in Figure 1.b re-
sults. One approach to partitioning this code is to partition
each loop using either of the schemes described in Section

2 The DOALL construct denotes a parallel loop.

279

DOALL 7 =), u,
(statements.1)
DO j2 =21t + l32, u21i + uz22
(statements.2)

LYo JIE Pty S U FU I SO
YU J3 — ¥31¢ T L32J2 T 33, 43l T

©3272 + u33
(statements, including m — 4 DO loops)

DO]m = lm1i+lm2j2+-~-+lm'm—1]'m—-l +lmm1

4 um1i+um2j2+--~+um,m-—1jm—l+umm
(statements.m)
ENDDO
(statements, including m — 4 ENDDO)
ENDDO
(statements.2m-2)
ENDDO
(statements.2m-1)
ENDDO

Figure 2: A canonical loop nest of depth m.

3.1, and then assign the same partition of each loop to the
same processor; for both loops, if the number of iterations
is a multiple of the number of processors, p, then perfect
load balance is achieved. In the general case, let n,m be
the number of loop executions, and W, W, be the work-
load in the body of each loop, respectively; assuming that
the same partitioning scheme (either by decreasing or in-
creasing order) is applied to both loops, then the resulting
Lis given by L = [2] W) + [2] W, — 2¥13mW2 When-
ever (n mod p) + (m mod p) < p, the load imbalance can
be reduced by partitioning one of the loops by decreasing
order and the other one by increasing order. This approach
is followed in the code shown in Figure 1.c.?

3.3 Canonical Loop Nests

The partitioning schemes for rectangular loops presented in
Section 3.1 result in a small value of load imbalance, when
each iteration of the paraliel loop performs the same amount
of work. A simple counter-example is that of a trianguler
loop nest in which the index of the outer loop, i, takes values
from 1 to n, while the index of the inner loop takes values
from 1 to i. When this is mapped onto p processors, then,
for p, n > 2, the relative load imbalance has a lower bound of
1/4. Tt is apparent that the partitioning schemes described
so far are inadequate for minimising load imbalance; never-
theless, using them as a basis, more effective schemes can
be devised.

In the remainder of this paper we examine loop nests of
depth m having the general form shown in Figure 2. It is
assumed that the sets of statements labelled statements.1,
statements.2, ..., statements.2m-1 do not include state-
ments whose execution depends on the value of the index
of a surrounding loop; hence, the workload corresponding
to each set of statements remains the same for any single
execution of the outer loop. This does not exclude the pos-
sibility that, inside any of the above-mentioned sets of state-

3 The KSR directives are used to denote parallelism in the parti-
tioned code. Thus, the code enclosed within the PARALLEL REGION and
END PARALLEL REGION directives is executed by all P processors, but us-
ing different data for each processor; this is achieved by means of a
library function, IPRMID(), which returns an integer between 0 and
P-1 depending on which processor executes the code. The variables
I, X, LK, and UK are declared as PRIVATE, meaning that each processor
has its own local copy of the variable.

ments, DO ... ENDDO loops which perform the same number
of iterations regardless of the value of i, may exist. Thus,
literally, the depth of a loop nest may be higher than m.
However, in the following, only those loops having bounds
dependent (directly or indirectly) on the index of the outer-
most loop are considered; any remaining loops do not affect
the strategy and they are omitted.

Definition 1 Consider the loop nest of depth m, m > 2,
shown in Figure 2, in which the body of the outermost loop
contains m — 1 nested loops; this loop nest is a canonical
loop nest of depth m, if and only if u1 > U, and, for all
i,J2,J3,. -, Jm, the following inequalities always hold:

Ui+ oo < u2it + uz2
Ia11 + lazj2 + 133z < ua1i + uzzjz + uss

lmli+lm2j2 + ... +lmm < umli+um2j2 + ...+ Unm

where, for each of jx, 2 < k < m, at least one of the differ-
ences (ler — uk1), (le2 — uk2), ..., (lk,k—1 — Uk,k—1) 1S nON-
zero, and the set (statements.m) is not empty.

