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Abstract

Distributed query processing (DQP) has been widely used
in data intensive applications where data of relevance to
users are stored at multiple locations. This paper ar-
gues: (i) that DQP can be important in the Grid, as a
means of providing high-level, declarative languages for
integrating data access and analysis; and (ii) that the
Grid provides resource management facilities that are
useful to developers of DQP systems. As well as dis-
cussing and illustrating how DQP technologies can be
deployed within the Grid, the paper describes Polar*, a
prototype implementation of a DQP system running over
Globus. Polar* can handle complex data by adopting the
ODMG object model and its query language OQL, which
supports the invocation of user-defined operations. The
Globus components are accessed through the MPICH-G
interface rather than in a lower level way. A case study
from bioinformatics is used throughout the paper, to show
the benefits of the approach.

Key Words: grid computing, distributed query process-
ing, parallel query processing, user-defined operation,
globus, MPI, ODMG

1 Introduction

To date, most work on data storage, access and transfer
on the Grid has focused on files. We do not take issue
with this – files are clearly central to many applications,
and it is reasonable for Grid middleware developers to
seek to put in place effective facilities for file manage-
ment and archiving. However, database management sys-
tems provide many facilities that are recognized as being
important to Grid environments, both for managing Grid
metadata (e.g. Dinda and Plale, 2001) and for support-
ing the storage and analysis of application data (e.g.
Szalay et al., 2000).

In any distributed environment there are inevitably
multiple related data resources, which, for example, pro-
vide complementary or alternative capabilities. Where
there is more than one database supported within a dis-
tributed environment, it is straightforward to envisage
higher-level services that assist users in making use of
several databases within a single application. For exam-
ple, in bioinformatics, it is commonly the case that differ-
ent kinds of data (e.g., DNA sequence, protein sequence,
protein structure, transcriptome) are stored in different,
specialist repositories, even though they are often inter-
related in analyses.

There are perhaps two principal functionalities associ-
ated with distributed database access and use: distributed
transaction management and distributed query process-
ing (DQP; Kossmann 2000). This paper is concerned
with DQP on the Grid, and both (i) discusses the role
that DQP might play within the Grid and (ii) describes a
prototype infrastructure for supporting distributed query
optimization and evaluation within a Grid setting.

There is no universally accepted classification of DQP
systems. However, with a view to categorizing previous
work, we note that DQP is found in several contexts: in
distributed database systems, where an infrastructure sup-
ports the deliberate distribution of a database with some
measure of central control (Ozsu and Valduriez, 1999);
in federated database systems, which allow multiple auton-
omous databases to be integrated for use within an appli-
cation (Hsiao, 1992); and in query-based middlewares,
where a query language is used as the programming mech-
anism for expressing requests over multiple wrapped data
sources (e.g., Haas et al., 1997; Garcia-Molina et al.,
1997; Davidson et al., 2001). This paper is most closely
related to the third category, in that we consider the use
of DQP for integrating various Grid resources, includ-
ing (but not exclusively) database systems.
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Another important class of system in which queries
run over data that is distributed over a number of physi-
cal resources is parallel databases. In a parallel database,
the most common pattern is that data from a centrally
controlled database are distributed over the nodes of a
parallel machine. Parallel databases are now a mature
technology, and experience shows that parallel query
processing techniques are able to provide cost-effective
scaleability for data-intensive applications (e.g., DeWitt
and Gray, 1992; Graefe, 1993; Hasan et al., 1996; Sampaio
et al., 2001). This paper, as well as advocating DQP as a
data integration mechanism for the Grid, also shows
that techniques from parallel database systems can sup-
port data access and analysis for Grid applications.

The claims of this paper with respect to DQP and the
Grid are as follows:

1. In providing integrated access to multiple data
resources, DQP in and of itself is an important
functionality for data intensive Grid applications.

2. The fact that certain database languages can inte-
grate operation calls with data access and combi-
nation operations means that DQP can provide a
mechanism for integrating data and computational
Grid services.

3. Given (1) and (2), DQP can be seen to provide a
generic, declarative, high-level language interface
for the Grid.

4. By extending technologies from parallel databases,
implicit parallelism can be provided within DQP
environments on the Grid.

The paper makes concrete how these claims can be sup-
ported in practice by describing a prototype DQP sys-
tem, Polar*, which runs over the Globus toolkit, and
illustrates the prototype using an application from bioin-
formatics.

