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In this paper, we propose and evaluate practical, automatic techniques
that exploit compiler analysis to facilitate simulation of very large message-
passing systems. We use compiler techniques and a compiler-synthesized
static task graph model to identify the subset of the computations whose
values have no significant effect on the performance of the program, and to
generate symbolic estimates of the execution times of these computations.
For programs with regular computation and communication patterns, this
information allows us to avoid executing or simulating large portions of the
computational code during the simulation. It also allows us to avoid per-
forming some of the message data transfers, while still simulating the message
performance in detail. We have used these techniques to integrate the MPI-
Sim parallel simulator at UCLA with the Rice dHPF compiler infrastructure.
We evaluate the accuracy and benefits of these techniques for three standard
message-passing benchmarks on a wide range of problem and system sizes.
The optimized simulator has errors of less than 16% compared with direct
program measurement in all the cases we studied, and typically much smaller
errors. Furthermore, it requires factors of 5 to 2000 less memory and up to a
factor of 10 less time to execute than the original simulator. These dramatic
savings allow us to simulate regular message-passing programs on systems
and problem sizes 10 to 100 times larger than is possible with the original
simulator, or other current state-of-the-art simulators.  © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Predicting parallel application performance is an essential step in developing
large applications on highly scalable parallel architectures, in sizing the system con-
figurations necessary for large problem sizes, or in analyzing alternative architec-
tures for such systems. Considerable research is being done on both analytical and
simulation models for performance prediction of complex, scalable systems. Ana-
lytical methods typically require custom solutions for each problem and may not be
tractable for complex interconnection networks or detailed modeling scenarios;
simulation models are likely to be the primary choices for general-purpose perfor-
mance prediction. As is well known, however, detailed simulations of large systems
can be very computation-intensive and their long execution times can be a signifi-
cant deterrent to their widespread use.

The current generation of parallel program simulators uses two techniques to
reduce model execution times: direct execution and parallel simulation. In direct
execution, the simulator uses the available system resources to directly execute por-
tions of the program. Parallel simulation distributes the computational workload of
the simulation among multiple processors, while using appropriate synchronization
algorithms to ensure that execution of the model produces the same result as if all
events in the model were executed in their causal order. However, the current state
of the art is such that even using direct execution and parallel simulations, the sim-
ulation of large applications designed for architectures with thousands of processors
can run many orders of magnitude slower than their physical counterparts.

In this paper, we propose, implement, and evaluate practical, automatic optimi-
zations that exploit compiler support to enable efficient simulation of highly scal-
able message-passing parallel programs. Our goal is to enable the simulation of
target systems with thousands of processors, and realistic problem sizes expected on
such large platforms. The key idea underlying our work is to use compiler analysis
to isolate fragments of local computations and message data whose values do not
affect the performance of the program. (We refer to these as redundant computa-
tions.) For example, computations that determine loop bounds, control flow, or
message patterns and volumes all have an effect on performance, whereas many
array element computations produce values that have no significant effect on per-
formance. These computations can be abstracted away (and replaced by estimates
of their performance) while simulating the rest of the program in detail to predict
the performance characteristics of the application. Similarly, it is also possible to
avoid performing data transfers for many messages whose values do not affect per-
formance, while simulating the performance of the messages in detail. In addition
to reducing simulation times, these optimizations can dramatically reduce the
memory requirements for the simulation. In particular, if major program arrays are
only referenced in redundant computations, they do not have to be allocated at all
during the simulation. The memory savings can potentially allow much larger
problem sizes and architectures to be studied than would otherwise be feasible.

There are three major aspects to the compiler analysis required to accomplish this
optimization: (1) identifying the values within the program that could affect
program performance; (2) isolating the computations and communications that
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determine these values, and (3) generating symbolic estimates of the execution time
of the remaining (i.e., redundant) computations. To perform the first step, we use a
compiler-synthesized static task graph model [4, 5], an abstract representation that
identifies the sequential computations (tasks), the parallel structure of the program
(task scheduling, precedences, and explicit communication), and the control-flow
that determines the parallel structure. The symbolic expressions in the task graph
for control-flow conditions, communication patterns and volumes, and scaling
expressions for sequential task execution times directly capture all the values that
impact program performance—they are exactly the references that appear in those
expressions. The second step uses a compiler technique called program slicing [22]
to identify the portions of the computation that determine these values. The compiler
can then emit simplified M PI code that contains exactly the computations that must
be actually executed during the simulation (in addition to the communication),
while the remaining code fragments are abstracted away. Finally, the compiler
estimates the execution time of the abstracted code by using symbolic expressions
parameterized by direct measurement. More sophisticated performance estimation
for these sequential fragments is possible, but we do not do so here.

In order to demonstrate the impact of these optimizations, we have combined the
MPI-Sim parallel simulator [6, 26-28] with the dHPF compiler infrastructure [2]
into a program simulation framework that incorporates the new techniques
described above. The MPI-Sim simulator simulates unmodified MPI programs and
uses both direct execution and parallel simulation to achieve substantial reductions
in simulation time. dHPF, in normal usage, compiles an HPF program to MPI and
provides extensive parallel program analysis capabilities. In previous work, we
modified the dHPF compiler to automatically synthesize the static task graph
model and symbolic task time estimates for MPI programs compiled from HPF
source programs.’ In this work, we use the static task graph plus program slicing to
perform the simulation optimizations described above. We have also extended MPI-
Sim to exploit the information from the compiler and avoid executing significant
portions of the computational code. The hypothesis is that this will significantly
reduce the memory and time requirements of the simulation and therefore enable us
to simulate much larger systems and problem sizes than were previously possible.

We use several known benchmarks to evaluate the utility of the integrated
framework: Sweep3D [1], a key ASCI benchmark; SP from the NPB benchmark
suite [8], and Tomcatv, a SPEC92 benchmark. All three codes have regular com-
putation and communication patterns. Tomcatv is an HPF benchmark and the
optimized simulation is fully automatic using the integrated dHPF + MPI-Sim tool.
The other two codes are existing MPI codes and we generated the simplified MPI
versions by hand as they would be generated by a compiler and input these to MPI-
Sim. The simulation models of each application were validated against measure-
ments over a range of problem sizes and numbers of processors. The validation has
been done for the distributed memory IBM SP architecture. The errors in the pre-
dicted execution times, compared with direct measurement, were at most 16% in all

! We believe that this step can also be done for a wide class of MPI codes directly, although the dHPF
compiler does not currently do so.
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cases we studied, and often were substantially less. Furthermore, the optimizations
had a significant impact on the performance of the simulators: the total memory
usage of the simulator using the compiler synthesized model was a factor of 5 to
2000 less than the original simulator, and the simulation time was typically lower by
a factor of 5-10. These dramatic savings allow us to simulate systems or problem
sizes that are 10-100 times larger than is possible with the original simulator,
without significant reductions in the accuracy of the simulator. For example, we
were successful in simulating the execution of a configuration of Sweep3D for a
target system with 10,000 processors! In several cases, the simulation time was
faster than the original program.

One limitation of our work is that the potential benefits could be significantly
lower in “irregular’” applications where communication patterns or computational
costs depend extensively on intermediate results. For such applications, fewer of the
intermediate computations can be abstracted away by the compiler. We do not
evaluate examples of such applications in this paper, but briefly discuss this issue in
Section 6.