Based on Definition 1, we can prove [15]:

Theorem 1 Consider any canonical loop nest of depth m.
Assume that the outer loop is partitioned into 2p™ ™" equal
partitions; then, for all k, 0 < k < 2p™~! — 1, the k-th
partition embodies workload Wi given by

m-—1
Wi = Z Cik', Ci constants.

1=0

In order to illustrate Theorem 1, consider again the tri-
angular loop nest in which the index, i, of the outer loop
takes values from 1 to n, and the index of the inner loop
takes values from 1 to i. Assuming that i is partitioned into
p equal partitions, the k-th partition, 0 < k£ < p, embod-
ies workload Wi = C:k + Co, for Co,C; constants. This
property leads to the following {15):

Theorem 2 Consider any loop nest which is partitioned
along the indez of the outer loop into 2p™ ', m > 2, equal
partitions. If, for allk, 0 < k < 2p™~' -1, the k-th partition
embodies workload, Wy, given by

m-—1
Wy = z Cik*, where C; constants,
i=0

then the loop nest can be partitioned into p partitions of equal
workload; the set of partitions along the index of the outer-
most loop which compose the k'-th, 0 < k' < p, partition of
the loop nest is given by

p"‘2—1 m-3
se = |J {{2pi+(k'+ZLi/p"J)modp}u
i=0 i=0

Eoi+1) -1k + S Li/p') modp}} @

j=0

For m = 2, (7) reduces to Sy = {k'}U{2p—Kk -1} [16).

DOALL I=1,N
DO J=-2,3%I-1
DO K=J+I,5«I+2
(statements)
ENDDO
ENDDO
ENDDO

a) Unpartitioned loop nest.

C --- assuming that MODULO(N,2#P*P)=0 ---
C*KSR* PARALLEL REGION(NUMTHREADS=P,
C*KSR+«k PRIVATE=I1,J K,LK,UK,K1,K2)

Ki=IPR_MID()

DO II=0,P-1
K2=2+P»«II+MOD(K1+II,P)
LK=1+K2#N/ (2+%P*P)
UK=1+(K2+1) N/ (2+P*P)-1
DO I=LK,UK

DD J=-2,3*I-1
DO K=J+I1,5%I+2
(statements)
ENDDO
ENDDO
ENDDQ
K2=2#P*(1I+1)-1-MOD(K1+II,P)
LK=1+K2#N/ (2%P*P)
UK=1+(K2+1)*N/ (2%P»P)~1
DO Is=LK,UK
DO J=-2,3*I-1
DO K=J+I,5%I+2
(statements)
ENDDO
ENDDO
ENDDO
ENDDO
C*KSR* END PARALLEL REGION

b) After loop partitioning.

Figure 3: Example of partitioning a loop nest of depth 3.

Corollary 1 Consider a canonical loop nest of depth m; z[
the index of the outer loop can be partitioned into 2p™~
equal partitions, then the loop nest can be partitioned into p
partitions of equal workload.

The following example illustrates Theorems 1 and 2:

Example 1 Consider the loop nest shown in Figure 3.a.
Assuming that N > 1, then the inequalities -2 < 3+I-1 and
J+I < 5#I+2 always hold, while, for each inequality, the co-
efficients of I are non-zero; hence, the requirements of Defi-
nition 1 are satisfied and the loop nest is canonical of depth
3. Thus, based on Theorems 1 and 2, and assuming that
the number of iterations of the outer loop, N, is a multiple
of 2p?, where p is the number of processors, partitioning the
loop nest according to (7) leads to perfect load balance; the
partitioned loop nest is shown in Figure 3.b. a

In the general case, where the number of iterations of
the outer loop is not a multiple of 2p™*, the partitioning
technique suggested by Theorem 2 can be applied, provided
that the outer loop is partitioned according to one of the
partitioning schemes described in Section 3.1. In this case,
a small value of load imbalance is expected.

