COMPARATIVE EVALUATION OF THE ROBUSTNESS
OF DAG SCHEDULING HEURISTICS

Louis-Claude Canon and Emmanuel Jeannot
LORIA, INRIA, Nancy University, CNRS

Campus Scientifique — BP 239

54506 Vandoeuvre-lés-Nancy Cedex, France
louis-claude.canon@loria.fr

emmanuel.jeannot@loria.fr

Rizos Sakellariou and Wei Zheng
School of Computer Science,

The University of Manchester,

Oxford Road, Manchester M13 9PL, U.K.
rizos@cs.man.ac.uk

zhengw@cs.man.ac.uk

Abstract In this paper, we analyze the robustness of 20 static, makespan-centric, DAG
scheduling heuristics of the literature. We also study if dynamically changing the
order of the tasks on their assigned processor improves the robustness. Based on
experimental results we investigate how robustness and makespan are correlated.
Finally, the heuristics are experimentally evaluated and ranked according to their
performance in terms of both robustness and makespan.

Keywords: DAG scheduling heuristics, robustness, makespan, stochastic.

2

1. Introduction

With the emergence of distributed heterogeneous systems, such as grids, and
the demand to run complex applications such as workflows, the problem of
choosing robust schedules becomes more and more important. Indeed, in such
environments, a carefully crafted schedule based on deterministic, statically-
known, estimates for the execution time of the different tasks that compose a
given application, may prove to be grossly inefficient, as a result of various
unpredictable situations that may occur at run-time. Still, the existence of a
good schedule is an important factor affecting the overall performance of an
application. Thus, to mitigate the impact of uncertainties, it is necessary to
choose a schedule that guarantees robustness, that is, a schedule that is affected
as little as possible by various run-time changes.

There are several ways to achieve robustness. A first approach is to overesti-
mate the execution time of individual tasks. This results in a waste of resources
as it induces a lot of idle time during the execution, if the task duration is much
shorter than the estimation. Another solution is to reschedule tasks dynamically
allocating them to an idle processor in order to take into account information
that has been made available during the execution. However, rescheduling a
task is costly as it implies some extra communication and synchronization costs.
Relevant studies [19] indicate that, in addition to rescheduling, it is important
to have a static schedule with good properties before the start of the execution.
Therefore, even if a dynamic strategy is used, a good initial placement would
reduce the possibility of making a (later to be proved) bad decision and, hence,
would reduce the extra costs of resorting to a dynamic strategy.

A significant amount of work in the literature has focused on proposing static
directed acyclic graph (DAG) scheduling heuristics that minimize the overall
application execution time (known as the makespan). However, to the best
of our knowledge, so far, no study has tried to evaluate these heuristics with
respect to the robustness of the schedule they produce. In this paper, we assess
the robustness of twenty DAG scheduling heuristics from the literature designed
to minimize the makespan.

In the remainder of this paper, Section 2 reviews related work on robustness
and provides the definition used in this paper. Section 3 presents the model used
to assess heuristics in terms of robustness. Section 4 describes the methodology
of the experiments, Section 5 presents the experimental results and Section 6
concludes the paper.

2. Related work

The literature is abundant of makespan-centric, static DAG scheduling heuris-
tics. For our evaluation, we chose 20 of these heuristics, which include some
of the most widely used and cited. Due to lack of space, we refer the reader to

Comparative Evaluation of the Robustness of DAG Scheduling Heuristics 3

the relevant publications for the description of the heuristics. The 20 heuristics,
in alphabetical order, are: BIL [16], CPOP [4], DPS [1], Duplex [8], FCP [17],
FLB [17], GDL [22], HBMCT [18], HCPT [12], HEFT [23], k-DLA [24],
LMT [13], MaxMin [8], MCT [8], MET [8], MinMin [6], MSBC [10], OLB [8],
PCT [15], WBA [6].