The remainder of the paper proceeds as follows. Section 2 first describes the state
of the art of parallel program simulation, to set the stage for our work. Section 3
provides a brief overview of MPI-Sim and the static task graph model. Section 4
describes the optimization strategy and the compiler and simulator extensions
required to implement the strategy. Section 5 describes our experimental results,
and Section 6 presents our main conclusions.

2. RELATED WORK

Because analytical performance prediction can be intractable for complex appli-
cations, program simulations are commonly used for such studies. It is well known
that simulations of large systems tend to be slow. To improve the simulators, direct
execution has been used [21, 27, 29]. Direct-execution simulators make use of
available system resources to directly execute portions of the application code and
simulate architectural features that are of specific interest, or are unavailable. For
example, simulators can be used to study various architectural components such as
the memory subsystem or the interconnection network. Specifically, if one is inter-
ested in determining if a faster communication fabric for a network of workstations
is of value for a given set of applications, one can run the application on the
currently available machines and only simulate the projected network’s behavior.
The benefits of this direct-execution simulation are obvious: first, one can estimate
the value of the new hardware without the expense of purchasing it; second, one
can do the simulation fast—there is no need to simulate the workstation’s behavior
(for example, down to the level of memory references) since that part of the
hardware is readily available.

Many of the early simulators were designed for sequential execution [9, 13, 14].
However, even with the use of abstract models and direct execution, sequential
program simulators tended to be slow with slowdown factors ranging from 2 to 35
for each process in the simulated program [9]. Several recent efforts have been
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exploring the use of parallel execution [10, 17, 18, 24, 25, 28, 29] to reduce the
model execution times, with varying degrees of success. In order to have multiple
simulation processes and maintain accuracy, simulations use protocols to synchro-
nize the processes. One of the widely used protocols is the Quantum protocol,
which lets the processes compute for a given quantum before synchronizing them.
In general, synchronous simulators that use the quantum protocol must trade-off
simulation accuracy with speed (frequent synchronizations slowdown the simula-
tion, but synchronizing less frequently introduces errors, by possibly executing state-
ments out-of-order). Both LAPSE [17, 18] and Parallel Proteus use some form of
program analysis to increase the simulation window beyond a fixed quantum. MPI-
Sim uses parallel discrete event simulation with the conservative protocol [25, 28].
Supported protocols include the null message protocol (NMP) [11], the conditional
event protocol (CEP) [12], and a new protocol, which is a combination of the two
[23]. As discussed in the next section, MPI-Sim exploits the determinism present in
the communication pattern of the application to reduce, and in many cases,
completely eliminate synchronization overheads.

Although simulation protocol optimizations have reduced simulation times, the
resulting improvements are still inadequate to simulate the very large problems that
are of interest to high-end users. For instance, Sweep3D is a kernel application of
the ASCI benchmark suite released by the US Department of Energy. In its largest
configuration, it requires computations on a grid with one billion elements. The
memory requirements and execution time of such a configuration makes it imprac-
tical to simulate, even when running the simulations on high performance com-
puters with hundreds of processors.

To overcome this computational intractability, Dikaiakos et al. developed a tool
called FAST that performs abstract simulations, which avoid execution of the
computational code entirely [19, 20]. However, this leads to major limitations that
make the approach inapplicable to many real world applications. The main
problem with abstracting away all of the code is that the model is essentially inde-
pendent of program control flow, even though the control flow may affect both the
communication pattern as well as the sequential task times. Also, the FAST tool
requires significant user modifications to the source program (in the form of a
special input language) in order to express required information about abstracted
sequential tasks and communication patterns. This makes it difficult to apply such
a tool to existing programs written with widely used standards such as message
passing interface (MPI) or high performance fortran (HPF).

3. BACKGROUND AND GOALS

3.1. MPI-Sim: Parallel Simulation of MPI Programs Using Direct Execution

The starting point for our work is MPI-Sim, a direct-execution parallel simulator
for performance prediction of MPI programs. MPI-Sim simulates an MPI applica-
tion running on a parallel system (referred to as the target program and system,
respectively). The machine on which the simulator is executed (the host machine)
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may be either a sequential or a parallel machine. In general, the number of proces-
sors in the host machine will be less than the number of processors in the target
architecture being simulated, so the simulator must support multi-threading. The
simulation kernel on each processor schedules the threads and ensures that events
on host processors are executed in their correct timestamp order. A target thread is
simulated as follows. The local code is simulated by directly executing it on the host
processor. Communication commands are trapped by the simulator, which uses an
appropriate model to predict the execution time for the corresponding communica-
tion activity on the target architecture.

MPI-Sim supports most of the commonly used MPI communication routines,
such as point-to-point and collective communications. In the simulator, all collec-
tive communication functions are implemented in terms of point-to-point commu-
nication functions, and all point-to-point communication functions are imple-
mented using a set of core nonblocking MPI functions.

In general, the host architecture will have fewer processors than the target
machine (for sequential simulation, the host machine has only one processor); this
requires that the simulator provide the capability for multithreaded execution. Since
MPI programs execute as a collection of single threaded processes, it was necessary
to provide a capability for multithreaded execution of MPI programs in MPI-Sim.
Further, memory and execution time constraints of sequential simulation led to the
development of parallel implementations of MPI-Sim. MPI-Sim has been ported to
multiple parallel architectures including a distributed memory IBM SP2 as well as a
shared-memory SGI Origin 2000.

The simulation kernel provides support for sequential and parallel execution of the
simulator. Parallel execution is supported via a set of conservative parallel simulation
protocols [27], which typically work as follows: Each application process in the
simulation is modeled by a logical process (LP).? Each LP can execute independently,
without synchronizing with other LPs, until it executes a wait operation (such as an
MPI-Recv, MPI-Barrier, etc); a synchronization protocol is used to decide when such
an LP can proceed. We briefly describe the default protocol used by MPI-Sim. Each
LP in the model computes local quantities called earliest output time (EOT) and
earliest input time (EIT) [7]. The EOT represents the earliest future time at which
the LP will send a message to any other LP in the model; similarly the EIT represents
a lower bound on the receive timestamp of future messages that the LP may receive.
Upon executing a wait statement, an LP can safely select a matching message (if any)
from its input buffer, that has a receive timestamp less than its EIT. Different
asynchronous protocols differ only in their method for computing EIT. Our imple-
mentation supports a variety of such protocols as mentioned previously. The primary
overhead in implementing parallel conservative protocols is due to the communica-
tions to compute EIT and the blocking suffered by an LP that has not been able to
advance its EIT. We have suggested and implemented a number of optimizations to
significantly reduce the frequency and strength of synchronization in the parallel
simulator thus reducing unnecessary blocking in its execution [27, 28]. Our optimi-
zations were geared towards exploiting determinism in applications. For

2In general, an LP can be used to simulate multiple application processes.
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instance, consider an LP that is blocked at a receive statement and its input buffer
contains a single message. In general, the LP cannot proceed by removing that
message from the buffer as it might be possible that another message destined for
this LP is in transit, and that message has a lower timestamp. However, if the
receive statement is known by the process to be deterministic, it follows that there
must exist a unique message that matches the receive statement. As soon as the LP
receives this message, it can proceed without the need for any synchronizations with
other LPs in the model. In the best case, if every receive statement in the model is
known to be deterministic, no synchronization messages will be generated in the
model and the parallel simulation can be extremely efficient.