Theorems 1 and 2 also apply to loop nests in which there
are more than one inner loop at the same level (i.e., loops
which are surrounded only by the same outer loops) whose
bounds depend on the index of a surrounding loop; the nec-

DOALL I=1,1000

DO J=1,1
DD K=2+I-J,1000
ENDDO

ENDDO

(statements.2)

DO J=2+1-500,1000
DO X=I+J,1000

DOALL

I=1,760
DO J=MAX(1,2+1-1000),I
DD K=2¢I-J,1000
{statements.1)
ENDDO
ENDDO

(atatamant
istatemsnt

DO J=2+I-500,MIN(1000,1000-1)
DO K=I+J,1000
(statements.3)
ENDDQ
ENDDO

23
z;

DOALL I=i,500
DO J=1,I
DO K=2+I-J,1

ENDDO

(statements.2)

DO J=2+I-500,1000-1
DO K=I+J,1000

DOALL

I=501,750
DO J=2+1-1000,1
DO K=2+I-J,1000
(statements.i)
ENDDO
ENDDQ

fatatamanea AY)
\statementis. zj

DO J=2+1-500,1000-1
DO K=I+J,1000
(statements.3)
ENDDO
ENDDO

ENDDO
DOALL I=751,1000
DO J=MAX(1,2+I-1000),I
DO K=2+I-J,1000
(statements.1)
ENDDO
ENDDO
(statements.2)
ENDDO

(statements.3)
ENDDO
ENDDO
ENDDO

a) Unpartitioned loop nest. b) After initial indezx set splitting.

ENDDO
DOALL I=751,1000
DO J=2+I-1000,1
DO K=2+I-J,1000
(statements.1)
ENDDO
ENDDQ
(statements.2)
ENDDO

(statements.3)
ENDDO
ENDDO
ENDDO

c) Transformed code.

Figure 4: Transforming a non-canonical loop nest to canonical loop nests.

essary proviso is that, for any loop in the nest, the lower
bound is always less than or equal to the upper bound.

3.4 Non-Canonical Loop Nests

Section 3.3 describes an approach to partitioning canonical
loop nests, as introduced in Definition 1. In this section
we re-consider loop nests having the general form shown
in Figure 2, but without the restrictions associated with
Definition 1, apart from the requirement that {; < u; (the
loop nest is non-empty). Applying index set splitting, the
original loop nest can be transformed into multiple adjacent
loop nests each of which either satisfies the requirements for
partitioning inherent in Theorem 2 or is rectangular.

Consider the loop nest shown in Figure 2; the first step
consists of finding the values of 7 which satisfy the inequali-
ties I; <1 < w1 and Iy1 4132 < ugyt + ug2. If no such values
exist, then the loop with index j2 is never executed. If there
are such values, given by I} <1 < u;, the loop with index j;
is always executed; therefore, this loop and the outermost
loop together meet the criteria for a canonical loop nest of
depth 2, and no index set splitting is required. Conversely,
if there is a subset of the values of i which satisfies both
inequalities, say I; <1 < u}, where u} < u;, then the outer
loop must be split into two consecutive loops, the first of
which corresponds to the values given by [} < i < v}, and
the second of which corresponds to u} + 1 < i < uy; for
the former values, the loop with index j; and the outer loop
together meet the criteria for a canonical loop nest of depth
2, while, for the latter values, the loop with index j2 is never
executed.

If, as a result of the previous step, there are some values
of ¢ for which the two outermost loops form a canonical
loop nest of depth 2, then the next step consists of finding
values of i and j; for which the three outermost loops form
a canonical loop nest of depth 3. These values must satisfy
the system of inequalities:

I <i<u
It + 122 < jo < uzit + uae
{311 + {3272 + {33 < uari + u3zj2 + uas,

281

where the first inequality corresponds to those values of i
that make the two outermost loops a canonical loop nest of
depth 2.

The same procedure is repeated for each loop, succes-
sively, until there are no remaining loops or else a given sys-
tem of, say k, 2 < k < m, inequalities has no solutions (this
would imply that the loop with index ji is never executed
for the values of i, j2,...,jrk—1 that make the k — 1 outer-
most loops form a canonical loop nest of depth k —1). Note
that, in the case where the original loop nest contains more
than one consecutive loop at some level, the same procedure
should be applied for each loop separately.

These ideas are illustrated in the following example:

Example 2 Consider the loop nest of depth 3 shown in
Figure 4.a. Since there are two consecutive loop nests in the
body of the I loop, the procedure described above must be
applied separately for each of them.