Some work in the literature has attempted to define and model robustness;
no widely accepted metric exists. In [2], the authors propose a general method
to define a metric for robustness. First, a performance metric is chosen (this is
the metric that needs to be robust). In our case, this performance metric is the
makespan as we want the execution time of an application to be as stable as
possible. Second, one has to identify the parameters that make the performance
metric uncertain. In our case, it is the duration of the individual tasks and
their communications. Third, one needs to find how a modification of these
parameters changes the value of the performance metric. In our case, the answer
is fairly simple, as an increase of the task or communication duration generally
implies an increase of the execution time (even though, in some cases, a task may
have a longer duration than expected and due to the structure of the schedule,
such modification may not impact the overall makespan). Lastly, one has to
identify the smallest variation of a parameter that makes the performance metric
exceed an acceptable bound. A schedule A is said to be more robust than a
schedule B if this variation is larger for A than for B. However, estimating this
variation is the most difficult part as it requires to analyze deeply the structure
of the problem and its inputs.

In order to simplify this framework, research in the context of evaluat-
ing the robustness of the makespan has proposed several other metrics, such
as: the slack [7, 21, 19]; the probability that an execution exceed some ex-
pected bounds [20] (called the probabilistic metric); measures based on the
Kolmogorov-Smirnov (KS) distance between the cumulative distribution (CDF)
of the performance metric under normal operating conditions and the CDF of
the same performance metric when perturbation applies [11]; or the differential
entropy of the makespan [7]. In [9], we have studied the differences between
these metrics and have concluded that the makespan standard deviation, the
probabilistic metric and the differential entropy are highly correlated. This
correlation was possibly due to the quasi-normality of the makespan distribu-
tion. Intuitively, the standard deviation of the makespan distribution indicates
how narrow this distribution is. The narrower the distribution, the smaller the
standard deviation is. This metric is related to the robustness because when
two schedules are given the one for which the standard deviation is smallest
is the one for which actual executions are more likely to have a makespan
close to the average value. Mathematically, over several different values of the
makespan, the standard deviation is given by o3y = \/avg(M?) — avg(M)?2,

4

where avg(M) is the average value of all makespan values available. The
standard deviation will be used as a metric to assess robustness in this paper.

3. A Stochastic Model to Assess Robustness

We are given an application that is modeled by a stochastic task graph. This
graph is a DAG, where vertices represent computational tasks and edges repre-
sent task dependencies (often due to communication). To model the uncertainty,
task and communication cost are given by a random variable that follows a spe-
cific law (which can be different for all the tasks and communications). Hence,
for each execution of the graph these costs may be different.

The task graph is executed on a set of heterogeneous resources. We as-
sume that the topology of this infrastructure is complete (every machine can
communicate to every one). We use the related model [14] concerning CPU
capabilities: each CPU 1 is given a value 7;, the time to execute one instruction.
This means that if the cost of a task drawn from its random variable is ¢ the
execution time of this task on processor i is ¢;. Concerning communication,
we model each link by its latency («) and its bandwidth (3). The time to send
m bytes on link i is then o + 8 x m.

As we use static makespan-centric scheduling heuristics to map tasks onto
the processors, we need to adapt the model to compute the schedule. We also
need to compute the distribution of the makespan to determine its mean (average
makespan) and its standard deviation (robustness).

To solve the above issues, we have proceeded as follows. Given a stochas-
tic task graph, we transform it to a deterministic task graph by using only the
mean value of the communication and task duration. With this deterministic
task graph, we compute a schedule using one of our 20 heuristics. To compute
the distribution of the makespan, we simulated, a large number of times, the
execution of the schedule on the (heterogeneous) resources. This is a Monte-
Carlo (MC) method, which means that each time a value for the duration of
a task or communication is needed, this value is generated using the random
variable that described it in the stochastic task graph. This allows us to com-
pute the empirical distribution function (EDF), which converges to the true
law of the makespan as the number of simulations increases, as stated by the
Glivenko-Cantelli theorem. The precision achievable with a given number of
MC simulations is given by the confidence intervals of the calculated approxi-
mations of the makespan mean and standard deviation. Since we consider the
makespan distribution to be approximately normal, we use the Student’s ¢ and
the chi-square distributions to compute these intervals and choose the number
of simulations needed (see below).