The remainder of this paper is structured as follows.
In Section 2 we present the principal components of a
DQP system for the Grid, in particular indicating how
this relates to other Grid services. In Sections 3 and 4
we describe, respectively, how queries are planned and
evaluated within the architecture. In Section 5 we describe
some measurements of an example query in a Grid envi-
ronment. Finally, in Section 6 we present some conclu-
sions and pointers to future work.

2 Architecture

The two key functions of any DQP system are query
compilation and query execution. In the Polar* system
described in this paper, both these components are based
on those designed for the Polar project (Smith et al.,
2000). Polar is a parallel object database server that runs

on a shared-nothing parallel machine. Polar* exploits
Polar software components where possible but, as Polar*
must provide DQP over data repositories distributed across
a Grid, there are a number of key differences between
query processing in the two systems. These include:

1. The data dictionary must describe remote data
storage and analysis resources available on the
Grid – queries act over a diverse collection of
application stores and analysis programs.

2. The scheduler must take account of the computa-
tional facilities available on the Grid, along with
their variable capabilities – queries are evaluated
over a diverse collection of computational resources.

3. The data stores and analysis tools over which
queries are expressed must be wrapped so that
they look consistent to the query evaluator.

4. The query evaluator must use Grid authentica-
tion, resource allocation and communication pro-
tocols – Polar* runs over Globus, using MPICH-G
(Foster and Karonis, 1998).

A representative query over bioinformatics resources is
used as a running example throughout the paper. The
query accesses two databases: the Gene Ontology Data-
base GO (www.geneontology.org; Ashburner et al., 2000)
stored in a MySQL (www.mysql.com) RDBMS; and GIMS
(Cornell et al., 2001), a genome database running on a
Polar parallel object database server, based on the Shore
system (Carey et al., 1994). The query also calls a local
installation of the BLAST sequence similarity program
(www.ncbi.nlm.nih.gov/BLAST/; Altschul et al., 1990)
which, given a protein sequence, returns a set of structs
containing protein IDs and similarity scores. For that,
the BLAST program accesses a third biological data-
base, which in the example is SWISS-PROT (Bairoch
and Apweiler, 2000), in a way transparent to the user.
Both the BLAST program (and more specifically its
blastall operation) and its associated database comprise
a BLAST server. The query identifies proteins that are
similar to human proteins with the GO term 8372:1

select p.proteinId, Blast(p.sequence)
from p in proteins, t in proteinTerms
where t.termID='8372' and

p.proteinId=t.proteinId

In the query, proteins is a class extent in GIMS, while
proteinTerms is a table view in GO. Before submitting
the query, a global database schema has been constructed
to describe and combine the relevant views of the par-
ticipating databases, along with the BLAST program.
The ODL (Cattell and Barry, 2000) definition of that
schema is as follows:
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forward class Protein;
forward class ProteinTerm;

struct Entry {
string BLASTproteinID;
long score;

};

static set<Entry> blast(in string protein);

class Protein //from GIMS
(extent proteins) {
attribute string proteinID;
attribute string sequence;

};

class ProteinTerm //from GO
(extent proteinTerms) {
attribute string proteinID;
attribute string term;

};

Therefore, as illustrated in Figure 1, the infrastructure
initiates two subqueries: one on GIMS, and the other on
GO. The results of these subqueries are then joined in a
computation running on the Grid. Finally, each protein
in the result is used as a parameter to the call to BLAST.

One key opportunity created by the Grid is in the
flexibility it offers on resource allocation decisions. In
the example in Figure 1, machines need to be found to
run both the join operator, and the operation call. If
there is a danger that the join will be the bottleneck in
the query, then it could be allocated to a system with
large amounts of main memory so as to reduce IO costs

associated with the management of intermediate results.
Further, a parallel algorithm could be used to implement
the join, and so a set of machines acquired on the Grid
could each contribute to its execution. Similarly, the
BLAST calls could be speeded up by allocating a set of
machines, each of which can run BLAST on a subset of
the proteins.

The information needed to make these resource allo-
cation decisions comes from two sources. First, the query
optimizer estimates the cost of executing each part of a
query and so identifies performance-critical operations.
Secondly, the Globus Grid infrastructure provides infor-
mation on available resources. Once a mapping of oper-
ations to resources has been chosen, the single sign-on
capabilities of the Grid Security Infrastructure simplify
the task of gaining access to these resources. Figure 2
illustrates the high level architecture of the system. The
metadata repository, which is needed to compile a query,
is populated by both data from the database schema
(e.g. types of attributes), and by information about the
Grid nodes. Each Grid node has specific computational
capacities and data stores. The coordinator node is a
usual Grid node with the additional characteristic that it
has the Polar* query compiler installed.