For the first loop nest, the J loop and the outermost
loop form a canonical loop nest of depth 2; and the K loop
joins them to form a canonical loop nest of depth 3 when-
ever 2+I-J < 1000 <= J > 2+#I-1000. Thus, the J loop
must be split into two consecutive loops depending on ap-
propriate values of J; the bounds of the first such loop will
be 1 and MAX(1,2+I-1000)-1, and of the second such loop
MAX(1,2*I-1000) and I. Since the body of the J loop does
not contain statements other than the X loop, no statements
are executed in the case when 1 < J < MAX(1,2+I-1000)~1;
hence, the corresponding loop can be eliminated.

For the second loop nest, the J loop and the outer-
most loop form a canonical loop nest of depth 2 when
2+#I-500 < 1000 <== I < 750; the index of the I loop is
split accordingly. The K loop joins in to form a canonical
loop nest of depth 3 when I+J < 1000 <> J < 1000-1.

The code resulting after applying the necessary
transformations is shown in Figure 4.b. Evaluating
MAX(1,2#I-1000), by replacing it with appropriate condi-
tionals which are then removed using index set splitting (see
Section 3.2), results in the code shown in Figure 4.c (note
that MIN(1000,1000-1) is always equal to 1000-1 since I

¥ | Mapping Number of processors

scheme 2 4 12 16
L Lr L Lr L Lr L Lr L Lr
256 | KAP/MARS 1056768 .428 923648 .566 577024 .620 356749.3 .802 319360 .644
cYc 8256 .006 12416 .017 14560 .040 15331.3 .061 15760 .082
BCS 382 .000 13271 .018 7183 .020 6329.3 .026 9828 .053
CAN-2 262144 156 229376 .245 143360 .288 82091.3 .258 79360 .310
CAN-3 0 .000 0 .000 0 .000 50.3 .000 512 .003
1024 | xaP/MaARs || 67239936 428 | 58818560 .567 | 36757504 .621 | 22978604 .606 | 20346880 .645
cYc 131328 .001 197120 .004 230272 .010 241550 016 247360 .022
BCS 151255 .002 118940 .003 193075 .009 322800 .021 281770 .025
CAN-2 16777216 .158 | 14680064 .247 9175040 .290 6228806 .294 5079040 .312
CAN-3 0 .000 0 .000 0 .000 48713 .003 0 .000

Table 1: Values of L and Lg for upper triangular matrix multiplication.

takes only positive values).

Finally, partitioning I for each loop nest, as shown in
Section 3.2, and grouping the partitions according to (7) for
m = 3, the partitioned code leads to perfect load balance
when using 5 processors, and, in general, a relatively low
value of load imbalance [15). a

4 Evaluation and Experimental Results

A series of experiments has been conducted in order to eval-
uate the performance obtained by the partitioning strat-
egy described above, compared with other compile-time ap-
proaches. Two routes have been adopted for analysing the
results when applying different mapping schemes: the first
compares the values of load imbalance, L, and relative load
imbalance, Lr, computed as shown in Section 2.1; the sec-
ond compares the resulting performance on a virtual shared
memory computer, the KSR1. Our objectives have been not
only to evaluate the practical efficacy of the new partition-
ing schemes, but also to establish whether the theoretical
values for L and/or Lg are a sound means for justifying the
selection of a particular mapping scheme.

Two benchmark programs are used (see below). The
compared approaches are denoted KAP, MARS, CYC, BCS,
and CAN: KAP corresponds to the mapping strategy of the
KAP auto-parallelising compiler; MARS corresponds to the
mapping strategy of the MARS experimental parallelising
compiler {3]; cYC corresponds to a cyclic scheme for map-
ping the iterations onto processors (i.e., processor 0 executes
iterations 1,p+1,2p+1,.. ., processor 1 executes iterations
2,p+2,2p+2,...,in general, processor i, 0 < i <p-1, ex-
ecutes iterations i+1+kp,k =0,1,2,...,n/p—1 [11]); BCS
corresponds to balanced chunk scheduling [10] (extended to
support loop nests of depth 3); and the general term CAN
corresponds to the partitioning scheme described by (7). A
suffix is added to CAN to distinguish between different val-
ues of m and/or transformations applied; these are described
below, as appropriate.

4.1 Upper Triangular Matrix Multiplication

The code for the first benchmark, shown below, performs
the multiplication of two upper triangular n x n matrices.

