
Compile-Time Minimisation of Load Imbalance in Loop Nests 

Rizos Sakellariou, John R. Gurd 

Department of Computer Science, University of Manchester, 

Oxford Road, Manchester Ml3 9PL, U.K. 
e-mail: {rizos, john}@cs .man. ac .uk 

Abstract 

Parallelising compilers typically need some performance es- 
timation capability in order to evaluate the trade-offs be- 
tween different transformations. Such a capability requires 
sophisticated techniques for analysing the program and pro- 
viding quantitative estimates to the compiler’s internal cost 
model. Making use of techniques for symbolic evaluation 
of the number of iterations in a loop, this paper describes 
a novel compile-time scheme for partitioning loop nests in 
such a way that load imbalance is minimised. The scheme 
is based on a property of the class of canonical loop nests, 
namely that, upon partitioning into essentially equal-sized 
partitions along the index of the outermost loop, these can 
be combined in such a way as to achieve a balanced dis- 
tribution of the computational load in the loop nest as-a- 
whole. A technique for handling non-canonical loop nests is 
also presented; essentially, this makes it possible to create a 
load-balanced partition for any loop nest which consists of 
loops whose bounds are linear functions of the loop indices. 
Experimental results on a virtual shared memory parallel 
computer demonstrate that the proposed scheme can achieve 
better performance than other compile-time schemes. 

1 introduction 

In order to evaluate the performance trade-offs of different 
transformations, parallelising compilers are usually armed 
with some performance estimation capability; this issue has 
been addressed recently by a number of researchers [3, 7, 191. 
Although the implementation details of these schemes vary, 
generally they attempt to identify sources of performance 
loss, such as load imbalance, interprocessor communication, 
cache misses, etc. [4, 61. This has two implications for a 
parallelising compiler. Firstly, the compiler must be capa- 
ble of extracting quantitative information from programs - 
since parallelising compilers usually target the parallelisa- 
tion of loop nests, significant information lies in the number 
of times each loop will be executed; this can be used, for 
instance, to estimate the amount of work assigned to each 
processor, or the number of non-local accesses to data [7]. 

Penn&ion to make digitnbl~nrd copies of all or pnrl ofthis mnlerinl lb 

personal or cIa..room use is granlrd without fee provldcd that the copies 
nre nol made or distrihurcd for protit or commrrcinl advu,l;lge. the copy- 
right notice. the title ofthc puhlicnlion &and its date appear. and nolicr is 

given that copyright is hy permission ofthe ACM, Inc. To copy olhe~~se. 
lo republish, lo posl on servers or lo redistrihutr to list%. requires specific 
permission and/or fee 

ICY 97 Vienna Auslria 
Copyright 1997 ACM O-X9791-902-5/97!7 .6X50 

Secondly, the compiler should avoid postponing critical de- 
cisions concerning the parallelisation process until run-time, 
since doing so reduces the information available and, con- 
sequently, the accuracy of its performance prediction. One 
such critical decision is the mapping of loop nests onto a par- 
allel architecture; that is, the way that the loop iterations 
are allocated to processors for execution. 

The problem of mapping loop nests has attracted sig- 
nificant interest; traditionally, researchers have inclined to- 
wards run-time based schemes [S, 11, 13, 181. Their under- 
lying argument has been that information not available at 
compile-time may permit a more balanced distribution of the 
workload, especially in cases where different iterations of the 
parallel loop perform different amounts of work. Although 
the balanced distribution may be achieved at the expense 
of other overheads (e.g., increasing the number of memory 
accesses so as to balance the computational work), run-time 
mapping schemes seem to be preferable whenever the exe- 
cution of the loop nest depends on expressions whose value 
is unknown at compile-time. However, in a number of cases, 
the resulting pattern of workload variation is highly regu- 
lar, and it may be feasible to devise compile-time mapping 
schemes. This is the case, for example, when each iteration 
of the parallel loop performs a different amount of work as 
a result of enclosed loops whose execution depends on the 
value of the index of the parallel loop. 

This theme has been investigated by Haghighat and Poly- 
chronopoulos [9, lo], who suggest that symbolic cost es- 
timates can be used to design robust compile-time strate- 
gies for mapping loop nests. They propose balanced chunk 
scheduling, a mapping scheme for triangular perfect loop 
nests; the main idea is to partition the outermost loop in 
such a way that each processor executes the innermost loop 
body the same (or almost the same) number of times. How- 
ever, balanced chunk scheduling can only be applied to a 
limited class of loop nests and, in practice, it is often more 
desirable that the outermost, parallel loop be distributed in 
equal-sized partitions; for instance, in a data parallel envi- 
ronment, if a triangular loop nest is followed by a rectangular 
loop nest in which the same arrays are involved, an unequal 
partitioning (in this respect) would lead to significant com- 
munication and/or load imbalance overhead. 

In this paper we develop a general approach for compile- 
time mapping of parallel outer loops in the body of which 
there are inner loops whose execution depends on the outer 
loop index. We make use of symbolic cost estimates as 
a means of evaluating our strategy, and minimisation of 
load imbalance is the main objective. By avoiding options 
which would tend to increase other sources of overhead, this 

277 



scheme achieves good practical results. 
The remainder of the paper is structured as follows: Sec- 

tion 2 provides a brief background on measuring load imbal- 
ance and on symbolic counting of the number of loop iter- 
ations. Section 3 forms the main body of this paper; after 
first describing a strategy for mapping the class of canonical 
loop nests, we then show how to transform non-canonical 
loop nests into multiple canonical loop nests. This strategy 
is evaluated and compared with other mapping schemes in 
Section 4. Section 5 summarises the paper and its results. 