3 Query Planning

Polar* adopts the model and query language of the
ODMG object database standard (Cattell and Barry, 2000).
As such, all resource wrappers must return data using
structures that are consistent with the ODMG model.
Queries are written using the ODMG standard query
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language, OQL. The reason for choosing the object data
model rather than the relational one is that it provides a
richer model for source wrapping and for representing
intermediate data.

The main components of the query compiler are shown
in Figure 3. The Polar* optimizer has responsibility for

generating an efficient execution plan for the declarative
OQL query which may access data and operations stored
on many nodes. To do this, it follows the two-step opti-
mization paradigm, which is popular for both parallel and
distributed database systems (Kossmann, 2000). In the
first phase, the single node optimizer produces a query
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plan as if it was to run on one processor. In the second

phase, the sequential query plan is divided into several par-

titions or subplans which are allocated machine resources

by the scheduler.

3.1 CONSTRUCTION OF THE
SINGLE-NODE PLAN

Figure 4(a) depicts a plan for the example query expressed
in the logical algebra of Fegaras and Maier (2000), which
is the basis for query optimization and evaluation in
Polar*. The logical optimizer performs various transfor-
mations on the query, such as fusion of multiple selec-
tion operations and pushing projects – called reduce in
Fegaras and Maier (2000) and in the figures – as close
to scans as possible.

The physical optimizer transforms the optimized logical

expressions into physical plans by selecting algorithms

that implement each of the operations in the logical plan

(Figure 4(b)). For example, in the presence of indices,

the optimizer prefers index_scans to seq_scans. Opera-

tion calls, such as the call to BLAST, are encapsulated

by the operation_call physical operator. For each OQL

query, many physical plans are produced, and the physi-

cal optimizer ranks these according to a cost metric based

on the predicted size of the intermediate results pro-

duced during the query execution. Changing the order

of the operators results in plans with different costs.

3.2 CONSTRUCTION OF THE
MULTI-NODE PLAN

A single-node plan is transformed into a multi-node one
by inserting parallelization operators into the query plan,
i.e., Polar* follows the operator model of parallelization
(Graefe, 1990). The exchange operator encapsulates flow
control, data distribution and inter-process communica-
tion. The partitioner first identifies whether an operator
requires its input data to be partitioned by a specific attrib-
ute when executed on multiple processors (for example,
so that the potentially matching tuples from the operands
of a join can be compared). These operators are called
attribute sensitive operators (Hasan and Motwani, 1995),
and Sampaio et al. (1999) present the classification of
the parallel operators as attribute sensitive or attribute
insensitive. Secondly, the partitioner checks whether data
repartitioning is required, i.e., whether data need to be
exchanged among the processors, for example for join-
ing or for submitting to an operation_call on a specific
machine. If the children of an attribute sensitive opera-
tor in a query plan are partitioned by an attribute other
than its partitioning attribute, or there is no data parti-
tioning defined, then data repartitioning needs to take

place. Another case for data repartitioning is when not
all the candidate nodes for evaluating parts of the query
can evaluate a physical operator, which is the usual case
for operation_calls.

The physical algebra extended with exchange consti-
tutes the parallel algebra used by Polar*. The exchanges
are placed immediately below the operators that require
the data to be repartitioned. For each exchange operator,
a data distribution policy needs to be defined. Currently,
the policies Polar* supports include round_robin, hash_
distribution and range_partitioning. The last two poli-
cies provide support for non-uniform data distribution
among instances of the same physical operator, which is
desirable for heterogeneous environments. A multi-node
query plan is shown in Figure 4(c), where the exchanges
partition the initial plan into many subplans (delimited
by dashed lines in the figure). In the example query,
there is one attribute sensitive operator, the hash_join,
which needs to receive tuples partitioned by the proteinID
attribute. Since the children of the hash_join are not
partitioned in this way, two exchanges are inserted at
the top of each subplan rooted by the join. Operation_
call is attribute insensitive, but since it can be called
only from specific nodes, an exchange is inserted as its
child. The optimizer checks if the exchanges transmit
redundant data. A reduce operator ensures that only data
that are required by operators higher in the query plan
are transferred through the network. If there are no such
reduces placed by the single-node optimizer, the paral-
lel optimizer inserts them.