The preceding optimizations have two limitations: first, it works only with
communication statements that are a priori known to be deterministic. Second, the
use of direct execution in the simulator implies that the memory and computation
requirements of the simulator are at least as large as that of the target application,
which restricts the target systems and application problem sizes that can be studied
even using parallel host machines. The compiler-directed optimizations discussed in
the next section are primarily aimed at alleviating these restrictions.

3.2. The Static Task Graph Representation

As will be seen in the next section, the compiler analysis to be performed can be
greatly facilitated by exploiting an appropriate abstract representation for the par-
allel behavior of the program. As part of the POEMS project [3, 16], we have
developed an abstract program representation called the static task graph (STG)
that captures extensive static information about a parallel program [4]. The STG is
designed to be computed automatically by a parallelizing compiler. It is a compact,
symbolic representation of the parallel structure of a program, independent of speci-
fic program input values or the number of processors.

To illustrate, an example MPI program and its STG are shown in Fig. 1. A node
of the STG represents either some local computation, control-flow (an IF statement
or a loop header), or a communication operation (such as a send, receive, or
message-wait). Each node in the static graph actually represents a set of possible
parallel tasks instantiated at runtime, where each individual runtime task represents
a sequential computation with no intervening communication or synchronization
operations. The set of tasks for a node is identified by a symbolic set of integer
process identifiers, such as the set { [p]: 0 < p < P—1} for the compute node in the
figure. Each node also includes markers describing the corresponding region of
source code of the original program (for now, each node must represent a con-
tiguous region of code). Each edge of the graph represents a set of edges connecting
pairs of parallel tasks described by a symbolic integer mapping. For example, the
communication edge in the figure is labeled with a mapping indicating that each
process p (1< p< P—1) sends to process g = p—1. (Note that the two IF state-
ments in the code are captured by the mapping and do not need separate IF nodes
in the STG.) Each communication node also includes additional symbolic informa-
tion describing the pattern and volume of communication (not shown).
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double precision A{NMAX, 1+ceil (NMAX/MINPROC))
double precision mdiag(MMI)

call mpi_comm_size (MPI_COMM_WORLD, P, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, myid, ierr)

read(x, N)
b = ceil(N / P)

dom = 1,MMI
if (myid .1t. P) then
<RECV A(2:N-1, (myid+1)#*b+1) from
processor myid+1>
endif

do mi = MMI,2,-1
mdiag[mi] = mdiag{mi-1]
ndiag = ndiag + mdiag[mil
enddo
do I = 2,ndiag-1
do J = max(2,myid*b+1), min(N, myid*b+b)
A(I,J) = (A(I,J) + A(I,J+1)) = 0.5
enddo
enddo
if (myid .gt. 0) then
<SEND A(2:N-1, myid#b+1) to
processor myid-1>
endif
enddo

a) Original MPI Code

double precision mdiag(MMI)
double precisionr, allocatable :: dummy_buf
call mpi_comm_size(HPI_CUHM_HURLD, P, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, myid, ierr)
call read_and_broadcast(w_1)

read(*, N)

b = ceil(N / P)

allocate dummy_buf ((N-2)*2)

dom = 1,MMI
if (myid .1t. P) then
<RECV dummy_buf(:) from processor myid+1>
endif
do mi = MMI,2,-1
nmdiag(mil = mdiag[mi-1]

ndiag = ndiag + mdiag[mil
enddo

call delay((ndiag-2) * (min(N,myid*b+b) -
max(2,myid*b+1)+1) * w_1)

if (myid .gt. 0) then
<SEND dummy_buf(:) to processor myid-1>

endif
enddo

¢) Simplified MPI Code

Control—flow edge

--------- « Communication edge

Task pairs for comm edge:
{lpl > lgl:g=p—1 A 1<p<P-—1}

Scaling function for <I,J> loop nest:
w X (ndiag—2) X (min{N, myidxb+b)—maz(2, myid«b+1)+1)

Tasks for COMPUTE node:
{lpl:0<p<P-1}

!
b) Static Task Graph for original MPI code

FIG. 1. Example to illustrate (a) a simple MPI program, (b) static task graph for MPI program, and
(c) simplified MPI program for efficient simulation.

After constructing the initial task graph, we attempt to compute a condensed task
graph in which the number of nodes is reduced without losing significant performance
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information. In particular, we identify contiguous regions of computational tasks
and/or control-flow in the STG that can be collapsed into a single condensed (or
collapsed) task. For example, in Fig. 1, the 7 and J loops and their enclosed
COMPUTE node can be collapsed into a single node. The first loop nest can be
collapsed also. In later analysis, a single collapsed task can be treated essentially the
same as a single computational task. The criteria for choosing tasks to collapse
depend on the goals of the performance study. First, as a general rule, a collapsed
region must not include any branches that exit the region; i.e., there should be only
a single exit at the end of the region. Second, for the current work, a collapsed
region must contain no communication tasks because we aim to simulate commu-
nication precisely. As the baseline strategy for this work, we also do not collapse
any conditional branches. There are occasionally branches that depend on values
held in large arrays, but we have found that these often do not have a significant
impact on program performance (because there is relatively little computation in
each branch). It would be important to collapse such branches in order to achieve
the savings in simulator memory and time we desire. This could be done by using
profiling to estimate branching probabilities but we do not do so in our current
compiler implementation.

While condensing the task graph, we also compute a scaling expression for each
collapsed task that describes how the number of computational operations scales as
a function of arbitrary program variables. We introduce variables that represent the
computational workload of a sequence of statements in a single loop iteration
(denoted w; for task 7). The scaling function for the {7, J) loop nest in the example
is shown in Fig. 1b, with w, denoting the time for each iteration of the inner loop.
Each remaining computational node j that is not collapsed is simply assigned the
scaling function w;. We use these scaling functions in generating symbolic perfor-
mance estimates for the abstracted computations, as described in Section 4.4.

Overall, the STG serves as a general, language- and architecture-independent
representation of message-passing programs. This enables us to perform many of
the analysis steps for optimizing simulation directly on the STG, independent of the
code from which the STG was generated. In previous work, we extended the dHPF
compiler to synthesize static (and dynamic) task graphs for MPI programs gener-
ated by the dHPF compiler from HPF source programs [5]. In the future, we will
extract task graphs directly from existing MPI codes. This compiler support is
valuable because it enables the techniques developed in this paper to be applied
Sfully automatically, i.e., without user intervention, for efficient simulation of parallel
programs.

4. COMPILER-SUPPORTED TECHNIQUES FOR EFFICIENT
LARGE-SCALE SIMULATION

This section begins by motivating the overall strategy we use to address the key
restriction on simulation scalability identified above, namely, the time and memory
required for simulating the detailed computations of the target program. We then
describe more specifically how this strategy is accomplished.
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4.1. Optimization Strategy and Challenges

Parallel program simulators used for performance evaluation execute or simulate
the actual computations of the target program for two purposes: (a) to determine
the execution time of the computations, and (b) to determine the impact of compu-
tational results on the performance of the program, due to artifacts like communi-
cation patterns, loop bounds, and control-flow. For many parallel programs,
however, a sophisticated compiler can extract extensive information from the target
program statically. In particular, we identify two types of relevant information
often available at compile-time:

1. The parallel structure of the program, including the sequential portions of
the computation (tasks), the mapping of tasks to threads, and the communication
and synchronization patterns between threads.