2 Background 

2.1 Load Imbalance 

We define the total (computational) workload in a parallel 
code fragment (in this paper, this will always be a parallel 
loop nest) to be Wtot, distributed among p processors in 
such a way that each processor i, 0 5 i < p, is assigned 

a workload equal to Wi.’ Clearly, CT:’ Wi = Wt,,t. This 
distribution embodies a load imbalance, k given by 

L = IIl,3X(Wi - !$) = w,,, - Wt,t, 
P 

(1) 

and a relative load imbalance, LR, defined as 

LR - L - wmaz 
W 

Wtot 
W 

- W&P = 1 

pwnm 
(2) 

mat maz 

where W ?naz = max(Wc, WI,. . , W,-1). It can be easily 
shown that LR takes values in the interval [0, 1 -l/p]; values 
close to zero denote a small impact on performance. When, 
L = LR = 0, that is, for all i, Wi = Wtot/p, the code 
exhibits perfect load balance. 

2.2 Counting the Number of Loop Iterations 

In the case of loops, an estimate for the values of Wi in (1) 
can be derived by considering the number of times that each 
part of the loop body is executed. This corresponds to the 
(complex) problem of enumerating the integer points of a 
polytope [l]. In the context of loop nests, some techniques 
to compute this are described in [5, 14, 171. 

In general, the number of times, n, that a single state- 
ment surrounded by m loops is executed is given by: 

n=g -&.. 2 1, (3) 
ildl i2d-J i, ~1, 

where lj , uj are the lower and upper bounds, respectively, of 
the j-th loop, 1 5 j 2 m. If, for every loop, the loop bounds 
are constant, integer expressions whose values are known at 
compile-time, the loop nest is rectangular (in m-dimensions) 
and it is trivial to show that n = fly=, cy,j=l, 1. How- 

ever, in a variety of situations, the loop bounds may be 
non-constant (for instance, dependent on the index of an 
outer loop), or may contain expressions whose value is not 
known at compile-time. For the latter, it is important to 
know, when evaluating sums such as those in (3), whether 
uj 2 fj. In this paper, whenever this is the case, we split the 
loop iterations in such a way that the upper bound is always 
greater than or equal to the lower bound; this is discussed 
in Section 3.4. 

’ The units of workload may be the number of operations executed, 
or the CPU cycles needed to execute the code on some machine. 

3 Partitioning for Load Balance 

3.1 Rectangular Loop Nests 

Based on the discussion in Section 2, the problem of par- 
titioning the iterations of a single loop with lower bound 1 
and upper bound u among p processors can be expressed as 
that of finding lk,‘LLk, 0 5 k < p, such that 

~1=~1+~1+...+ “9 l=Zgl, (4) 

i=I i=Io i=ll t=l,- 1 k=O )=llr 

where lo = 1, uk = lb+1 - 1, for 0 5 k < p - 1, up-i = u, 
and, for all lk, uk, 

where n = u - I+ 1. The following satisfy both (4) and (5): 

l Partitioning by decreasing order: 

lk = I+ k[n/pJ + min(n mod p, k), k = 0, 1,2,. . . ,p - 1, 

where the first (n mod p) partitions contain [n/p1 iterations, 
while the rest contain [n/p]. 

l Partitioning by increasing order: 

lk=l+k[n/pJ+max(O,k-p+(nmodp)),k=0,1,2 ,..., p-l, 

where the last (n mod p) partitions contain [n/p] iterations, 
while the rest contain Ln/pJ. 

If n is a multiple of p, both relations reduce to 

&=l+kn/p, k=0,1,2 ,..., p-l, 

and the loop is divided into equal partitions. In this case, 
assuming that the body of the loop nest does not contain 
statements whose execution depends on the value of the in- 
dex of the outer loop, perfect load balance is achieved. If n 
is not a multiple of p, then a relative load imbalance equal 
to (p - n mod p)/(n + p - n mod p) is expected, a quantity 
which approaches zero if n >> p. 

These partitioning techniques can also be applied to the 
outermost loop of a loop nest, whether or not it is perfectly 
nested. If the bounds of the inner loops are not a function 
of the index of the outer loop, nor are there any conditional 
statements in the loop body whose execution depends on 
the value of the index of the outer loop, then perfect load 
balance may be achieved. 

For perfectly nested loops, partitioning may be applied 
to the iterations of more than one loop at the same time. 
To illustrate this, assume that partitioning for p processors 
takes place over two loops, the first being executed n times, 
and the second being executed m times. Minimising L in 
(1) requires us to find pl, ~2, where p = p1 pz, such that 
FE-1 [El is a minimum. Instead of solving this, it may be 

preferable to apply loop coalescing [12] before partitioning; 
since the inequality [ram/(plpz)l 5 [n/pllrm/p2] always 
holds [15], the transformed coalesced loop normally results 
in L smaller than the original loop nest. 

In the following sections, partitioning is considered only 
with respect to the index of the outermost loop. 

278 



DOALL I=L,U 
(statements.11 
IF (1.CT.A) THEN 

(statemsnts.2) 
ELSE 

(statements.3) 
ENDIF 

ENDDO 

a) Loop with conditional 

DOALL I=L,A 
(statements. I) 
(statements.3) 

ENDDO 
DOALL I=A+l,U 

(statamsnts.1) 
(statsments.2) 

ENDDO 

b) After indez set splitting. 