The final phase of query optimization is to allocate
machine resources to each of the subplans derived from
the partitioner, a task carried out by the scheduler in
Figure 3 using an algorithm based on that of Rahm and
Marek (1995). For running the example query, suppose
that six machines are available, and that three of the
machines host databases (numbers 2 and 3 for the GIMS
database, and 6 for the GO database). The table_scan
operators are placed on these machines in order to save
communication cost. For the hash_join, the scheduler
tries to ensure that the relation used to construct the
hash table can fit into main memory, for example, by
allocating more nodes to the join until predicted mem-
ory requirements are satisfied or all available memory is
exhausted. In the example, nodes 3 and 6 are allocated
to run the hash_join. As some of the data are already on
these nodes, this helps to reduce the total network traffic.

The data dictionary records which nodes support
BLAST, and thus the scheduler is able to place the
operation_call for BLAST on suitable nodes (4 and 5 in
Figure 4(c)). The cost of a call to BLAST is much
higher than the cost to send a tuple to another node over
the network. In any case, the whole set of the results of
the hash_join needs to be moved from the nodes 3 and
6. For these two reasons, the optimizer has chosen the
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maximal degree of parallelism for the BLAST opera-

tion. The scheduler uses a heuristic that may choose not

to use an available evaluator if the reduction in compu-

tation time would be less than the increase in the time

required to transfer data (e.g., it has decided not to use

machine 1 in the example).

4 Query Evaluation

4.1 EVALUATING THE PARALLEL
ALGEBRA

The Polar* evaluator uses the iterator model of Graefe
(1993), which is widely seen as the model of choice for
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parallel query processing (Kossmann, 2000). In this

model, each operator in the physical algebra implements

an interface comprising three operations: open(), next()

and close(). These operations form the glue between the

operators of a query plan. An individual operator calls

open() on each of its input operators to prompt them to

begin generating their result collections. Successive calls

to next() retrieve every tuple from that result collection.

A special eof tuple marks the end of a result collection.

After receiving an eof from an input, an operator calls

close() on that input to prompt it to shut itself down.

We note that, although the term tuple is used to describe
the result of a call to next(), a tuple in this case is not a

flat structure, but rather a recursive structure whose attrib-

utes can themselves be structured and/or collection val-

ued.

To illustrate the iterator model, Figure 5 sketches an

iterator-based implementation of a hash_join operator.

open() retrieves the whole of the left-hand operand of

the join and builds a hash table, by hashing on the attrib-

utes for which equality is tested in the join condition. In

next(), tuples are received from the right input collec-

tion and used to probe the hash table until a match is

found and all predicates applying to the join result are

satisfied, whereupon the tuple is returned as a result.

The iterator model can support a high degree of par-

allelism. Sequences of operators can support pipeline

parallelism, i.e., when two operators in the same query

plan are independent, they can execute concurrently. Fur-

thermore, when invocations of an operation on separate

tuples in a collection are independent, the operation can

be partitioned over multiple machines (i.e., partitioned

or intra-operator parallelism).

Whereas data manipulation operators tend to run in a

request-response mode, exchange differs in that, once

open() has been called on it, the producers can run inde-

pendently of the consumers. The tuples, which may be

complex structures, are flattened for communication into

buffers whose size can be configured. Underlying an

instance of exchange is a collection of threads managing

pools of such buffers so as to constrain flow to a lag-

ging consumer, but to permit flow to a quicker con-

sumer, within the constraints of the buffer pools. This

policy is very conveniently implemented in MPI (Snir et

al., 1998) where the tightly defined message completion

semantics permit the actual feedback to be hidden within
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class HashJoin: public Operator {
private:

Tuple *t; HashTable h; Predicate predicate;
Operator *left; set<Attribute> hash_atts_left;
Operator *right; set<Attribute> hash_atts_right;

public:
virtual void open() {

left->open(); t = left->next();
while (! t->is_eof()) {

h.insert(t, hash_atts_left); t = left->next();
}
left->close(); right->open(); t = right->next();

}
virtual Tuple *next() {

while (! t->is_eof()) {
if (h.probe(t, hash_atts_right) && t->satisfies(predicate))

return t;
delete t; t = right->next();

}
return t;

}
virtual void close() {

right->close(); h.clear();
}

};

Fig. 5 Implementing hash-join as an iterator.



its layer. The send and recv calls issued at the MPI level
in non-blocking synchronous mode, are managed by mul-
tiple user level threads encapsulated in the exchange
operator. Each Polar* machine contains a global buffer
pool, whose size is controlled via the global metadata.
During evaluation of a given query, flow control is
achieved by restricting each instance of the exchange
operator to an allocation of buffers from the global pool;
it can only send or receive buffers within the capacity of
that allocation. This use of MPI has enabled the Polar
exchange to port easily to MPICH-G (Foster and Karonis,
1998), for use with Globus.