2. Symbolic estimates for the execution time of isolated sequential portions of
the computation.

If this information can be provided to the simulator directly, it may be possible
to avoid executing substantial portions of the computational code during simula-
tion, and therefore reduce the execution time and memory requirements of the
simulation.

To illustrate this goal, consider the example MPI code fragment in Fig. 1. This
example is taken from the main loop nest of Sweep3D, but has been significantly
simplified and abstracted to focus on the details of interest. The example code per-
forms a pipelined (i.e., partially parallel) computation on the array A, where every
processor receives boundary values from its right neighbor, executes two loop nests,
and then sends its left boundary values to its left neighbor. The number of itera-
tions of the second loop nest depends on the value of ndiag computed in the first
loop nest. The communication pattern and the number of iterations of the loop nest
also depend on the values of the block size per processor (b), the array size (N), the
number of processors (P), and the local processor identifier (myid). Therefore, the
computation of all these values must be executed or simulated during the simula-
tion. However, the communication pattern and loop iteration counts do not depend
on the values stored in the array 4, which are computed in the <{Z, J) loop nest. We
refer to these latter computations as redundant computations (from the point of view
of performance estimation). If we can estimate the performance of the second
computational loop nest analytically, we could avoid simulating the code of this
loop nest, while still simulating the communication behavior in detail and estimat-
ing the overall execution time of the code.

We can achieve this optimization by using the compiler to generate the simplified
code shown on the right in the figure. In this code, we have replaced the second
loop nest with a call to a special simulator-provided delay function. We have
extended MPI-Sim to implement such a function, which simply forwards the simu-
lation clock on the local simulation thread by a specified amount. The compiler
estimates the cost of the loop nest using the scaling functions computed during task
graph construction. This estimated cost is shown as the argument to the delay call.
(Section 4.4 describes how this cost is estimated.) Note in the example that the
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compiler has avoided allocating the array A4 since it is no longer used in the
simplified code, significantly reducing the memory required to simulate the
program. The array mdiag must be retained in this case.

As an additional optimization, if the compiler can prove that the data transferred
in the message are also “redundant,” the simulator can also avoid performing an
actual data transfer, although it will simulate the message operation in detail. It can
also avoid allocating any memory for the message buffer. This message optimiza-
tion can lead to further savings in simulation time and memory usage. (This is not
shown in the figure, but it would imply that the buffer dummy_buf is not needed.
The details are explained in Section 4.3 below.)

This paper develops automatic compiler-based techniques to perform the opti-
mizations described above and evaluates the potential benefits of these techniques.
In particular, our goal is to use the compiler-generated static task graph (plus
additional compiler analysis) to avoid simulating or executing substantial portions
of the computational code of the target program and sending unnecessary data. We
use the task graph to identify the target references that directly determine the per-
formance of each part of the program, and also to compute the scaling expressions
for estimating the delay times. We use additional compiler analysis on the message-
passing code to identify the computations that affect the values of target references,
i.e., the nonredundant computations.

More specifically, there are four major challenges we must address in achieving
the above goals, of which the first three have not been addressed in any previous
system known to us:

1. We must transform the original parallel program into a simplified but legal
MPI program that can be simulated by MPI-Sim. The simplified program must
include only the computation and communication code that needs to be executed
by the simulator. It must yield the same performance estimates as the original
program for total execution time (for each individual process), total communica-
tion and computation times, as well as more detailed metrics of the communication
behavior.

2. While generating the simplified program, we must be able to abstract away
as much of the local computation within each task as feasible and eliminate as
many data structures of the original program as possible, by isolating the redun-
dant computations in the program.

3. We must identify the messages whose contents do not directly affect the
computation at the receiver and exploit this information to reduce simulation time
and memory usage.

4. We must estimate the execution times of the abstracted computational
tasks for a given program size and number of processors. Accurate performance
prediction for sequential code is a challenging problem that has been widely studied
in the literature. We use a fairly straightforward approach described in Section 4.4.
Refining this approach is part of our ongoing work in the POEMS project.

The following subsections describe the techniques we use to address these chal-
lenges, and their implementation in dHPF and MPI-Sim. The next three subsections



404 ADVE ET AL.

describe the compiler analysis needed to identify redundant computations, the
additional step to identify redundant communication operations, and the approach
we use to estimate the performance of the eliminated code. Finally, we describe how
we generate the simplified MPI code.

4.2. Program Slicing for Identifying Redundant Computations and Data

The major challenge in performing our optimization correctly and effectively is to
identify the redundant computations, i.e., the ones that can be safely eliminated.
The solution we propose is to use program slicing to retain those parts of the com-
putational code (and the associated data structures) that affect the program execu-
tion time. Given a variable referenced in some statement, program slicing finds and
isolates a subset of the program computation and data that can affect the value of
that variable at that statement [22]. The subset has to be conservative, limited by
the precision of static program analysis, and therefore may not be minimal.

The first step in applying program slicing is to identify the variable references
that directly affect the execution time of the program, which we call target refer-
ences. The compiler-generated static task graph captures this information directly
and precisely, allowing us to avoid a complicated and ad hoc analysis of the entire
source code. In particular, the values that affect performance are exactly the vari-
able references that appear in the retained control-flow of the condensed graph, in
the scaling functions of the sequential tasks and communication events, and in the
source and destination expressions of the communication descriptors (or the com-
munication calls themselves). In the example of Fig. 1a, the target references include
all the references in the various loop headers and the references to N, myid, and b in
the message calls (since these determine the size and pattern of the message).

Once the target references are identified, program slicing can be used to isolate
the computations and data that affect the values of those references. Program
slicing is essentially a reachability analysis on the dependence graph of the program,
including both data and control dependences. In particular, given a particular
target reference, we use a reachability analysis to identify the statements in the
program that can affect the value of that reference through some chain of depen-
dences (i.c., through some feasible path in the dependence graph). For example, in
the code of Fig. 1a, the reference to ndiag in the header of the I loop is a target
reference and there is a path of control and data dependences connecting the m
loop header, the mi loop header, the assignments to mdiag/mi] and to ndiag, and
the I loop (in order). Therefore, all these statements have to be retained. But there
is no path of dependences starting from the assignment to 4(,J) and reaching any
target reference of interest, so that statement and therefore its enclosing loops are
identified as redundant.

Because slicing is a well-known compiler technique, we omit the details here. A
state-of-the-art algorithm for program slicing is described in [22] and was used as
the basis for our implementation. Applying this technique, however, requires that
the target reference be part of the program so that it appears in the program
dependence graph computed by the compiler. Some of the expressions of the static
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task graph are not directly derived from corresponding expressions in the program,
and therefore cannot be used as starting points for program slicing. For such
expressions, we introduce dummy procedure call statements at appropriate points
in the target program, passing those expressions as arguments, and then rebuild the
program dependence graph. Now, these expressions can be used as starting points
for slicing. The dummy procedure calls can later be eliminated.

Obtaining the memory and time savings we desire requires full interprocedural
program slicing, so that we completely eliminate the uses of as many large arrays as
possible. General interprocedural slicing is a challenging but feasible compiler
technique that is not currently available in the dHPF infrastructure. For now, we
take limited interprocedural side effects into account, in order to correctly handle
calls to runtime library routines (including communication calls and runtime rou-
tines of the dHPF compiler’s runtime library). In particular, we assume that these
routines can modify any arguments passed by reference but cannot modify any
global (i.e., common block) variables of the MPI program. This is necessary and
sufficient to support single-procedure benchmarks. We are currently adding full
interprocedural slicing to the dHPF infrastructure.