C*KSR* 

C*KSR* 

N=A-L+I 

M=U-A 

PARALLEL REGION(NLMT?READS=P,PRIVATE=I,K,LK,UK) 
K=IPRJ410() 
LK=L+K*FLOOR(N/P)+MIN(MOD(N,P),K) 
UK=L+(K+I)*FLOOR(N/P)+MIN(MDD~N,P),K+I) 
DO I=LK.UK 

(statemsnts.1) 

(statements.3) 

ENDDO 

LK=A+I+K*FLOOR(M/P)+f4AX(O,K-P+MOD(M,P)) 
lJK=A+1+(K+I)*FLOOR(M/P)+MAX~O,K+l-P+MOD(M,P)) 
DO I=LK,UK 

(statsments.1) 
(statements.2) 

ENDDO 
END PARALLEL REGION 

c) After loop part:tiorung. 

Figure 1: Partitioning loop nests containing conditionals. 

3.2 Loop Nests Containing Conditionals 

If the loop body contains conditionals whose execution does 
not depend on the value of the index of the outer loop, then 
the load imbalance resulting from the partitioning schemes 
described so far is not affected; each iteration of the outer 
loop still performs the same amount of work and, conse- 
quently, perfect load balance can be achieved. In the special 
case where an inner loop conditional involves the index of 
the outer loop and a constant, then, by applying indez set 
splitting [20] prior to partitioning, the conditional may be 
removed (21. 

For instance, let 1 5 i < u bound the index i of the 
outermost, parallel loop, and I, 5 i 5 u, correspond to the 
logical expression evaluated by a conditional in the inner 
loop body. Then, the original loop nest can be split into 
three consecutive loop nests, whose indices take values in 
the following intervals, respectively: 

16, min(L - 1, u)], [max(l, L), min(u, h)], [max(u,+l, I), u]. 
(‘3 

The second interval contains the values of i which satisfy 
both 1 5 i 5 u and 1, 5 i 5 uz. In some cases, the upper 
bound of an interval will be smaller than its lower bound, 
and the corresponding loop nest will never be executed; in 
this case, it can be eliminated. Assuming that at least two of 
the intervals are non-empty, the question is how to partition 
the resulting loop nests. There are two main approaches 
which are illustrated in the following example. 

Consider the code shown in Figure 1.a;’ applying (6) 
and assuming that, for the values of L, U, A, it is known at 
compile-time that L<A<U, the code shown in Figure 1.b re- 
sults. One approach to partitioning this code is to partition 
each loop using either of the schemes described in Section 

’ The DOALL construct denotes a parallel loop. 

DOALL i = ll,ul 

(statamsnts.1) 

DO jz=lzIi+&, uzIi+uzz 
(statements.21 
DO j, = l31i + l32j2 + 133, U31i + u32j2 + U33 

. . . 

(statements, including m - 4 DO loops) 
. . . 
DO jm=l,~i+lm~j~+...+~m,m--ljm--l+lmmr 

u,1~+U,2j2+...++Um,m-~jm--l+umm 

(stat0mentr.m) 
ENDDO 
. . 
(statements, including VI - 4 ENDDO) 

END& 
(statements.2r2) 

ENDDO 

(stataments.2m-I) 

ENDDO 

Figure 2: A canonical loop nest of depth m. 

3.1, and then assign the same partition of each loop to the 
same processor; for both loops, if the number of iterations 
is a multiple of the number of processors, p, then perfect 
load balance is achieved. In the general case, let n, m be 
the number of loop executions, and WI, W2 be the work- 
load in the body of each loop, respectively; assuming that 
the same partitioning scheme (either by decreasing or in- 
creasing order) is applied to both loops, then the resulting 

L is given by L = [:I WI + 1~1 W2 - nW1~“W2. When- 

ever (n mod p) + (m mod p) 5 p, the load imbalance can 
be reduced by partitioning one of the loops by decreasing 
order and the other one by increasing order. This approach 
is followed in the code shown in Figure l.~.~ 

3.3 Canonical Loop Nests 

The partitioning schemes for rectangular loops presented in 
Section 3.1 result in a small value of load imbalance, when 
each iteration of the parallel loop performs the same amount 
of work. A simple counter-example is that of a triangular 
loop nest in which the index of the outer loop, i, takes values 
from 1 to n, while the index of the inner loop takes values 
from 1 to i. When this is mapped onto p processors, then, 
for p, n _> 2, the relative load imbalance has a lower bound of 
l/4. It is apparent that the partitioning schemes described 
so far are inadequate for minimising load imbalance; never- 
theless, using them as a basis, more effective schemes can 
be devised. 

In the remainder of this paper we examine loop nests of 
depth m having the general form shown in Figure 2. It is 
assumed that the sets of statements labelled statements. 1, 
statements. 2, ., statements. 2m-1 do not include state- 
ments whose execution depends on the value of the index 
of a surrounding loop; hence, the workload corresponding 
to each set of statements remains the same for any single 
execution of the outer loop. This does not exclude the pos- 
sibility that, inside any of the above-mentioned sets of state- 

’ The KSR directives are used to denote parallelism in the parti- 

tioned code. Thus, the code enclosed within the PARALLEL RECIDR and 

END PARALLEL REGION directives is executed by all P processors, but us- 

ing different data for each processor; this is achieved by means of a 

library function, IPRJIDO, which returns an integer between 0 and 

P-l depending on which processor executes the code. The variables 

I, K, LK, and UK are declared aa PRIVATE, meaning that each processor 

has its own local copy of the variable. 

279 



merits, DO . . . ENDDO loops which perform the same number 
of iterations regardless of the value of i, may exist. Thus, 
literally, the depth of a loop nest may be higher than m. 
However, in the following, only those loops having bounds 
dependent (directly or indirectly) on the index of the outer- 
most loop are considered; any remaining loops do not affect 
the strategy and they are omitted. 