Since MPICH-G is layered above Globus, a parallel
query can be run as a parallel MPI program over a col-
lection of wide area distributed machines, oblivious of
the difficulties inherent in such meta-computing, which
are handled by the underlying Globus services. A paral-
lel program running over such a Grid environment has
to find suitable computational resources, achieve con-
current login, transfer of executables and other required
files, and startup of processes on the separate resources.
In the Polar* prototype, concurrent login to separate
accounts is achieved through GSI (the Grid Security
Infrastructure for enabling secure authentication and
communication over an open network), and executable
staging across wide area connections through GASS
(Global Access to Secondary Storage, which is used for
remotely accessing data), but all these features are
accessed through the MPICH-G interface rather than in
a lower level way.

Because the physical operators in Polar*, such as Polar,
are implemented to manipulate generic tuple structures,
the implementation of each operator can be present as a
C++ object in each installation of the evaluator code. A
subquery thus only needs to contain a reference to the
specific operator IDs (i.e. scan, hash_join, exchange, etc.)
and the parameters for those instances. These parameters
include the index of each input operator and the opera-
tor specific parameters, such as the arbitrator policy and
list of consumers for an exchange, the join attributes
and predicate for a hash_join, etc. While input operators
are contained in the same subquery, exchange consum-
ers can be identified by a machine number (i.e. rank
number) and index number pair. Thus the description of
a query subplan is quite simple, and can be expressed
concisely in textual format. By contrast, the dynamically
loadable module required by an operation call, contain-
ing the user defined code, is installed as part of the pro-
cedure of registering that operation call as available on
the particular machine.

The collection of machines included in a Polar* dis-
tributed system is recorded in the global metadata of
that system, located on the coordinator machine. Polar*
generates files required by the underlying MPICH-G sys-
tem from this metadata. Assuming the user has built the
coordinator on his own machine, the OQL compiler/
optimizer can be called as a local process by the polar-
query program to generate a collection of subqueries, and
a corresponding list of database nodes. The polar-query
program can thereby construct a single communicator MPI
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program with one process, rank 0, running on the local
machine and the remainder running on those machines
that are required to participate in the query, and supply
the subqueries to that MPI program via a text file.

Figure 6 shows the four main phases of query execu-
tion. The evaluator receives a set of subqueries from the
query compiler as shown in Figure 3. First, the subqueries
are sent to the Grid nodes through the network and, sec-
ondly, they are installed on them via the MPI interface.
The next phase involves the execution of the operators
comprising the query plan as iterators. This operator
execution may in turn lead to the moving of data between
nodes, using a flow-controlled communications infra-
structure which itself uses the MPI interface.

4.2 ACCESSING COMPUTATIONAL AND
DATA RESOURCES DURING QUERY
EVALUATION

From the point of view of the evaluator, both database

and analysis operations referred to within a query are

external resources, which must be wrapped to enable

consistent passing of parameters and returning of results

during query evaluation.

To support access to external tools such as BLAST,
Polar* implements, in iterator style, the operation_call
operator in Figure 7. While concerns regarding the integ-
rity of the evaluator lead to the isolation of such an
operation call within a separate user context in some

361DISTRIBUTED QUERY PROCESSING ON THE GRID

class PhysicalOperationCall: public PhysicalOperator {
private:

string signature; // operation to call
string opslib_name; // name of library
list<Expression> expression; // select params from tuple
Predicate predicate; // predicate on output tuple
int key; // from cross ref in opslib
vector<concrete_object*> arg; // sized appropriately
class operation_library_stub; // functions etc in shared library
operation_library_stub *stub;
Tuple *t;

public:
virtual void open() {

input->open(); // input is pointer to operator
stub = load_operation_library(opslib_name);
key = stub->xref(signature);

}
virtual Tuple *next() {

while (! t->eof()) {
t = input->next();
for (list<Expression>::iterator it = expression.begin();

it != expression.end(); it++)
arg[i+1] = t->evaluate(*it); // leave arg[0] for result

stub->call_operation(key, arg);
t->insert(arg[0]);
if (t->evaluate(predicate))

return t;
delete t;