DOALL J=1,N
DO I=1,J
DO K=I,J
A(I,D)=A(1,3)+B(I,K)*C(K,J)
ENDDO
ENDDQ
ENDDO

282

Clearly, the loop nest is canonical of depth 3 (see Defini-
tion 1), and the partitioning scheme CAN-3, based on (7) for
m = 3, may lead to perfect load balance. For comparison,
the partitioning scheme CAN-2, corresponding to m = 2, is
also implemented.

The load imbalance, L, in terms of the number of times
the assignment statement of the loop body is executed, and
the corresponding relative load imbalance, Lg, for two dif-
ferent values of N, 256 and 1024, are shown in Table 1. MARS
and KaP exhibit high L and Lgr, CAN-2 exhibits relatively
smaller values, while the remaining three mapping schemes
exhibit significantly smaller values; in all cases, CAN-3 ex-
hibits the smallest values.

The partitioned programs were executed on the KSR1,
using the same two values of N; the resulting performance
is depicted in Figures 5 and 6, where the ideal line assumes
linear speed-up. In both graphs, kAP and MARS perform
worst of all while CAN-3 performs best; the performance
of CAN-3 is comparable with that of cCYc and BCs. These
results are consistent with the performance that might be
anticipated from the values of L and Lg shown in Table 1.

4.2 Banded SYR2K

The second benchmark, banded symmetric rank-2k update
(SYR2K), contains non-affine bounds, as shown below:

DOALL I=} MIN(N,2#BB-1)
DO J=MAX(1-BB,1-N) ,MIN(BB-I,N-I1)
DO K=MAX(1,I+J) ,MIN(N+J,N)
C(-I-J+K+1,1)=C(~I~J+K+1,I)+A(K,-I-J+BB+1) *B(K,-J+BB)
+A(K,-J+BB)*B(K,-I-J+BB+1)
ENDDD
ENDDO
ENDDO

Clearly, this loop nest is not canonical. However, con-
verting the MIN and MAX functions to IF statements, and
removing the latter by index set splitting (see Section 3.2),
the code can be transformed into four consecutive canonical
loop nests of depth 3, assuming that N > 2+BB-1 [15]; this
version is denoted CAN-3t. For comparison, two additional
mapping schemes are also implemented; they are based on
direct application of the partitioning schemes described by
(7), for m = 2 (caN-2) and m = 3 (CAN-3), to the original
loop nest, regardless of the fact that the latter is not canon-
ical. No version based on balanced chunk scheduling was
implemented since loop nests having bounds containing MIN
and MAX functions do not conform to its requirements.

The load imbalance, L, in terms of the number of times
the assignment statement of the loop body is executed, and
the corresponding L, for two pairs of values for N and BB,
{512,64}, and {1024,256}, are shown in Table 2. MARS

35

25

1/(Execution Time) (1/sec)

Figure 5: Performance of mapping schemes on the KSR1 for

8
Number ot Processors

12 16

upper triangular matrix multiplication; N = 256.

0.03
0.025
5 0.02

g
= 0015

%
w 001
0.005
0

Figure 6: Performance of mapping schemes on the KSR1 for

8
Number of Processors

12

N, | Mapping Number of processors
BB | scheme 2 4 12 16
L Lr L Lr T Lr L Lr L Tr
512, | KAP/MARS 1004888 .350 764592 450 447832 450 3316885 516 24063060 .507
6 cYc 15360 .008 23056 .024 26936 .055 28645 .084 28940 .110
CAN-2 992 .001 19216 .020 17920 .037 12597 .039 9920 .041
CAN-3 8192 .004 1024 .001 128 .000 1633 .005 560 .002
CAN-3t 2080 .001 31248 .032 60360 .114 73227 191 31668 .120
1024, | KAP/MARS 30758272 367 | 23767744 473 | 13981024 513 | 9924928 .529 | 7514800 .531
256 | cyc 114688 .002 172096 .006 200928 .05 211168 .023 215600 .031
CAN-2 1851264 .034 1478464 .053 1146880 .079 692496 .073 537360 .075
CAN-3 524288 .010 65536 .002 8192 .001 22392 .003 1024 .000
CAN-3t 128 .000 244800 .009 252960 .019 510110 .054 452880 .064
Table 2: Values of L and Lg for banded SYR2K
— v . 5 14 —— T — . -
KAP ——
MARS -+ MARS
CYC -e- 12+) o
BCS ~x-- .8 x
e :
w- - =
deal - o0 e § 1} bl
2 T o8}
£
§
'§ 06
k3
o
- 04
02|
PR) ; N R 0 \ s R . "

16

Figure 7: Performance of mapping schemes on the KSR1 for
banded SYR2K; N = 512, BB = 64.