Definition 1 Consider the loop nest of depth m, m 2 2, 
shown in Figure 2, in which the body of the outermost loop 
contains m - 1 nested loops; this loop nest is a canonical 
loop nest of depth m, if and only if ul > 11 and, for all 
i,jz,js ,..., j,, the following inequalities always hold: 

121i + 122 5 u21i + 2122 

131i + 132j2 + 133 5 u31i + 21323’2 + 1133 

l,ii + 1,2j2 +. . + 1 mm Iumli+um2j2+...+umm 

where, for each of jk, 2 5 k 5 m, at least one of the differ- 
ences (lkl - ukl), (lk2 - uk2), . , (lk,k--l - uk,k-1) is non- 

zero, and the set (statements.m) is not empty. 

Based on Definition 1, we can prove [15]: 

Theorem 1 Consider any canonical loop nest of depth m. 
Assume that the outer loop is partitioned into 2~“‘~ equal 
partitions; then, for all k, 0 5 k 5 2~“‘~~ - 1, the k-th 
partition embodies workload wk given by 

m-1 
Wk = c Cik’, Ci constants. 

i=o 

In order to illustrate Theorem 1, consider again the tri- 
angular loop nest in which the index, i, of the outer loop 
takes values from 1 to n, and the index of the inner loop 
takes values from 1 to i. Assuming that i is partitioned into 
p equal partitions, the k-th partition, 0 5 k < p, embod- 
ies workload wk = Ci k + CO, for Co, Cr constants. This 
property leads to the following [15]: 

Theorem 2 Consider any loop nest which is partitioned 
along the index of the outer loop into 2pm-‘, m 2 2, equal 
partitions. If, for all k, 0 < k 5 2~“‘~l-1, the k-th partition 
embodies workload, wk, given by 

m-l wk = c Gk’, where Ci constants, 

i=O 

then the loop nest can be partitioned into p partitions of equal 
workload; the set of partitions along the index of the outer- 
most loop which compose the k’ -th, 0 < k’ < p, partition of 
the loop nest is given by 

P -2-1 m-3 

&I = 

4 

(2pi + (k’ + c [i/pi J) mod p}U 
i=O j=O 

m-3 

{2p(i + 1) - 1 - (k’ + c [i/Pi J) modp} (7) 
j=O 1 

For m = 2, (7) reduces to Sk’ = {k’} U (2p - k’ - 1) [16]. 

DOALL I=l,N 
DO &-2.3+1-l 

DO K=J+I,6*1+2 
(statements) 

ENDDO 
ENDDO 

ENDDO 

a) Unpartitioned loop nest. 

C --- asauming that MODlJLO(N.2*P*P)=O --- 
C*KSR* PARALLEL REGION(NWT%EADS=P, 
C*KSR*C PRIVATE=I,J,K,LK,UK,Kl,K2) 

Kl=IPR-MID0 
DO II=O,P-1 

K2=2*P+II+MOD(Kl+II,P) 
LK=l+K2*1/(2+P+P) 
UK=l+(K2+l)+N/(2*P*P)-1 
DO I=LK,UK 

DO J=-2,3*1-l 
DO K=J+I,5+1+2 

(8tatements) 
ENDDO 

ENDDO 
ENDDO 
K2=2*P*(II+l)-l-MOD(Kl+II.P) 
LK=l+KZ*N/(2*P*P) 
UK=l+(K2+l)+N/(2+P*P)-1 
DO I=LK,UK 

DO J=-2,3*1-l 
DO K=J+I,6+1+2 

(statemanta) 
ENDDO 

ENDDO 
ENDDO 

ENDDO 
C*KSR* END PARALLEL RECIOK 

b) After loop partitioning. 

Figure 3: Example of partitioning a loop nest of depth 3. 

Corollary 1 Consider a canonical loop nest of depth m; if 
the index of the outer loop can be partitioned into 2~“‘~ 
equal partitions, then the loop nest can be partitioned into p 
partitions of equal workload. 

The following example illustrates Theorems 1 and 2: 

Example 1 Consider the loop nest shown in Figure 3.a. 
Assuming that N > 1, then the inequalities -2 < 3+1-l and 
J+I 5 5*1+2 always hold, while, for each inequality, the co- 
efficients of I are non-zero; hence, the requirements of Defi- 
nition 1 are satisfied and the loop nest is canonical of depth 
3. Thus, based on Theorems 1 and 2, and assuming that 
the number of iterations of the outer loop, N, is a multiple 
of 2p2, where p is the number of processors, partitioning the 
loop nest according to (7) leads to perfect load balance; the 
partitioned loop nest is shown in Figure 3.b. a 

In the general case, where the number of iterations of 
the outer loop is not a multiple of 2pmS1, the partitioning 
technique suggested by Theorem 2 can be applied, provided 
that the outer loop is partitioned according to one of the 
partitioning schemes described in Section 3.1. In this case, 
a small value of load imbalance is expected. 