The final output of the slicing analysis is the set of computations that must be
retained in the simplified MPI code, while the remaining computations of the
program (except for I/O statements and communication calls) can be considered
redundant. The analysis also identifies the arrays of the program that are only used in
the redundant computations, so that they can be eliminated in the generated code.

4.3. Message Optimization for Simulation

Because some computations are “redundant” (from the point of view of perfor-
mance), the data transferred in some of the messages may also be redundant. If
such cases can be identified, we can avoid performing the data transfers during the
simulation, potentially leading to additional time and memory savings. Although
this is conceptually similar to redundant computations, we discuss this “message
optimization” separately because the mechanism for achieving this optimization is
somewhat different, as explained below.

First, the compiler can identify redundant messages as a direct result of the
program slicing analysis described above. The slicing analysis will directly identify
those message receive calls that receive redundant values. More specifically, the
technique described above to account for interprocedural side-effects during slicing
identifies a message receive call as “producing’ the data values in the destination
data buffer, and the slicing algorithm identifies which such data values are redun-
dant. The message send calls corresponding to the message receive are directly
identified by the static task graph. The data transferred in these message send calls
can also be marked “redundant,” and the slicing algorithm then proceeds to prop-
agate this information further to identify additional redundant computations and
communications.

The actual mechanism for performing the message optimization is as follows. We
extended MPI-Sim to accept an extra flag on an MPI data-transfer call that identi-
fies whether or not the data transfer is redundant. From the slicing results above,
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the compiler flags the MPI calls for which the data transfers are redundant. The
compiler also eliminates the allocation of buffers used by these messages, when
generating the simplified MPI program.

If a call is not flagged, MPI-Sim simulates the call in detail (by sending the nec-
essary protocol messages and predicting the end-to-end latency for the messages)
and sends the data to the receiving simulation thread, so that the actual data are
available to the simulated application. However, if the call is flagged by the com-
piler as redundant, then MPI-Sim still simulates the call in the detail with respect to
the MPI communication protocol, but sends only an empty message to the receiv-
ing simulation thread. Since redundant receives are also flagged, the receiver does
not copy the data in the buffer. The messages need to be present in the simulated
application because they provide information about the synchronization in the
program. Although this optimization does not reduce the number of messages sent,
the size of the messages is reduced, and the memory used by the messages does not
need to be allocated. This results in lower latencies incurred by the messages that
are sent between processors as well as smaller communication overheads due to
copying the data enclosed in the messages into/from the communication buffers. It
also results in lower memory usage by the simulator.

4.4. Estimating Task Execution Times

The main approximation in our approach is to estimate sequential task execution
times without direct execution. Analytical prediction of sequential execution times
is an extremely challenging problem, particularly with modern superscalar proces-
sors and cache hierarchies. There are a variety of possible approaches with different
tradeoffs between cost, complexity, and accuracy.

The simplest approach, and the one we use in this paper, is to measure task times
(specifically, the w;) for one or a few selected problem sizes and number of proces-
sors, and then use the symbolic scaling functions derived by the compiler to esti-
mate the delay values for other problem sizes and number of processors. Our
current scaling functions are symbolic functions of the number of loop iterations,
and do not incorporate any dependence of cache working sets on problem sizes. We
believe extensions to the scaling function approach that capture the non-linear
behavior caused by the memory hierarchy are possible. Two alternatives to direct
measurement of the task time parameters are (a) to use compiler support for esti-
mating sequential task execution times analytically, and (b) to use separate off line
simulation of sequential task execution times [16]. In both cases, the need for
scaling functions remains, including the issues mentioned above, because it is
important to amortize the cost estimating these parameters over many prediction
experiments.

The scaling functions for the tasks can depend on intermediate computational
results, in addition to program inputs. Even if this is not the case, they may appear
to do so to the compiler. For example, in the NAS benchmark SP, the grid sizes for
each processor are computed and stored in an array, which is then used in most
loop bounds. The use of an array makes forward propagation of the symbolic
expressions infeasible, and therefore completely obscures the relationship between
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FIG. 2. Compilation, parameter measurement, and simulation for a parallel program.

the loop bounds and program input variables. We simply retain the executable
symbolic scaling expressions, including references to such arrays, in the simplified
code and evaluate them at execution time.

We have been able to automate fully the modeling process for a given HPF
application compiled to MPI. The modified dHPF compiler automatically generates
two versions of the MPI program. One is the simplified MPI code with delay calls
described previously. The second is the full MPI code with timer calls inserted to
perform the measurements of the w; parameters. The output of the timer version
can be directly provided as input to the delay version of the code. This complete
process is illustrated in Fig. 2.

4.5. Code Generation: Creating the Simplified MPI Program

Based on the condensed task graph, the results of the slicing analysis, and the
symbolic performance estimates, we generate the simplified MPI program as
follows. We eliminate any control-flow (loops and branches) of the original MPI
code that is marked redundant by the slicing algorithm. Second, for each sequential
task, the nonredundant computations are retained in the generated program, while
the rest of the task is replaced with a single call to the the MPI-Sim delay function,
and pass in an argument describing the estimated execution time of the task. For
precise performance prediction, the simulator delay calls should not include the
time for the retained computations since those will be simulated (and their time
accounted for) explicitly. The execution time estimates computed above, however,
apply to the entire task. In practice, we have found that the amount of nonredun-
dant code is very small for most tasks and therefore we do not adjust the execution
time estimates to account for this retained code. We insert a sequence of calls to a
runtime function at the start of the program to read in the values of the w; param-
eters from a file and broadcast them to all processors. Finally, we retain all the
communication calls of the original program, adding the flag described above to
mark which data transfers are redundant.

We must also eliminate all the storage not required in the simplified program. We
directly eliminate program arrays that are marked redundant. If a redundant
program array was referenced in some communication call, we replace that array
reference with a reference to a single dummy buffer used for all the communication.
For messages whose data transfer is redundant, we eliminate the allocation (and
packing, if any) of the buffer used in such messages. For all other messages, we use
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a buffer size that is the maximum of the message sizes of all communication calls in
the program and allocate the buffer statically or dynamically (and potentially mul-
tiple times), depending on when the required message sizes are known.

5. RESULTS

We performed a detailed experimental evaluation of the compiler-based simula-
tion approach. We studied three issues in these experiments:

1. The accuracy of the optimized simulator that uses the compiler-generated
information, compared with both the original simulator and direct measurements of
the target program.

2. The reduction in memory usage achieved by the optimized simulator
compared with the original and the resulting improvements in the overall scalability
of the simulator in terms of system sizes and problem sizes that can be simulated.

3. The performance of the optimized simulator compared with the original, in
terms of both absolute simulation times and in terms of relative speedup as
compared to sequential model execution, when simulating a large number of target
processors.

Results in each of the above categories are presented for both types of the opti-
mizations considered in this paper: elimination of local computations and elimina-
tion of data contents from large messages. We begin with a description of our
experimental methodology and then describe the results for each of these issues in
turn.