KAP —+—

0.035 ——— .
KAP ——
| MARS -
0.03 cYC -o-
CAN-2 =
Sa
-— =, -
g 00 ideal -
E 0.02 |
=
'g 0.015 |
w
= o0}
0.005 |
ol o .

4

8
Number of Processors

12 16

upper triangular matrix multiplication; N = 1024.

8
Number of Processors

12

16

Figure 8: Performance of mapping schemes on the KSR1 for
banded SYR2K; N = 1024, BB = 256.

283

and KAP exhibit high L and Lg, while the remaining four
schemes exhibit significantly smaller values; CAN-3 exhibits,
on average, the smallest values.

The partitioned programs were executed on the KSR1,
using the same two pairs of values for N and BB; the result-
ing performance is depicted in Figures 7 and 8. In the first
case (Figure 7), KAP and MARS perform worst of all, except
when running on 16 processors, where CYC performs worst
of all. cAN-3t performs best of all when using fewer than 16
processors; equally good results are achieved by CAN-3 and,
to some extent, CAN-2. CcYC exhibits odd behaviour; it per-
forms nearly best of all when running on 12 processors, but
worst of all when running on 16 processors, and nearly worst
when running on 8 processors. This is due to the significant
number of cache misses when the number of processors is a
power of 2. Similar remarks can be made about the results
in Figure 8. CaN-3t performs best of all; CAN-3 exhibits
comparable performance, but CAN-2 performs significantly
worse. KAP and MARS perform worst of all except when us-
ing 8 or 16 processors; in these cases, cYC, which also suffers
from a high number of cache misses, performs worst of all.

Comparing the computed values of L and Lgr in Table 2
and the actual performance shown in Figures 7 and 8, an-
other interesting observation is that, although CAN-3t nearly
always exhibits higher load imbalance than CAN-3, its actual
performance is generally better than that of cAN-3 (except
when running on more than 12 processors, where the differ-
ence in load imbalance between the two partitioning schemes
becomes relatively higher); the superior performance of CAN-
3t is due to the elimination of MIN and MAX functions from
the loop bounds (apart from those necessary for partitioning
the outermost, parallel loop).

5 Conclusion

This paper has presented a partitioning scheme for loop
nests in which, upon partitioning into equal partitions along
the index of the outermost loop, each partition has a com-
putational load which can be expressed in terms of a polyno-
mial expression; these loop nests, termed canontcal, are com-
posed of loops for which the upper bound is always greater
than or equal to the lower bound. It has also been shown
how to apply index set splitting to transform non-canonical
loop nests in such a way that the above criterion is sat-
isfied. Although minimising load imbalance has been the
primary target of the scheme, it seems that, by partitioning
into groups having consecutive iterations {in contrast to the
cyclic partitioning scheme [11]), as well as into as near as
possible equal-sized partitions along the index of the outer-
most loop (in contrast to balanced chunk scheduling [9, 10]),
our approach has also been effective in reducing other forms
of overhead.

References

[1] A. 1. Barvinok. Computing the Volume, Counting Integral
Points, and Exponential Sums. Discrete & Computational
Geometry, 10-2, 1993, pp. 123-141.

A. J. C. Bik, H. A. G. Wijshoff. Iteration Space Parti-
tioning. In H. Liddell, A. Colbrook, B. Hertzberger, P.
Sloot (Eds.) High-Performance Computing and Networking,
LNCS 1087, Springer- Verlag, 1996, pp. 475-484.

F. Bodin, M. O’Boyle. A Compiler Strategy for Shared Vir-
tual Memories. In B. K. Szymanski, B. Sinharoy (Eds.),
Languages, Compilers and Run-Time Systems for Scalable
Computers, Kluwer Academic Publishers, 1996, pp. 57-69.