Theorems 1 and 2 also apply to loop nests in which there 
are more than one inner loop at the same level (i.e., loops 
which are surrounded only by the same outer loops) whose 
bounds depend on the index of a surrounding loop; the nec- 

280 



DOALL 14,760 DOALL 1=501,750 
DO J-MX(1.2*1-ioOO).I DO J=2*1-IWO.1 

DO K=2*1-J,lODO DO K=2*1-J,lODO 
DOALL I=l,lODO (statementa.1) DOALL I=l.SOO (atatamants. 1) 

DO J-1.1 ENDDO DO J=l,I ENDDO 
DO K=2*1-J,lOOO ENDDO DO K=2*1-J,lDDO ENDDO 

(statemaats.1) (statt3mentn.2) (statementa. 1) (stat.mants .2) 
ENDDO DO J=Z*I-SDD.llIN(10OO.1000-I) ENDDO DO J-2*1-500,1000-1 

ENDDO DO K=I+J.lOOO ENDDO DO K=I+J.1000 
(stateamts .2) (etat*menta. 3) (statements.2) (mtatements.3) 
DO J=2*1-500,lOOO ENDDO DO J-2*1-500,1000-1 ENDDO 

DO X=I+J,lOOO ENDDO DO K-I+J,lOOO !3iDDO 
(statements.3) ENDDO (statenants.3) ENDDO 

EKDDO DOALL I-761,lOOO FiNDDO DOALL 1=761,1OOD 
ENDDO DO J=KAX(1,2*1-lDDO).I ENDDO DO J-2*1-1000,1 

EXDDO DO K=2*1-J.1000 ENDDO DO K-2*1-J,lOOO 
(statements.1) (ststaments.l) 

EKDDO ENDDO 
ENDDO !ZNDDO 
(~tatsnents.2) (statements. 2) 

!ZNDDO ENDDO 

a) Lhportrtroned loop nest. b) After tnrtiol rndex set splrttmg. c) Tramformed code. 

Figure 4: Transforming a non-canonical loop nest to canonical loop nests 

essary proviso is that, for any loop in the nest, the lower 
bound is always less than or equal to the upper bound. 

3.4 Non-Canonical Loop Nests 

Section 3.3 describes an approach to partitioning canonical 
loop nests, as introduced in Definition 1. In this section 
we re-consider loop nests having the general form shown 
in Figure 2, but without the restrictions associated with 
Definition 1, apart from the requirement that El 5 ui (the 
loop nest is non-empty). Applying index set splitting, the 
original loop nest can be transformed into multiple adjacent 
loop nests each of which erther satisfies the requirements for 
partitioning inherent in Theorem 2 or is rectangular. 

Consider the loop nest shown in Figure 2; the first step 
consists of finding the values of i which satisfy the inequali- 
ties 11 5 i 5 ui and &ii + 122 5 uzii + 1~22. If no such values 
exist, then the loop with index jz is never executed. If there 
are such values, given by Ii 5 i 5 ui, the loop with index jz 
is always executed; therefore, this loop and the outermost 
loop together meet the criteria for a canonical loop nest of 
depth 2, and no index set splitting is required. Conversely, 
if there is a subset of the values of i which satisfies both 
inequalities, say 11 < i 5 u’, , where u: < ui, then the outer 
loop must be split&to two consecutive loops, the first of 
which corresponds to the values given by 11 < i 5 u;, and 
the second of which corresponds to rr; + 1 < i < ui; for 
the former values, the loop with index jp and the outer loop 
together meet the criteria for a canonical loop nest of depth 
2, while, for the latter values, the loop with index jz is never 
executed. 

If, as a result of the previous step, there are some values 
of i for which the two outermost loops form a canonical 
loop nest of depth 2, then the next step consists of finding 
values of i and jz for which the three outermost loops form 
a canonical loop nest of depth 3. These values must satisfy 
the system of inequalities: 

1’1 _< i < u’1 

hi + 122 5 j2 I u2li + u22 

l31 i -t 132 j2 + 133 5 u31 i + u32 j2 + u33, 

where the first inequality corresponds to those values of i 

that make the two outermost loops a canonical loop nest of 
depth 2. 

The same procedure is repeated for each loop, succes- 
sively, until there are no remaining loops or else a given sys- 
tem of, say k, 2 5 k 5 m, inequalities has no solutions (this 
would imply that the loop with index jk is never executed 
for the values of i, jz, ,jkel that make the k - 1 outer- 
most loops form a canonical loop nest of depth k - 1). Note 
that, in the case where the original loop nest contains more 
than one consecutive loop at some level, the same procedure 
should be applied for each loop separately. 

These ideas are illustrated in the following example: 

Example 2 Consider the loop nest of depth 3 shown in 
Figure 4.a. Since there are two consecutive loop nests in the 
body of the I loop, the procedure described above must be 
applied separately for each of them. 

For the first loop nest, the J loop and the outermost 
loop form a canonical loop nest of depth 2; and the K loop 
joins them to form a canonical loop nest of depth 3 when- 
ever 2*1-J 5 1000 _ J 2 2*1-1000. Thus, the J loop 
must be split into two consecutive loops depending on ap- 
propriate values of J; the bounds of the first such loop will 
be 1 and HAX(1,2+I-1000)-i, and of the second such loop 
MAX(1,2*1-1000) and I. Since the body of the J loop does 
not contain statements other than the K loop, no statements 
are executed in the case when 1 5 J 5 MX(l,2+1-10001-l; 
hence, the corresponding loop can be eliminated. 

For the second loop nest, the J loop and the outer- 
most loop form a canonical loop nest of depth 2 when 
2*1-500 < 1000 w I 5 750; the index of the I loop is 
split accordingly. The K loop joins in to form a canonical 
loop nest of depth 3 when I+J 5 1000 w J 5 1000-I. 