5.1. Experimental Methodology

We used three real-world benchmarks (Tomcatv, Sweep3D and NAS SP) and one
synthetic communication kernel (SAMPLE) in this study. Tomcatv is a SPEC92
floating-point benchmark, and we studied an HPF version of this benchmark
compiled to MPI by the dHPF compiler. The key arrays of this code are distributed
across the processors in contiguous blocks in the second dimension, i.e., using the
HPF distribution (*,BLOCK).?> Sweep3D, a Department of Energy ASCI bench-
mark [1], and SP, a NAS Parallel Benchmark from the NPB2.3b2 benchmark suite
[8], are MPI benchmarks written in Fortran 77. Finally, we designed the synthetic
kernel benchmark, SAMPLE, to evaluate the impact of the compiler-directed
optimizations on programs with varying computation granularity and message
communication patterns that are commonly used in parallel applications.

For Tomcatv, the dHPF compiler automatically generates three versions of the
output MPI code: (a) the normal MPI code generated by dHPF for this benchmark;
(b) the simplified MPI code with the calls to the MPI-Sim delay function, using the

® Like many benchmarks, Tomcatv executes for a fixed number of iterations whereas a real version
would execute until convergence is reached. The convergence test alone would make many of the inter-
mediate computations appear essential for performance estimation. In practice, such iterative codes
would have to be evaluated for a predetermined number of iterations in order to benefit most from our
optimizations.
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techniques described in Section 4; and (c¢) the normal MPI code with timer calls
inserted to measure the task time parameters, as described in Section 4.4. Since
dHPF only parses and emits Fortran and MPI-Sim only supports C, we use f2c to
translate each version of the generated code to C and run it on MPI-Sim. For the
other two benchmarks, Sweep3D and NAS SP, we manually modified the existing
MPI code to generate the simplified MPI and the MPI code with timers for each
case (since the task graph synthesis for MPI codes is not implemented yet). These
codes serve to evaluate the compiler techniques we developed for a wide range of
regular message-passing codes.

For each application except NAS SP, we measured the task times (values of w;)
for each problem size on 16 processors. These measured values were then used in
experiments with the same problem size on different numbers of processors. For
NAS SP, we measured the tasks only for a single problem size (on 16 processors),
and used the same task times for experiments with all problem sizes and numbers of
processors. Recall that the scaling functions we use currently do not account for
cache working sets and cache performance. Changing either the problem size or the
number of processors affects the working set size per process and, therefore, the
cache performance of the application. Nevertheless, the above measurement
approach provided very accurate predictions from the optimized simulator, as
shown in the next subsection.

All benchmarks except SAMPLE were evaluated for the distributed memory
IBM SP (with up to 128 processors); the SAMPLE experiments were conducted on
the shared memory SGI Origin 2000 (with up to 8 processors).

5.2. Validation

The original MPI-Sim was successfully validated on a number of benchmarks
and architectures [6, 27, 28]. The new techniques described in Section 4, however,
introduce additional approximations in the modeling process. The key new approx-
imation is in estimating the sequential execution times of portions of the computa-
tional code (tasks) that have been abstracted away. Our aim in this section is to
evaluate the accuracy of compiler-supported simulation based on these techniques.

For each application, the optimized simulator (henceforth denoted as MPI-SIM-
TGQG) was validated against direct measurements of the application execution time and
also compared with the predictions from the original simulator®. We studied multiple
configurations (problem size and number of processors) for each application.

We begin with Tomcatv, which is handled fully automatically through the steps
of compilation, task measurements, and simulation shown in Fig. 2. The size of
Tomcatv used for the validation was 2048 x 2048. Figure 3 shows the results from 4
to 64 processors. MPI-Sim with the analytical model (MPI-SIM-TG) has slightly
higher errors than MPI-Sim with direct execution (MPI-SIM-DE) for this bench-
mark. Nevertheless, the error in the performance predicted by MPI-SIM-TG was
below 16% with an average error of 11.3% against the measured performance.

* The message optimizations further introduced do not modify the underlying communication model or
introduce any other approximations, and thus do not affect simulator accuracy.
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FIG. 3. Validation of MPI-Sim for (2048 x 2048) Tomcatv (on the IBM SP).

Figure 4 shows the execution time of the model for Sweep3D with a total
problem size of 150 x 150 x 150 grid cells as predicted using MPI-SIM-TG, MPI-
SIM-DE, as well as the measured values, all for up to 64 processors. The predicted
and measured values are again very close and differ by at most 9.8%. On average,
MPI-SIM-DE differed from the measured value by 3.7% and MPI-SIM-TG by
7.2%.

Finally, we validated MPI-SIM-TG on the NAS SP benchmark. The task times
were obtained from the 16 processor run of the class A, the smallest of the three
built-in sizes (A, B, and C) of the benchmark, and used for experiments with all
problem sizes. Figures 5 and 6 show the validation for class A and the largest size,

Validation: Sweep3d 150x150x150 problem size
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FIG. 4. Validation of Sweep3D on the IBM SP, fixed total problem size.
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Validation for NAS SP, class A on the IBM SP
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FIG. 5. Validation for NAS SP, class A on the IBM SP.

class C. The validation for class A is good (the errors are less than 7%). The vali-
dation for class C is also good with an average error of 4%, even though the
taskimes were obtained from class A. This result is particularly interesting because,
for programs of the same size, class C on average runs 16.6 times longer than class
A. This demonstrates that the compiler-optimized simulator is capable of accurate
projections across a wide range of scaling factors. Furthermore, cache effects do not
appear to play a great role in this code or the other two applications we have
examined. This is illustrated by the fact that the errors do not increase noticeably
when the task times obtained on a small number of processors were used for a
larger number of processors.

Figure 7 summarizes the errors that MPI-SIM-TG incurred when simulating the
three applications. All the errors are within 16%, and all but a few are within about

Validation for NAS SP, class C on the IBM SP
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FIG. 6. Validation for NAS SP, class C on the IBM SP.
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FIG. 7. Percent error incurred by MPI-SIM-TG when predicting application performance.

10%. The figure emphasizes that the compiler-supported approach combining ana-
lytical model and simulation is very accurate for a range of benchmarks, system
sizes, and problem sizes.

To better quantify what errors can be expected from the optimized simulator, we
used our SAMPLE benchmark, which allows us to vary the computation to commu-
nication ratio as well as the communication patterns. SAMPLE is structured as a
program where each process performs a given amount of computation and then
communicates the data to other processes in the system. The amount of computation
performed, the amount of communication and the communication patterns can be varied.

SAMPLE was validated on the Origin 2000. Two common communication
patterns were selected: wavefront and nearest neighbor. For each pattern, the
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FIG. 8. Validation of SAMPLE on the origin 2000.
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SAMPLE, Origin 2K: % variation of measured time from predicted time
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FIG. 9. Effect of communication to computation ratio on predictions.

communication to computation ratio was varied from 1 to 100 to a ratio of 1 to 1.
Figure 8 plots the total execution time for the program and MPI-SIM-TG predic-
tion. In order to demonstrate better the impact of computation granularity on the
validation, Fig. 9 plots the percentage variation in the predicted time as compared
with the measured values. As can be seen from the figure, the predictions are very
accurate when the ratio of computation to communication is large, which is typical
of many real-world applications. As the amount of computation granularity in the
program decreases, the simulator incurs larger errors. This can be expected because
both measurement errors and task time estimation errors can become relatively
more significant. Nevertheless, the graph shows that the predicted values differ by
at most 15% from the measured values, even for small computation to communica-
tion ratios.