(2]

(3]

284

[4] J. M. Bull. A hierarchical classification of overheads in par-
allel programs. In 1. Jelly, I. Gorton and P. Croll (eds.},
Software Engineering for Parallel and Distributed Systems,
Chapman & Hall, 1996, pp. 208-219.

P. Clauss. Counting Solutions to Linear and Nonlinear Con-
straints through Ehrhart polynomials: Applications to An-
alyze and Transform Scientific Programs. In Proceedings
of the 1996 International Conference on Supercomputing
(Philadelphia, May 1996), ACM Press, pp. 278-285.

M. E. Crovella, T. J. LeBlanc. Parallel Performance Predic-
tion Using Lost Cycles Analysis. In Proceedings of Super-
computing '94 (Washington D. C., Nov. 1994), IEEE Com-
puter Society Press, pp. 600-609.

[5

(6]

[7] T. Fahringer. Estimating and Optimizing Performance for
Parallel Programs. IEEE Computer, 28-11, Nov. 1995, pp.

47-56.

S. Flynn Hummel, E. Schonberg, L. E. Flynn. Factoring: A
Method for Scheduling Parallel Loops. Communications of
the ACM, 35-8, Aug. 1992, pp. 90-101.

M. R. Haghighat, C. D. Polychronopoulos. Symbolic Analy-
sis: A Basis for Parallelization, Optimization, and Schedul-
ing of Programs. In U. Banerjee, D. Gelernter, A. Nicolau, D.
Padua (Eds.), Languages and Compilers for Parallel Com-
puting (6th International Workshop, Aug. 1993), LNCS 768,
Springer-Verlag, 1994, pp. 567-585.

M. R. Haghighat, C. D. Polychronopoulos. Symbolic Analy-
sis for Parallelizing Compilers. ACM Transactions on Pro-
gramming Languages and Systems, 18-4, July 1996, pp.
477-518.

D. J. Lilja. Exploiting the Parallelism Available in Loops.
IEEE Computer, 27-2, Feb. 1994, pp. 13-26.

C. D. Polychronopoulos. Parallel Programming and Com-
pilers. Kluwer Academic Publishers, 1988.

C. D. Polychronopoulos, D. J. Kuck. Guided Self-
Scheduling: A Practical Scheduling Scheme for Parallel Su-
percomputers. IEEE Transactions on Computers, 36-12,
Dec. 1987, pp. 1425-1439.

W. Pugh. Counting Solutions to Presburger Formulas: How
and Why. In Proceedings of the ACM SIGPLAN ’9{ Con-
ference on Programming Language Design and Implementa-
tion (Orlando, June 1994), ACM SIGPLAN Notices, 28-6,
June 1994, pp. 121-134.

R. Sakellariou. On the Quest for Perfect Load Balance in
Loop-Based Parallel Computations. PhD Thesis, Depart-
ment of Computer Science, University of Manchester, 1996.

(9]

(18]

[16] R. Sakellariou. A Compile-Time Partitioning Strategy for
Non-Rectangular Loop Nests. In Proceedings of the 11th In-
ternational Parallel Processing Sympostum (Geneva, April

1997), IEEE Computer Society Press, 1997, pp. 633-637.

N. Tawbi. Estimation of Nested Loops Execution Time by
Integer Arithmetic in Convex Polyhedra. In Proceedings of
the 8th International Parallel Processing Symposium, IEEE
Computer Society Press, 1994, pp. 217-221.

T. H. Tzen, L. M. Ni. Trapezoid Self-Scheduling: A Practi-
cal Scheduling Scheme for Parallel Compilers. [EEE Trans-
actions on Parallel and Distributed Systems, 4-1, Jan. 1993,
pp. 87-98.

K.-Y. Wang. Precise Compile-Time Performance Predic-
tion for Superscalar-Based Computers. In Proceedings of the
ACM SIGPLAN ’394 Conference on Programming Language
Design and Implementation (Orlando, June 1994), ACM
SIGPLAN Notices, 29-6, June 1994, pp. 73-84.

M. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley, 1996.

(17]

(18]

(19]

(20]