The code resulting after applying the necessary 
transformations is shown in Figure 4.b. Evaluating 
MAX(1,2*1-1000)) by replacing it with appropriate condi- 
tionals which are then removed using index set splitting (see 
Section 3.2), results in the code shown in Figure 4.c (note 
that MIN(1000,1000-I) is always equal to 1000-I since I 

281 



W Mapping Number of processors 
scheme 2 I 4 I 8 I 12 I 16 

L LRI L LRI L LRI L LRI L LR 

256 KAP/MARS 1056768 ,428 I 923648 ,566 I 577024 .620 I 356749.3 ,602 I 319360 ,644 

1024 

CYC’ 
BCS 
CAN-2 

CAN-3 

7?xqzE 

CYC 

BCS 

CAN-2 
CAN-R 

8256 X106 12416 ,017 
382 ,000 13271 .018 

262144 ,156 229376 .245 

0 ,000 0 ,000 
67239936 ,428 58818560 ,567 

131328 ,001 197120 ,004 

151255 .002 118940 ,003 
16777216 ,158 14680064 ,247 

n .olm 0 .ooo 

14560 ,040 15331.3 ,061 15760 ,082 

7183 ,020 6329.3 ,026 9828 ,053 

143360 .288 82091.3 ,258 79360 .310 

0 ,000 50.3 ,000 512 ,003 

36757504 ,621 22978604 ,606 20346880 ,645 

230272 .OlO 241550 .016 247360 ,022 

193075 ,009 322800 ,021 281770 .025 

9175040 ,290 6228806 ,294 5079040 ,312 
0 .noo 48713 onn n .nnn 

Table 1: Values of L and LR for upper triangular matrix multiplication. 

takes only positive values). 
Finally, partitioning I for each loop nest, as shown in 

Section 3.2, and grouping the partitions according to (7) for 
m = 3, the partitioned code leads to perfect load balance 
when using 5 processors, and, in general, a relatively low 
value of load imbalance [15]. 0 

4 Evaluation and Experimental Results 

A series of experiments has been conducted in order to eval- 
uate the performance obtained by the partitioning strat- 
egy described above, compared with other compile-time ap- 
proaches. Two routes have been adopted for analysing the 
results when applying different mapping schemes: the first 
compares the values of load imbalance, L, and relative load 
imbalance, LR, computed as shown in Section 2.1; the sec- 
ond compares the resulting performance on a virtual shared 
memory computer, the KSRl. Our objectives have been not 
only to evaluate the practical efficacy of the new partition- 
ing schemes, but also to establish whether the theoretical 
values for L and/or LR are a sound means for justifying the 
selection of a particular mapping scheme. 

Two benchmark programs are used (see below). The 
compared approaches are denoted KAP, MARS, CYC, BCS, 

and CAN: KAP corresponds to the mapping strategy of the 
KAP auto-parallelising compiler; MARS corresponds to the 
mapping strategy of the MARS experimental parallelising 
compiler [3]; CYC corresponds to a cyclic scheme for map- 
ping the iterations onto processors (i.e., processor 0 executes 
iterations l,p+1,2p+l,.. ., processor 1 executes iterations 
2,p+2,2p+2 ,..., ingeneral,processori,O<i=Zp-l,ex- 
ecutesiterationsi+l+kp,k=0,1,2,...,n/p-1 [ll]);Bc~ 
corresponds to balanced chunk scheduling [lo] (extended to 
support loop nests of depth 3); and the general term CAN 
corresponds to the partitioning scheme described by (7). A 
suffix is added to CAN to distinguish between diierent val- 
ues of m and/or transformations applied; these are described 
below, as appropriate. 

4.1 Upper Triangular Matrix Multiplication 

The code for the first benchmark, shown below, performs 
the multiplication of two upper triangular n x n matrices. 

DOALL J=l.N 

DO I=1 ,J 
DO K=I.J 

A(I,J)~A(I,J)+B(I,K)*C(K,J) 
ENDDO 

ENDDO 
ENDDO 

Clearly, the loop nest is canonical of depth 3 (see Defini- 
tion l), and the partitioning scheme CAN-Q, based on (7) for 
m = 3, may lead to perfect load balance. For comparison, 
the partitioning scheme CAN-Z, corresponding to m = 2, is 
also implemented. 

The load imbalance, L, in terms of the number of times 
the assignment statement of the loop body is executed, and 
the corresponding relative load imbalance, LR, for two dif- 
ferent values of N, 256 and 1024, are shown in Table 1. MARS 
and KAP exhibit high L and LR, CAN-2 exhibits relatively 
smaller values, while the remaining three mapping schemes 
exhibit significantly smaller vahres; in all cases, CAN-3 ex- 

hibits the smallest values. 
The partitioned programs were executed on the KSRl, 

using the same two values of N; the resulting performance 
is depicted in Figures 5 and 6, where the ideal line assumes 
linear speed-up. In both graphs, KAP and MARS perform 
worst of all while CAN-3 performs best; the performance 
of CAN-3 is comparable with that of CYC and BCS. These 
results are consistent with the performance that might be 
anticipated from the vahms of L and LR shown in Table 1. 

4.2 Banded SYR2K 

The second benchmark, banded symmetric rank-2k update 
(SYRPK), contains non-affine bounds, as shown below: 

DOALL I=i,IIIW0J,2*BB-1) 
DO J=nAI(i-BB,l-K),KIN(BB-I,K-I) 

DO K=KAX(l.I+J).KII(I*J,R) 
C~-I-J+K+l.I~IC~-I-J+K*l.I~+A~K.-I-J+BB+1~+B~K.-J+BB~ 

t +AfK,-J+BB)+BfK,-I-J+BB*l) 
KKDDO 

FZiDDO 
EKDDO 

Clearly, this loop nest is not canonical. However, con- 
verting the HIN and NAX functions to IF statements, and 
removing the latter by index set splitting (see Section 3.2), 
the code can be transformed into four consecutive canonical 
loop nests of depth 3, assuming that N > 2*BB-1 [15]; this 
version is denoted CAN-St. For comparison, two additional 
mapping schemes are also implemented; they are based on 
direct application of the partitioning schemes described by 
(7), for m = 2 (CAN-Z) and m = 3 (CAN-S), to the original 
loop nest, regardless of the fact that the latter is not canon- 
ical. No version based on balanced chunk scheduling was 
implemented since loop nests having bounds containing NIN 
and MAX functions do not conform to its requirements. 