}
return t;

}
virtual void close() {

unload_operation_library(stub);
input->close();

}
}

Fig. 7 The iterator-based implementation of external operation calls.
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databases, the view taken so far in Polar* is that higher
performance is achievable when a user can in good faith
code an operation to be executed in the server’s own
context. Thus, such operations are linked into dynami-
cally loadable modules, with stub code generated by the
Polar* system to perform the translation of types between
tuple format and the format of the programming lan-
guage used to implement the operation. At runtime, oper-
ation_call loads the appropriate module in its open()
call and unloads it in close(). Within next(), the operator
passes attributes from the current tuple to the stub code
which assembles required parameters, makes the call
and translates the result, which may be collection valued
and/or of structured type, back to tuple format before
inserting it into the output tuple which is passed back as
the result of the operator.

By making such an application available for use in a
Polar* schema, the owner does not provide unrestricted,
and thereby unmanageable, access on the Internet. By
contrast, since Polar* sits above Globus, a resource pro-
vider must have granted access rights to a user, in the
form of a local login, which they can revoke. Subse-
quent accesses, while convenient to the user through the
single sign-on support of Globus, are authenticated
through the GSI.

A specific case that requires access to external opera-
tions is the provision of access to external, i.e. non
Polar*, repositories.

For example, the runtime interface to a repository
includes an external_scan operator, which exports an
iterator style interface in common with other operators
(Figure 8). However, below the level of external_scan
the interface to an arbitrary external repository requires
special coding. When an external collection is defined
in the schema, the system generates the definition of a
class, which has the three operations of the iterator inter-
face plus other operations to gather statistics and set
attributes of the interface such as a query language and
the syntax of results generated by the external reposi-
tory.

The generated class is the template within which a
user can implement an iterator style interface to the
external repository. The mechanisms used are at the dis-
cretion of the user, but the pattern in which the opera-
tions of this system-defined class are called is defined
by the Polar* system. Fixed attributes, such as the syn-
tax of result tuples returned, are set at the time the com-
pleted access class is registered with the Polar* system.
The open(), next() and close() operations are simply called
by external_scan in the usual iterator-based style. How-
ever, the results returned by the next() operation are
translated from the selected syntax into Polar* tuples.

In the running example, the GO database is imple-
mented using MySQL, so access to it is through such a

system-specified user-defined class of operations. A del-
egated subquery such as the access to proteinTerm tuples
is expressed in SQL, and the results are formatted within
the MySQLAccess class in Object Interchange Format
(OIF).2 The next() operation of the external_scan opera-
tor parses each OIF instance to construct its result tuple.

5 Case Study

The experiments described in this section illustrate the
behavior of the Polar* system when evaluating the exam-
ple query introduced in Section 2. The query is run in
various different configurations, and in cases where
parameters of the query are varied, to indicate how these
influence scheduling decisions. For this purpose, it is
only query response time that is of concern here.

The case study has been conducted on the heteroge-
neous collection of machines described below.

– At Newcastle upon Tyne.

– At Manchester.

Man-pc1 is dedicated as a MySQL server for a reference
GO database, with no direct user access. The wrapper
for this database is managed by an external scan opera-
tor located on the most local machine available, man-
pc2, and accesses the GO data via a MySQL client. The
machines in Newcastle are inter-connected via a 100
Mbps network. The bandwidth for the connection between
Manchester and Newcastle is constrained by a slow con-
nection between Leeds and Newcastle of 34 Mbps (www.
norman.net.uk/old/janet/index.html).

The GIMS data (3 Mbytes in total) is located in a
Polar parallel object database distributed over two vol-
umes located on ncl-pc3. The subquery submitted to the
GO database retrieves 31006 tuples, from which 2518
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Machine CPU

(MHz)

Memory

(Mbyte)

OS Globus

ncl-pc1 500 128 RedHat Linux 8.0 GT 2.0

ncl-pc2 700 256 RedHat Linux 8.0 GT 2.2

ncl-pc3 2 × 800 256 RedHat Linux 7.3 GT 2.0

Machine CPU

(MHz)

Memory

(Mbyte)

OS Globus

man-pc1 N/A N/A N/A no

man-pc2 1100 512 RedHat Linux 7.1 GT 2.0



are joined with the GIMS tuples. 35 tuples in the result-

ing dataset satisfy the join criterion.