Another issue that needs to be taken into account is the following. When
doing a MC simulation of a deterministic schedule using a stochastic task graph,

Comparative Evaluation of the Robustness of DAG Scheduling Heuristics 5

it is not always possible, at runtime, to respect the start and end times of each
task (that is, the times that were computed using static estimates). To address
this problem, we propose (and use) two solutions. The first solution is that
on each processor, we fully respect the order of the tasks, as it was produced
by the schedule. A task is scheduled for execution only when all the tasks
that, according to this schedule, must be executed before a given task have
finished. We call this strategy sequence, because on a given processor, all tasks
are executed in the same order than in the static schedule. The second solution
is to respect processor assignments of tasks onto processors, but schedule ready
tasks (that is, tasks whose parents have finished execution and all necessary data
has been transmitted to these tasks) as soon as they become ready. This means
that, sometimes, the order of the tasks, as given by the schedule for a single
processor, may not be respected. We call this strategy assignment, because only
the processor assignments in the schedule are respected, not the order as well.

4. Methodology

There are two phases in our experiments: a deterministic phase and a sfochas-
tic phase. In the first phase (deterministic), a specific DAG with static perfor-
mance estimates is the input for each of the 20 static scheduling heuristics to
generate a schedule. These schedules are further evaluated in the stochastic
phase.

Two types of DAG are considered in our experiments. One type is derived
from the Montage astronomy application [5]. The other is a random DAG,
instances of which are randomly generated based on the following approach:
(1) specify the number of nodes; (2) specify the number of levels; (3) randomly
allocate the number of nodes at each level; (4) for each node except the exit,
randomly appoint children nodes (at least one) in its lower neighbor level;
(5) for each isolated node (non-entry node without parent), randomly appoint
parent nodes in its upper neighbour level. In our experiments, we consider both
Random and Montage DAGs with the following numbers of nodes: 58, 100,
500, 740, 1000, and 1186. In random DAGs, the number of levels is equal to
the square root of the number of nodes. By combining each type of DAG with
each different number of nodes, we generate 12 different DAGs.

We adopted the approach used in [3] to model task duration heterogeneity.
A uniform random number R, ranging from 1 to 10 is generated to describe
resource heterogeneity, and another random number R, following the same
distribution is generated to describe task heterogeneity. Thus, the duration to
run task ¢ on resource j is determined by T; j = Rpes X Ryqsp. In addition,
the communication cost is modeled to satisfy that the ratio between mean task
duration and mean communication duration is 1.0.

All DAGs can make use of 10 heterogeneous resources. Using this infor-
mation, for each DAG generated as described above and for each of the 20
heuristics mentioned in Section 2, a static schedule is obtained, which will be
assessed in the stochastic phase.

In the second phase of our experiments, once the deterministic graphs (and
their schedules) have been produced, task durations are replaced by a random
variable (RV) having as a mean the values described above. The distribution
of these RV follows a Beta distribution with parameters « = 2 and 8 = 5
(see [9] for a justification). In order to fully specify this, we also need to
define the ratio between the maximum and the minimum bounds. We call this
parameter the uncertainty level (UL) and set it to 1.1 on average with a very
low dispersion (the UL is thus almost constant).

Finally, we need to settle the number of MC simulations in order to have a
relevant precision for the calculated approximations of the makespan mean and
standard deviation. To this end, we suppose that the makespan distribution is
normal (as hinted in [9]). We can then easily measure the confidence intervals
of these approximations. We see that for low variations of the makespan (as
in our case), the variation of the standard deviation is preponderant and only
depends on the number of MC simulations. To have less than 5% of preci-
sion with a confidence level of 99% we need 20,000 MC simulations. This
amount increases quickly for better precision (750,000 for 1% of precision, for
example).

5. Experiments
5.1 Normality

Our study is based on the hypothesis that the makespan of a stochastic graph
is normal (it follows a Gaussian distribution). We validated this experimental
hypothesis here by doing the Anderson-Darling (AD) test, which is one of
the best EDF omnibus tests for normality. Intuitively, the statistic obtained
corresponds to the distance of the EDF with a normal distribution. We observe
that 96% of the schedules in the sequence case and 54% in the assignment case
have an AD statistic smaller than 30 (the same as a Student distribution with 8
degrees of freedom). As these AD tests corroborate the normality assumption,
we can reduce the simulation values to only 2 measures (average makespan and
standard deviation) almost without loss of information in most cases.