The load imbalance, L, in terms of the number of times 
the assignment statement of the loop body is executed, and 
the corresponding LR, for two pairs of values for N and BB, 
{512,64}, and {1024,256}, are shown in Table 2. MARS 

282 



N, Mapping Number of processors 

88 scheme 2 I 4 I 8 I 12 I 16 
L ZR I L LR I L ZRI L LRI L LR 

512. KAP/MARS 1004696 ,350 I 764592 .450 I 447832 .490 I 331685 ,516 I 240300 ,507 

64 

t 

1024, 

256 

I- 

CYC’ 15360 ,008 23056 .024 

CAN-2 992 ,001 19216 ,020 

CAN-3 8192 .004 1024 .OOl 
CAN-% 2080 .OOl 31248 ,032 

KAP/MhRS 30758272 ,367 23767744 .473 

CYC 114688 .002 172096 .006 

CAN-2 1851264 ,034 1478464 .053 

CAN-3 524288 ,010 65536 .002 

CAN-3t 128 ,000 244800 .OOQ 

26936 ,055 

17920 ,037 

128 ,000 

60360 ,114 

13981024 ,513 

200928 ,015 

1146880 ,079 

8192 ,001 
252960 .019 510110 ,054 452880 ,064 

28645 ,084 

12597 ,039 

1633 ,005 

211168 ,023 

692496 ,073 

22392 ,003 

Table 2: Values of L and LR for banded SYR2K. 

3.5 1 I I 
,’ 

;” ,’ 
: _’ 

3- 

Mg r 

KS 
.:- ,’ 

.’ ,’ . ..a 

2.5 _ 
yt;F 1.1. .’ ,’ -n 

.: ,’ -‘m. ideal ..: -__ 
,: .’ 

.’ ,~ 
.’ x- 

: _ 
2 - __-- 1 

;.:‘..m , 

.,“.. 
j 1.5 ii::--.::--- . . ,.I .,’ r- 

0 8 ’ 
1 2 4 8 12 16 

Number d P-ocs 

0.03 

0.025 

Figure 5: Performance of mapping schemes on the KSRl for Figure 7: Performance of mapping schemes on the KSRl for 
upper triangular matrix multiplication; N = 256. banded SYRSK; N = 512, BB = 64. 

1.4 

1.2 

g ’ 

f 0.8 

5 
3 0.6 

3 
v - 0.4 

0.2 

0 

-1 1 

KAP t 

“l% -2 

CA$$ .: 

CAN-3 -m 
ideal 

1 2 4 e 12 16 
Number of P-on 

Figure 6: Performance of mapping schemes on the KSRl for Figure 8: Performance of mapping schemes on the KSRl for 
upper triangular matrix multiplication; N = 1024. banded SYRPK; N = 1024, BB = 256. 

28940 ,110 
9920 ,041 

560 ,002 

31668 ,120 

7514800 ,531 

215600 ,031 

537360 .075 

1024 ,000 

&g z 
CYC 0 

CAN-2 * 
CAN-3 --~ 

1 2 4 8 12 16 
Number of Pmceg~ors 

0.035 

0.03 

8 o’025 

E 0.02 

s 
I 0.015 

F 0.01 

0.005 

0 

KAP c 
MARS -+-- 

CYC 0 
CAN-2 n 

I 
1 2 4 

Nwnber~ Proceswm 
12 16 

283 



and KAP exhibit high L and LR, while the remaining four 
schemes exhibit significantly smaller values; CAN-3 exhibits, 
on average, the smallest values. 

The partitioned programs were executed on the KSRl, 
using the same two pairs of values for N and BB; the result- 
ing performance is depicted in Figures 7 and 8. In the first 
case (Figure 7), KAP and MARS perform worst of all, except 
when running on 16 processors, where CYC performs worst 
of all. cAr+Qt performs best of all when using fewer than 16 
processors; equally good results are achieved by CAN-3 and, 
to some extent, CAN-Z. CYC exhibits odd behaviour; it per- 
forms nearly best of all when running on 12 processors, but 
worst of all when running on 16 processors, and nearly worst 
when running on 8 processors. This is due to the significant 
number of cache misses when the number of processors is a 
power of 2. Similar remarks can be made about the results 
in Figure 8. CAN-3t performs best of all; CAN-3 exhibits 
comparable performance, but CAN-2 performs significantly 
worse. KAP and MARS perform worst of all except when us- 
ing 8 or 16 processors; in these cases, CYC, which also suffers 
from a high number of cache misses, performs worst of all. 

Comparing the computed values of L and LR in Table 2 
and the actual performance shown in Figures 7 and 8, an- 
other interesting observation is that, although CAN-% nearly 

always exhibits higher load imbalance than CAN-Q, its actual 
performance is generally better than that of CAN-3 (except 

when running on more than 12 processors, where the differ- 
ence in load imbalance between the two partitioning schemes 
becomes relatively higher); the superior performance of CAN- 
3t is due to the elimination of MIN and MAX functions from 
the loop bounds (apart from those necessary for partitioning 
the outermost, parallel loop). 

5 Conclusion 

This paper has presented a partitioning scheme for loop 
nests in which, upon partitioning into equal partitions along 
the index of the outermost loop, each partition has a com- 
putational load which can be expressed in terms of a polyno- 
mial expression; these loop nests, termed canonical, are com- 

posed of loops for which the upper bound is always greater 
than or equal to the lower bound. It has also been shown 
how to apply index set splitting to transform non-canonical 
loop nests in such a way that the above criterion is sat- 
isfied. Although minimising load imbalance has been the 
primary target of the scheme, it seems that, by partitioning 
into groups having consecutive iterations (in contrast to the 
cyclic partitioning scheme [ll]), as well as into as near as 
possible equal-sized partitions along the index of the outer- 
most loop (in contrast to balanced chunk scheduling [9, lo]), 
our approach has also been effective in reducing other forms 

of overhead. 