TABLE 1
Memory Usage in MPI-SIM-DE and MPI-SIM-TG for the Benchmarks

Number of MPI-SIM-DE MPI-SIM-TG Memory
processors total memory use total memory use reduction factor
Sweep3D, 4 x 4 x 255 1 589KB 6KB 98
per proc. problem size 4900 2884MB 30MB 96
Sweep3D, 6 x 6 x 1000 1 33.599MB 19KB 1768
per proc. problem size 6400 215GB 122MB 1762
NAS SP, Class A 4 104MB 7.36MB 14
NAS SP, Class C 16 1596.16MB 310.08MB 5

Tomcatv, 2048 x 2048 4 236MB 118.4KB 1993
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The accuracy of MPI-SIM-TG for large computation to communication ratio
(below 5% error) indicates that the slightly higher errors we observed for Tomcatv,
Sweep3D, and NAS SP must be due to the presence of small computation to
communication ratios.

5.3. Expanding the Simulator to Larger Systems and Problem Sizes

The main benefit of using the compiler-generated code is that we can decrease the
memory requirements of the simplified application code. Since the simulator uses at
least as much memory as the application, decreasing the amount of memory for the
application decreases the simulator’s memory requirements, thus allowing us to
simulate large problem sizes and systems.

Table 1 shows the total amount of memory needed by MPI-Sim when using
the analytical (MPI-SIM-TG) and direct execution (MPI-SIM-DE) models. For
Sweep3D, with 4900 target processors, the analytical models reduce memory
requirements by two orders of magnitude for the 4 x 4 x 255 per processor problem
size. Similarly, for the 6 x 6 x 1000 problem size, the memory requirements for the
target configuration with 6400 processors are reduced by three orders of magnitude!
Three orders of magnitude reduction is also achieved for Tomcatv, while smaller
reductions are achieved for SP. This dramatic reduction in the memory require-
ments of the model allows us to (a) simulate much larger target architectures, and
(b) show significant improvements in execution time of the simulator.

To illustrate the improved scalability achieved in the simulator with the compiler-
derived analytical models, we consider Sweep3D. In this paper, we study a small
subset of problems that are of interest to application developers. They are repre-
sented by the 20 million cell total problem size, which can be divided into
4 x4 %255, 7%x7x%x255, and 28 x 28 x 255 per processor problem sizes which need to
run on 4900, 1600, and 100 processors, respectively.

Validation and Scalability of Sweep3D (4x4x255/proc.)
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FIG. 10. Scalability of Sweep3D for the 4 x 4 x 255 per processor size (IBM SP).
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The scalability of the simulator for the 4 x4 x 255 problem size can be seen in
Fig. 10. The memory requirements of the direct execution model restricted the
largest target architecture that could be simulated to 2500 processors. With the
analytical model, it was possible to simulate a target architecture with 10,000 pro-
cessors. Since the application’s predicted runtime for 10,000 processors is 11.0955 s
and the runtime of the simulator for that configuration is 148.118 s, the simulator’s
slowdown is only 13.35! Note that instead of scaling the system size, we could scale
the problem size instead (for the same increase in memory requirements per
process), in order to simulate much larger problems.

5.4. Performance of MPI-Sim

The benefits of compiler-optimized simulation are not only evident in memory
reduction but also in improved performance. We characterize the performance of
the simulator in four ways:

1. performance gains when using the message optimization (MPI-SIM-
TGMO) and MPI-SIM-TG as compared to MPI-SIM-DE,

2. absolute performance (i.e., total simulation time) of MPI-SIM-TG vs MPI-
SIM-DE and vs the application,

3. parallel performance of MPI-SIM-TG, in terms of both absolute and rela-
tive speedups, and

4. performance of MPI-SIM-TG when simulating large systems on a given
parallel host system.

Effect of optimizations on simulator’s performance. To illustrate the performance
improvements between MPI-SIM-DE, MPI-SIM-TG, which takes advantage of
only the local optimizations and MPI-SIM-TGMO, which additionally optimizes

Sweep3D, 7x7x255 per processor size, 64 host processors
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FIG. 11. Sweep3D, 7 x 7 x 255 per processor size, (MPI-SIM-TGMO is MPI-SIM-TG with message
optimization).
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Sweep3D, 14x14x255 per processor size, 64 host processors
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FIG. 12. Sweep3D, 14 x 14 x 255 per processor size.

the messages being sent, we conducted experiments on the three benchmarks. In
case of Sweep3D we compared the performance of the three versions of the simula-
tor when each had a given number of host processors available. The problem size
per processor was fixed, and the number of target processors in the experiment was
increased. This study demonstrates the ability of each simulator to efficiently
simulate large problem sizes.

For NAS SP, since the problem size of the application is given (here class C), we
fixed the number of target processors and varied the number of host processors
available to the simulator. This study illustrates not only the relative performance
of the simulators, but also their ability to use computational resources. Figures 11,

Sweep3D, 28x28x255 per processor size, 84 host processors
1100 T

X " MPI-SIM-TGMO ——
MPI-SIM-TG -

1000 MPI-SIM-DE -----

T
1

800

700 -

500

runtime (sec)

400

300 -

100

10 100 1000 10000
target processors

FIG. 13. Sweep3D, 28 x 28 x 255 per processor size.
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NAS SP, class C, 186 target processors
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FIG. 14. A 16 target processor simulation of NAS SP, class C running on various numbers of host
Pprocessors.

12, and 13 show the performance of MPI-SIM-TGMO, MPI-SIM-TG, and MPI-
SIM-DE when simulating Sweep3D for three sizes per processor sizes: 7 X 7 x 255,
14 x 14 x 255, and 28 x 28 x 255. All simulators use 64 host processors to simulate
up to 4900 target processors. The improvements in performance between MPI- SIM-
DE and MPI-SIM-TG for the above sizes are on the average 39.7, 67.28, and
88.07%, respectively. As the problem size per processor grows larger, the amount of
computation per processor increases thus the amount of computation abstracted
away increases resulting in runtime savings.

Although the biggest performance gain is in the computation optimization,
reducing the size of the messages sent, where possible, is beneficial. The simulation,
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FIG. 15. A 64 target processor simulation of NAS SP, class C running on various number of host processors.
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MPI-SIM-TGMO, runs faster than the simulation, which just optimizes the com-
putation (MPI-SIM-TG). The improvements for the sizes 7 x 7 x 255, 14 x 14 x 255,
and 28 x 28 x255 are 28.04, 31.23, and 13.9%, respectively. The benefits of the
message optimizations are limited for the Sweep3D application, because it uses a
large number of barrier synchronizations as well as collective operations such as
(MPL_Allreduce). These operations either take no data or only single data items.

We also observed great performance improvements for the NAS SP benchmark,
class C, the largest size available in the suite. Figures 14 and 15 show the perfor-
mance of MPI-SIM-TG and MPI-SIM-TGMO for two target processor configura-
tions: 16 and 64. The simulations were run on a variety of host processors from 1
to 64. First, both MPI-SIM-TG and MPI-SIM-TGMO ran faster than the actual
application. The measured runtime of the application executing on 16 processors is
2623.38 s, whereas running on 64 processors it is 790.67 s.