5.2 Comparison of the sequence and assignment strategies

For each type of DAG, we have represented the performance of all the heuris-
tics in Figures 1 and 2. Each heuristic has a different symbol. The x-axis rep-
resents the average makespan of the schedule produced by the heuristic. The

Comparative Evaluation of the Robustness of DAG Scheduling Heuristics 7

Random graph (500) in sequence
65 T T T T T T T T

55 BIL
; A CPOP
o DPS
5 s Duplex
R FCP
3 FLB
45 7 GDL
e HBMCT
/{% $ HCPT
a HEFT
£ o

el MaxMin
35} 1 MCT
Pt - MET

/é MinMin
3 é : MSBC
o&B

PCT

WBA

1 1 1 1 1 1 1 1

25
1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
Average makespan

Makespan standard deviaton

600000 eD ¢4 »>00OBOXX +

Figure I. Mean vs. standard deviation of the makespan of different heuristics with the sequence
strategy.

Random graph (500) with only assignment

50 T T T T T T T T
45 3 g
40 g
c é BIL +
S s5f L] CPOP x _
S DPS %~
3 Duplex ©
T 80 _-"FCP = -
s T FLB o
S T GDL e
g o5} — HBMCT & A
< T HCPT a
e HEFT ~
2 208 - KDLA + 7
2 . I i LMT
S = MaxMin o
15 - % MCT e 7
- E o MET o
10 L5 = * MinMin e |
MSBC o
2% . OLB e
5r PCT o |
WBA o
1 1 1 1 1 1 1

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
Average makespan

Figure 2. Mean vs. standard deviation of the makespan of different heuristics with the assign-
ment strategy.

strategy m58 ml00 m500 m740 ml1000 ml1186 58 r100 r500 740 r1000 r1186

assignment 0.55 020 -0.19 0.76 0.66 0.60 073 005 059 044 0.60 0.36
sequence 0.81 0.85 0.62 0.71 0.73 0.62 047 087 097 091 097 0.89

Table 1. Correlation between makespan and robustness for the assignment and sequence
strategies for different kind of graphs.

y-axis shows the standard deviation, the metric we use for robustness; the er-
ror bars correspond to the confidence intervals of each point with a confidence
level of 99% (the probability for every point to be inside this range is 0.99).
In addition, we plot the best fitting linear function for the points based on the
least squares method. It helps to see the degree of correlation between the aver-
age value of the makespan and the robustness (more profound in the sequence
case). The two figures shown allow the reader to compare the sequence and the
assignment strategies for a certain type of DAG. While the average makespan
does not change significantly in each case, the robustness is considerably worse
with the second strategy.

As observed in the above example, the makespan mean and standard devi-
ation are highly correlated. We compute the linear correlation coefficients (or
Pearson coefficient) for each case and exhibit them in Table 1. This coefficient
denotes the linear relationship existing between two RV (the mean and standard
deviation estimators here). It takes values between —1, in the case of a decreas-
ing linear relationship, and 1, in the case of an increasing linear relationship.
Values close to 0 indicate the absence of a linear relationship. When restricting
to the sequence strategy, the results show a strong correlation between mean
and standard deviation in most cases (more than 0.7 in 75% of cases for the
sequence case). This confirms the results in [9] and extends them in that the
currently studied schedules are near-optimal.

We now investigate the effect of the choice between assignment and sequence
on the schedule performance. In the example above, the most notable impact
was an increase of the standard deviation in the assignment case. We compute
the ratio between the assignment case and the sequence case for the mean and
the standard deviation respectively, and show that this increase is a general
trend. Tables 2 and 3 summarize these ratios by regrouping them with respect
to the task graph or with respect to the heuristics. This table can be read as
follows. For the Montage graph with 58 nodes (m58), the minimum ratio
is 0.92 and the maximum ratio is 1.08, for the average makespan. For the
standard deviation, 75% of the cases (from the 20 heuristics) have a ratio lower
than 1.05. The first five columns indicate that, in most cases, the makespan
remains extremely stable (with only a few extra-cases having more than 10%
of difference). However, when there is a difference, the assignment strategy

Comparative Evaluation of the Robustness of DAG Scheduling Heuristics

Mean Standard deviation

Graph . .