References 

[I] A. I. Barvinok. Computing the Volume, Counting Integral 
Points, and Exponential Sums. Discrete d Computational 
Geometry, 10-2, 1993, pp. 123-141. 

[2] A. J. C. Bik, H. A. G. Wijshoff. Iteration Space Parti- 
tioning. In H. Liddell, A. Colbrook, B. Hertzberger, P. 
Sloot (Eds.) High-Performance Computing and Networking, 
LNCS 1067, Springer-Verlag, 1996, pp. 475-484. 

[3] F. Bodin, M. O’Boyle. A Compiler Strategy for Shared Vir- 
tual Memories. In B. K. Szymanski, B. Sinharoy (Eds.), 
Languages, Compilers and Run-Time Systems for Scalable 
Computers, Kluwer Academic Publishers, 1996, pp. 57-69. 

[4] J. M. Bull. A hierarchical classification of overheads in par- 
allel programs. In I. Jelly, I. Gorton and P. Croll (eds.), 
Software Engineering for Pamllel and Distributed Systems, 
Chapman & Hall, 1996, pp. 208-219. 

[5] P. Clauss. Counting Solutions to Linear and Nonlinear Con- 
straints through Ehrhart polynomials: Applications to An- 
alyze and Transform Scientific Programs. In Proceedings 
of the 1996 International Conference on Supercomputing 
(Philadelphia, May 1996), ACM Press, pp. 278-285. 

161 M. E. Crovella, T. J. LeBlanc. Parallel Performance Predic- . . 
tion Using Lost Cycles Analysis. In Proceedings of Super- 
computinu ‘9d (Washington D. C!.. Nov. 1994). IEEE Com- 
puter Society’Press, ppr600-609. 

, 

[7] T. Fahringer. Estimating and Optimizing Performance for 
Parallel Programs. IEEE Computer, 28-11, Nov. 1995, pp. 
47-56. 

[S] S. Flynn Hummel, E. Schonberg, L. E. Flynn. Factoring: A 
Method for Scheduling Parallel Loops. Communications of 
the ACM, 35-8, Aug. 1992, pp. 90-101. 

[9] M. R. Haghighat, C. D. Polychronopoulos. Symbolic Analy- 
sis: A Basis for Parallelization, Optimization, and Schedul- 
ing of Programs. In U. Banerjee, D: Gelernter, A. Nicolau, D. 
Padua (Eds.), Lanouaqes and Compilers for Parallel Com- 
puting (6th International Workshop; Aug. 1993), LNCS 768, 
Springer-Verlag, 1994, pp. 567-585. 

[lo] M. R. Haghighat, C. D. Polychronopoulos. Symbolic Analy- 
sis for Parallelizing Compilers. ACM ‘Dnnsactions on Pro- 
gramming Languages and Systems, 18-4, July 1996, pp. 
477-518. 

[ll] D. J. Lilja. Exploiting the Parallelism Available in Loops. 
IEEE Computer, 27-2, Feb. 1994, pp. 13-26. 

[12] C. D. Polychronopoulos. Pamllel Programming and Com- 
pilers. Kluwer Academic Publishers, 1988. 

[13] C. D. Polychronopoulos, D. J. Kuck. Guided Self- 
Scheduling: A Practical Scheduling Scheme for Parallel Su- 
percomputers. IEEE lYansactions on Computers, 36-12, 
Dec. 1987, pp. 1425-1439. 

[14] W. Pugh. Counting Solutions to Preaburger Formulas: How 
and Why. In Proceedings of the ACM SIGPLAN ‘94 Con- 
ference on Progmmming Language Design and Implementa- 
tion (Orlando, June 1994), ACM SIGPLAN Notices, 29-6, 
June 1994, pp. 121-134. 

[15] R. Sakellariou. On the Quest for Perfect Load Balance in 
Loop-Based Parallel Computations. PhD Thesis, Depart- 
ment of Computer Science, University of Manchester, 1996. 

[16] R. Sakellariou. A Compile-Time Partitioning Strategy for 
Non-Rectangular Loop Nests. In Proceedings of the 11 th In- 
ternational ParnIle Processing Symposium (Geneva, April 
1997), IEEE Computer Society Press, 1997, pp. 633-637. 

[17] N. Tawbi. Estimation of Nested Loops Execution Time by 
Integer Arithmetic in Convex Polyhedra. In Proceedings of 
the 8th International Pamllel Pmcessing Symposium, IEEE 
Computer Society Press, 1994, pp. 217-221. 

[la] T. H. Tzen, L. M. Ni. Trapezoid Self-Scheduling: A Practi- 
cal Scheduling Scheme for Parallel Compilers. IEEE tins- 
actions on Pamllel and Distributed Systems, 4-1, Jan. 1993, 
pp. 87-98. 

[19] K.-Y. Wang. Precise Compile-Time Performance Predic- 
tion for Superscalar-Based Computers. In Proceedings of the 
ACM SIGPLAN ‘94 Conference on Progmmming Language 
Design and Implementation (Orlando, June 1994), ACM 
SIGPLAN Notices, 29-6, June 1994, pp. 73-84. 

[20] M. Wolfe. High Performance Compilers for Parallel Com- 
puting. Addison-Wesley, 1996. 

284 