The cost of a call to the BLAST program is several

orders higher than a join between two tuples. Conse-

quently, the query cost is expected to be dominated by

the BLAST calls, so this is where parallelization is

attempted. Under different circumstances, parallelizing

other operators as well (such as hash_joins) has signifi-

cant impact, as explained in Section 3. In this case

study, all machines can support a BLAST server apart

from man-pc1, and the SMP ncl-pc3 can support two.

The SWISS-PROT dataset referenced in the BLAST calls

contains 111825 sequences and occupies a total of 70

Mbytes. In itself, then, these data can be accommodated

in memory on any of the machines, so that the execution

time of a BLAST call should be dominated by CPU pro-

cessing. The CPU cost of a BLAST call for a given

stored dataset varies significantly depending on the
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class PhysicalExternalScan: public PhysicalOperator {
private:

string opslib_name; // name of library
string query_text; // to be passed to external DB
enum RESULT_FORMAT; // e.g. OIF, SQL
RESULT_FORMAT fmt;
ObjectType otype; // given object type and input format
ObjectWalker *walker; // walker supports map to/from tuple
string open_signature;
string next_signature;
string close_signature;
Predicate predicate; // predicate on output tuple
int open_key, next_key, close_key;
vector<concrete_object*> open_arg; // only has string parameter
vector<concrete_object*> next_arg; // only has result
vector<concrete_object*> close_arg; // no parameters
Tuple *t;

public:
virtual void open() {

stub = load_operation_library(opslib_name);
open_key = stub->xref(open_signature);
next_key = stub->xref(next_signature);
close_key = stub->xref(close_signature);
open_arg[1] = query_text;
stub->call_operation(open_key, open_arg);
walker = new ObjectWalker(otype, fmt);

}
virtual Tuple *next() {

while (! t->eof()) {
stub->call_operation(next_key, next_arg);
t = walker->map(next_arg[0]);
if (t->evaluate(predicate))

return t;
delete t;

}
return t;

}
virtual void close() {

stub->call_operation(close_key, close_arg);
}

}

Fig. 8 The iterator-based implementation of external scans.



input sequence. For the 35 sequences resulting from the

join, this variation is shown in Figure 9. Since the CPU

speeds vary, there is a range of options for increasing

the parallelism in the operation call operator.

Two policies for parallelizing operation calls are

considered here. In the first, fastest-processor-first, the

parallelization of the operation call operator is increased

by allocating an extra instance to the fastest processor

not currently allocated one. In the second case, slowest-

processor-first, each extra instance is allocated to the

slowest processor not currently allocated one. Such a

strategy may be adopted if the user is charged for using

Grid resources, and the cost of a resource depends on its

power.

Orthogonally to the two processor allocation policies,

the data distribution may or may not take into account

the different machine characteristics. Static load balanc-

ing is improved by skewing the round-robin distribution

of tuples to the multiple operation_call operators,

according to the speed of the relevant machine.

Figure 10 shows measurements of the performance of

the query in Figure 11. The four plots correspond to the

four different combinations of processor allocation and

data distribution policies. In the fastest-processor-first,

man-pc2 is the first node allocated to evaluate the BLAST,

ncl-pc3-1 is the second, ncl-pc3-2 is the third, ncl-pc2 is

the fourth, and ncl-pc1 is added last. In the slowest-pro-

cessor-first the order is reversed. Each measurement is

taken five times, and the average of the last three has

been used. Also, the measurements are taken during quiet

periods, at night and weekend, when activity on the net-

work as well as the machines used is low.

The cost of the non-parallelized part of the query, i.e.

the cost to retrieve the remote data and perform the join,

is 17.6 s. This is relatively high for such volumes of

data, and it is mainly due to the cost of sending the

GIMS data from ncl-pc3 to man-pc2. Some interesting

observations can be made from these measurements. First,

the benefits of the resource sharing outweigh the Grid

overheads and the communication cost significantly. In
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Fig. 9 The variation of the costs of the BLAST calls
for the ncl-pc1.

Fig. 10 Measured performance of the example query
when the BLAST call is parallelized according to fastest-
processor-first and slowest-processor-first.