Min 25% Med 75% Max | Min 25% Med 75% Max
m58 092 1.00 1.00 1.00 1.08 | 0.79 1.00 1.00 1.25 13.8
m100 0.91 1.00 1.01 1.05 1.10 | 0.95 1.81 4.33 5.85 10.5
m500 0.88 1.00 1.00 1.00 1.00 | 0.94 1.00 1.00 1.25 490
m740 0.86 1.00 1.00 1.00 1.00 | 0.89 1.00 1.00 1.00 1.13
ml000 | 0.85 0.98 1.00 1.00 1.00 | 0.96 1.00 1.00 1.01 1.22
ml1186 | 0.87 0.99 1.00 1.00 1.00 | 0.94 1.00 1.00 1.00 1.18
158 0.92 1.00 1.00 1.01 1.06 | 0.99 1.00 1.00 255 11.3
r100 0.87 099 1.00 1.02 1.05 | 0.81 1.00 132 258 572
r500 0.82 091 1.01 1.03 1.07 148 250 388 593 8.46
1740 0.84 099 1.04 1.10 1.17 | 3.14 458 6.53 8.32 11.1
r1000 0.81 0.90 1.00 1.05 1.08 | 234 320 372 457 699
r1186 0.78 0.97 1.01 1.10 1.16 | 3.72 6.09 745 9.33 14.0
Table 2. Tukey’s five number summary (quartiles) of ratio between the assignment case and

sequence case for makespan and robustness; task graph view.

Mean Standard deviation
Heurlsties | nin 256 Med 75% Max | Min 25% Med 75% Max
BIL 093 099 100 1.04 1.13 | 098 100 210 416 110
CPOP 087 090 091 099 110] 079 1.01 1.11 452 105
DPS 078 085 088 092 1.03| 089 101 324 540 9.9
Duplex 1.00 1.00 1.02 1.03 1.06 [1.00 1.00 240 4.07 698
FCP 1.00 100 1.01 106 1.06 | 1.00 1.00 150 562 6.80
FLB 094 099 100 1.00 1.03| 096 100 193 3.68 846
GDL .00 1.00 1.01 1.04 1.16 | 099 100 224 591 11.1
HBMCT 1.00 1.00 1.02 1.06 1.10 | 098 100 341 731 972
HCPT 08 088 092 098 1.08 | 094 1.08 330 545 138
HEFT .00 1.00 1.00 1.07 1.16 | 1.00 1.00 157 648 140
KDLA 1.00 1.00 1.02 105 1.17 | 099 100 279 555 894
LMT 091 09 098 1.00 1.03| 083 099 1.00 216 8.04
MaxMin 098 1.00 100 1.01 1.02 | 081 100 1.68 256 6.20
MCT 1.00 1.00 1.01 1.02 1.05| 1.o00 100 272 467 8.0
MET 08 087 094 100 1.00 | 092 100 156 699 113
MinMin 1.00 1.00 1.01 1.03 1.06 | 1.00 100 1.65 4.07 698
MSBC 082 087 098 1.00 1.00 | 1.00 1.04 120 253 446
OLB 098 100 100 1.00 1.02 | 1.00 100 1.00 511 852
PCT .00 1.00 100 107 116 | 084 100 1.19 625 11.1
WBA 099 1.00 100 1.00 1.05| 1.00 1.00 1.03 370 8.01
Table 3. Tukey’s five number summary (quartiles) ratio between the assignment case and

sequence case for makespan and robustness; heuristics view.

10

Montage Random

Rank mean std dev mean std dev

1 GDL [1.7] GDL [2.0] HEFT [2.7] HEFT [3.7]
2 HBMCT [3.7] HEFT [2.8] PCT [3.3] PCT [4.2]
3 BIL [4.2] KDLA [3.3] Duplex [3.7] HBMCT [4.8]
4 HEFT [4.5] PCT [3.5] GDL [4.8] Duplex [5.7]
5 PCT [4.5] BIL [5.7] MinMin [5.5] GDL [6.3]
6 KDLA [6.3] HBMCT [6.8] MCT [7.2] KDLA [6.3]
7 Duplex [7.0] FCP [9.0] KDLA [7.3] MaxMin [6.7]
8 MCT [8.5] Duplex [10.7] MaxMin [7.5] MinMin [7.0]
9 MinMin [9.2] MSBC [10.8] HBMCT [7.8] MCT [9.5]
10 MaxMin [9.8] MaxMin [11.0] BIL [12.0] WBA [11.0]
11 FCP [11.0] CPOP [11.3] FCP [12.5] BIL [12.3]
12 WBA [11.7] MCT [12.3] WBA [13.0] DPS [12.3]
13 MSBC [13.7] WBA [13.0] LMT [14.2] HCPT [12.7]
14 OLB [13.8] MinMin [13.5] CPOP [14.3] LMT [13.7]
15 CPOP [14.2] LMT [13.8] FLB [14.3] CPOP [14.0]
16 FLB [15.0] OLB [14.5] HCPT [14.3] FCP [14.8]
17 LMT [16.0] FLB [14.7] DPS [14.8] FLB [15.2]
18 MET [18.3] DPS [15.7] MET [15.5] MET [15.2]
19 DPS [18.5] HCPT [16.5] OLB [16.8] OLB [17.0]
20 HCPT [18.5] MET [19.0] MSBC [18.3] MSBC [17.7]

Table 4. Makespan and robustness ranking of the heuristics for the montage and random task
graph cases.

allows more gain than the sequence strategy. Regarding the robustness metric, in
most cases the assignment strategy is at least two times worse than the sequence
strategy and in extreme cases, it can be up to one order of magnitude worse. This
signifies that the assignment strategy is inferior in term of robustness but almost
equal in terms of average makespan performance. In Table 3, this comparison
can also be thought as a kind of sensitivity analysis of the stability of the schedule
generated by a given heuristic. Even though the quantity of schedules is too low
to draw any conclusion with respect to this point, it appears that heuristics such
as LMT, MaxMin, MSBC are among the most stable. Similarly, the montage
graph seems to be in general less sensitive than random graphs.

5.3 Heuristic comparison

In this last part, we rank every heuristic with the sequence strategy as this
strategy has been shown superior in the previous section. Table 4 features
the best heuristics in term of both the mean and the standard deviation of the
makespan, and for the two types of task graph (random and montage). While

Comparative Evaluation of the Robustness of DAG Scheduling Heuristics 11

the precision for the makespan mean is always below 0.1%, the precision for
the standard deviation is only 5%. We observe that the best heuristic for the
montage graphs is GDL and for the random graphs, HEFT (in term of both
average makespan and robustness).

6. Conclusion

In this paper we have studied the robustness of 20 static makespan-centric
DAG scheduling heuristics from the literature, using as a metric for robustness
the standard deviation of the makespan over a large number of measurements.

Our results are three-fold. First, we have shown that it is better to respect the
static order of the tasks on the processors than to change this order dynamically.
Second, we have shown that robustness and makespan are somehow correlated:
as it has been suggested elsewhere [19], schedules that perform well statically
tend to be the most robust. Third, we have shown that, for the cases we have
studied, heuristics such as HEFT, HBMCT, GDL, PCT, are among the best for
both makespan and robustness.

Future work can be directed to the study of robustness-centric heuristics like
slack-based or convex clustering strategies. Another direction is to develop
multi-criteria strategies (that both optimize robustness and makespan). Lastly,
it would be interesting to see how to deal with stochastic information inside a
deterministic heuristic, instead of only using the mean, as in this present work.

References

[1] I. Ahmad, M.K. Dhodhi, and R. Ul-Mustafa. DPS: Dynamic Priority Scheduling Heuristic
for Heterogeneous Computing Systems. [EE Proceedings — Computers & Digital Tech-
niques, 145(6), pp. 411-418, 1998.

[2] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Measuring the Robustness of a
resource Allocation. IEEE Transactions on Parallel and Distributed Systems, 15(7), pp.
630-641, July 2004.

[3] S.Ali, H.J. Siegel, M. Maheswaran, D. Hensgen and S. Ali. Task Execution Time Modeling
for Heterogeneous Computing Systems. Proceedings of the 9th Heterogeneous Computing
Workshop, pp. 185-199, 2000.

[4] O.Beaumont, V. Boudet, and Y. Robert. The Iso-Level Scheduling Heuristic for Heteroge-

neous Processors. Proceedings of the 10th Euromicro Workshop on Parallel, Distributed
and Network-Based Processing (PDP2002), 2002.