Fig. 11 The query plan used in the measurements. The
degree of parallelism of the operation call is varying.



the case in which the fastest processor is chosen first,
the first choice is man-pc2, which means that the hash_
join and the BLAST call reside on the same processor.
Further increases in the parallelism entail movement of
data from Manchester to Newcastle. Even in that case,
such increases yield better results. Also, for four proces-
sors, the aggregate CPU power is 3400 MHz. Assuming
that the time of the parallelized part is inversely propor-
tional to the total CPU power available, the perfor-
mance of an ideal parallel computation would be 17.6 +
(164.3 – 17.6)(1100/3400) = 65.1. The fastest measured
execution time is 76.6, suggesting the query processor
has done a reasonable job at this point. The most power-
ful machine, man-pc2, would evaluate all the BLAST
calls with no other processes running in no less than
147 s. It is the responsibility of the scheduler compo-
nent of the query compiler to choose the best combina-
tion of machines and data distribution policy.

A second observation is that even totally static load
balancing policies over highly skewed resources can
improve the performance of the system. In both cases of
processor allocation, assuming uniform CPU capacities
leads to worse performance than taking into consider-
ation a very simple resource characteristic such as the
maximum CPU power. The difference between the Grid
and other distributed systems is that the Grid provides
the mechanisms to publish and advertise such character-
istics, both static and dynamic.

These measurements barely scratch the surface of inves-
tigations into the performance of query processing in a
Grid context, but they do hint at the complexity inherent
in planning wide area distributed computations over het-
erogeneous resources, and demonstrate that even simple
policies based on static measurements can be followed
to arrive at sensible configurations. It is easy to see how
the problem of planning this type of computation becomes
more difficult in the presence of other usage, or if for
instance the BLAST dataset were much larger, so that
memory availability needs to be considered. In local and
distributed database query processing, such considerations
have driven the development of sophisticated optimiza-
tion techniques (Kossmann, 2000). The argument here is
that such techniques can be beneficial in a Grid setting
and should be extended to take account of the metrics
generated by a Grid infrastructure, including both static
metrics such as CPU speed and memory size used here
and dynamic metrics such as CPU and memory avail-
ability, in order to implement a manageable program-
ming model for query style computations over a Grid.

6 Conclusions

One of the main hopes for the Grid is that it will encour-
age the publication of scientific and other data in a more

open manner than is currently the case. If this occurs

then it is likely that some of the greatest advances will

be made by combining data from separate, distributed

sources to produce new results. The data that applica-

tions wish to combine will have been created by differ-

ent researchers or organizations that will often have made

local, independent decisions about both the best data-

base paradigm and design for their data. The role of

DQP in such a setting is to provide high-level, declara-

tive facilities for describing requests over multiple data

stores and analysis facilities.

The ease with which DQP allows such requests to be
phrased has been illustrated through the example query
in Section 2. This query is straightforward, but has illus-
trated how DQP can be used to provide optimization
and evaluation of declarative requests over resources on
the Grid. We note that the alternative of writing such a
request using lower-level programming models, such as
MPICH-G or a COG kit (von Laszewski et al., 2001)
could be quite time-consuming. We note also that as the
complexity of a request increases, it becomes increas-
ingly difficult for a programmer to make decisions as to
the most efficient way to express a request. Developing
efficient execution plans for such tasks using existing
Grid programming environments would take a skilled
developer a significant time. We believe that DQP can
serve an important role in Grid environments by:

1. increasing the variety of people who can form
requests over multiple Grid resources;

2. reducing development times for certain catego-
ries of Grid programming task; and

3. enabling typical requests to be evaluated efficiently
as a result of system-supported query optimization
and support for implicit parallelism.

The Polar* prototype DQP system described in this paper

is the result of our ongoing work on query processors

for the Grid. The prototype has been implemented over

Globus middleware using MPICH-G, and experiments

have been conducted over bioinformatics databases and

analysis tools at the authors’ geographically remote sites.

Future work will: (i) extend the range of physical opera-

tors in the algebra; (ii) increase the amount of system

information used by the scheduler in query planning;

(iii) explore the development of more powerful schedul-

ing algorithms; and (iv) conduct performance evalua-

tions over more and larger databases. We also work to

evolve the Polar* system to be compliant with the emerg-

ing Open Grid Services Architecture (Foster et al., 2002),

and to make use of standard service interfaces to data-

bases (Watson, 2001) to reduce the cost of wrapper devel-

opment.
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NOTES

1. For what it is worth, the GO term GO:0008372 is used for
“the annotation of gene products whose localization is not known
or cannot be inferred.” (See www.godatabase.org.)

2. OIF is a standard textual representation for ODMG objects.
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