[5] G.B. Berriman, J.C. Good, A.C. Laity, A. Bergou, J. Jacob, D.S. Katz, E. Deelman, C.
Kesselman, G. Singh, M. Su and R. Williams. Montage: a Grid Enabled Image Mosaci
Service for the National Virtual Observatory. Astronomical Data Analysis Software and
Systems XIII (ADASS XI11), Vol. 314, 2004.

[6] J.Blythe, S.Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. Task Scheduling
Strategies for Workflow-Based Applications in Grids. CCGrid 2005, 2005.

[7] L.BoloniandD. C. Marinescu. Robust scheduling of metaprograms. Journal of Scheduling,
5(5), pp- 395-412, September 2002.

12

(8]

(9]

[10]

(11]

(12]

(13]

(14]

[15]

(16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

(24]

T.D. Braun, H.J. Siegel, N. Beck, et al. A Comparison of Eleven Static Heuristic for Map-
ping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems.
Journal of Parallel and Distributed Computing, 61, pp. 810-837, 2001.

L.-C. Canon and E. Jeannot. A Comparison of Robustness Metrics for Scheduling DAGs
on Heterogeneous Systems. In HeteroPar’07, Sept. 2007.

H. Chen. On the Design of Task Scheduling in the Heterogeneous Computing Environ-
ments. /EEE Pacific Rim Conference on Communications, Computers and Signal Process-
ing, 2005.

D. England, J. Weissman, and J. Sadagopan. A New Metric for Robustness with Applica-
tion to Job Scheduling. Proceedings of the 14th IEEE International Symposium on High
Performance Distributed Computing, pp. 135-143, July 2005.

T.Hagras and J. Janecek. A Simple Scheduling Heuristic for Heterogeneous Computing En-
vironments. Proceedings of the 2nd International Symposium on Parallel and Distributed
Computing, pp. 104-110, 2003.

M. Iverson, F. Ozguner, and G. Follen. Parallelizing Existing Applications in a Distributed
Heterogeneous Environment. Proceedings of the 4th Heterogeneous Computing Workshop
(HCW’95), 1995.

J.W.S. Liu and C.L. Liu. Bounds on scheduling algorithms for heterogeneous computing
systems. Proceedings of IFIP Congress 74, pp. 349-353, 1974.

S. Manoharan and N. P. Topham. An Assessment of Assignment Schemes for Dependency
Graphs. Parallel Computing, 21(1), pp. 85-107, 1995.

H.Ohand S. Ha. A Static Scheduling Heuristic for Heterogeneous Processors. Proceedings
of the 2nd International Euro-Par Conference, vol. 2, pp. 573-577, 1996.

A. Radulescu and A. Van Gemund. Fast and Effective Task Scheduling in Heterogeneous
Systems. Proceedings of the 9th Heterogeneous Computing Workshop (HCW), pp. 229-238,
2000.

R. Sakellariou and H. Zhao. A Hybrid Heuristic for DAG Scheduling on Heterogeneous
Systems. Proceedings of the 13th Heterogeneous Computing Workshop (HCW), IEEE Com-
puter Society Press, 2004.

R. Sakellariou and H. Zhao. A low-cost rescheduling policy for efficient mapping of work-
flows on grid systems. Scientific Programming, 12(4), December 2004, pp. 253-262.

V. Shestak, J. Smith, H. J. Siegel, and A. A. Maciejewski. A Stochastic Approach to Mea-
suring the Robustness of Resource Allocations in Distributed Systems. 2006 International
Conference on Parallel Processing, August 2006.

Z. Shi, E. Jeannot, and J. J. Dongarra. Robust Task Scheduling in Non-Deterministic
Heterogeneous Computing Systems. Proceedings of IEEE International Conference on
Cluster Computing, September 2006.

G.C. Sih and E.A. Lee. A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architecture. IEEE Transactions on Parallel and
Distributed Systems, 4(2), pp. 175-187, 1993.

H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and Distributed
Systems, 13(3), pp. 260-274, 2002.

N. Woo and H.Y. Yeom. K-Depth Look-Ahead Task Scheduling in Network of Heteroge-
neous Processors. Lecture Notes in Computer Science, Vol. 2344, pp. 736-745, 2002.