Additionally, Figs. 14 and 15 illustrate that the simulation can run an order of
magnitude faster than MPI-SIM-TG when the message optimization is used. In
Fig. 14, the jump in runtime for MPI-SIM-TG (from 1 to 2 host processors) is due
to the large communication costs. The size of the messages sent between processors
is 605,161 doubles. Therefore the cost of sending these messages increases con-
siderably when more than one processor is used. When only 2 host processors are
used this increased cost is not compensated by the increased computational power.
However, as the number of host processors increases, better performance is
achieved. Since the size of these large messages can be reduced to 0 in the MPI-SIM-
TGMO simulation, this communication overhead is significantly reduced and the
simulator performs substantially better than MPI-SIM-TG. As the number of
target processors increases (to 64 in Fig. 15), the size of the messages in the simula-
tion is reduced (to 370,441 for the 64 target processor code.) Still, using the message
optimization results in an order of magnitude decrease in the simulator’s runtime.

Absolute Performance of MPI-Sim for Sweep3D, 150x150x150
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FIG. 16. Absolute performance of MPI-Sim for fixed total problem size Sweep3D.
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Absolute Performance of MPI-Sim for NAS SP, class A
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FIG. 17. Absolute performance of MPI-Sim for the NAS SP benchmark, class A.

Absolute performance, local code optimization only. To compare the absolute
performance of MPI-Sim, we gave the simulator as many processors as were avail-
able to the application (#host processors =#target processors).

Figure 16 shows the absolute performance for Sweep3D with a total problem size
of 150°. MPI-SIM-DE is on the average 2.8 times slower than the actual application
(measured in the figure). However, MPI-SIM-TG is initially faster then the
measured application starting at 13 times faster when running on 4 processors,
gradually becoming only 2.2 times faster for 32 processors and finally being twice as
slow as the application running on 64 processors. Message optimizations present in
MPI-SIM-TGMO further decrease the simulators’ runtime by on the average 18%

Absolute Performance of MPI-Sim for Tomcatv
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FIG. 18. Absolute performance of MPI-Sim for Tomcatv (2048 x 2048).
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as compared to MPI-SIM-TG. Both MPI-SIM-TG and MPI-SIM-TGMO are
always faster (on the average 16 and 18.5 times faster, respectively) than MPI-SIM-
DE, showing the clear benefits of compiler optimizations. However, as the number
of processors increases the amount of communication relative to the computation
increases thus exposing the overhead of simulating the communications and making
MPI-SIM-TG and MPI-SIM-TGMO slower than the application.

Figure 17 shows the runtime of the application and the measured runtime of the
two versions of the simulator running NAS SP class A. We observe that MPI-SIM-
DE is running about twice slower than the application it is predicting. However,
MPI-SIM-TG is able to run much faster than the application, even though detailed
simulation of the communication is still performed. For 36 processors, it runs 2.5
times faster while, for 100 processors, it runs 1.5 times faster. The relative perfor-
mance of MPI-SIM-TG decreases as the number of processors increases because
the amount of computation in the application decreases with increased number of
processors and thus the savings from abstracting the computation are decreased.

Even more dramatic results were obtained with Tomcatv, where the runtime of
MPI-SIM-TG does not exceed 2 seconds for all processor configurations as
compared to the runtime of the application which ranges from 130 to 10 seconds
(Fig. 18). This is due to the ability of the compiler to abstract away most of the
computation. All that the simulator needs to directly execute is the skeleton code
that controls the flow of the computation and communication patterns.

Parallel performance. To evaluate the parallel performance of the simulator, we
study how well can it take advantage of increasing system resources (here proces-
sors) to solve a given problem (fixed total problem size). Figures 14 and 15
indirectly demonstrate the performance of the simulator; to illustrate the perfor-
mance better, the speedup achieved for the 16 target configuration is depicted in
Fig. 19. Although MPI-SIM-TGMO has a smaller runtime than MPI-SIM-TG, it
scales well for only up to 8 host processors. This is because, as the number of host

NAS SP Class C, 16 Target Processors

3-5 T T T T T T T
MPI-SIM-AM ——
o MPI-SIM-MO - -
3L - - d
25 | -
o
=]
g 2
jo R
155
15}
1 -
0.5 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Number of host processors

FIG. 19. Speedup of MPI-Sim for NAS SP.
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Simulator’s runtime for Sweep3D 150x150x150, 64 target processors
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FIG. 20. Parallel performance of MPI-Sim.

processors increases, the communication overhead between the host begins to dominate
the runtime. On the other hand, MPI-SIM-TG, which had to send large messages,
suffers most when more than one host is used, but then is able to distribute that
overhead among more processors.

Clearly, the performance of the simulator is better when larger systems are
simulated. For the 64-target processor case (Fig. 15), the runtime decreases steadily
as the number of processors is increased. However, using more than 32 host pro-
cessors actually increases the simulator’s runtime. (The 64 Target Class C could not

Speedup of MPI-SIM-TG (Sweep3D, 150x150x150, 64 target processors)
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FIG. 21. Speedup of MPI-SIM-TG for Sweep3D.
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MPI-Sim runtime for Sweep3D 6x6x1000 per processor size (64 host procs)
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FIG. 22. Performance of MPI-SIM when simulating Sweep3D on large systems.

be run on a single processor due to memory constraints, so direct speedup com-
parisons are not possible.) Better scalability is seen for the Sweep3D application.
Figure 12 shows the performance of MPI-SIM-TG and MPI-SIM-DE simulating
the 150° Sweep3D running on 64 target processors when the number of host pro-
cessors varies from 1 to 64. The data for the single processor MPI-SIM-DE simula-
tion are not available because the simulation exceeds the available memory. Clearly,
both MPI-SIM-DE and MPI-SIM-TG scale well. The speedup of MPI-SIM-TG is
also shown in Fig. 21. The steep slope of the curve for up to 8 processors indicates
good parallel efficiency. For more than 8 processors the speedup is not as impres-
sive, reaching about 15 for 64 processors. This is due to the decreased computation
to communication ratio in the application. Still, the runtime of MPI-SIM-TG is on
the average 5.4 times faster than that of MPI-SIM-DE.

Performance for large systems. To quantify further the performance improve-
ment for MPI-SIM-TG, we have compared the running time of the two versions of
the simulator (MPI-SIM-TG versus the original MPI-SIM-DE) when predicting the
performance of a large system; in this case we choose to simulate a billion-cell
problem for Sweep3D. The application’s developers envision this problem to utilize
20000 processors, which corresponds to a 6 x 6 x 1000 per processor problem size.
Figure 13 shows the running time of the two versions as a function of the number
of target processors when 64 host processors are used. The problem size is fixed per
processor, so the problem size increases with the increased number of processors.
The figure clearly shows the benefits of the optimizations. In the best case, when the
performance of 1600 processors is simulated (corresponding to the 57.6 million
problem size) the runtime of the optimized simulator is nearly half the runtime
of the original simulator. However, even with the optimizations, the memory
requirements are still too large to be able to simulate the desired target system.
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6. CONCLUSIONS

This work has developed a scalable approach to detailed performance evaluation
of communication behavior in message passing interface (MPI) and high perfor-
mance fortran (HPF) programs. Our approach is based on using compiler analysis
to identify portions of the computation whose results do not have a significant
impact on program performance, and therefore do not have to be simulated in
detail. The compiler builds an intermediate static task graph representation of the
program which enables it to identify program values that have an impact on per-
formance, and also enables it to derive scaling functions for computational tasks.
The compiler then uses program slicing to determine what portions of the compu-
tations are not needed in determining performance. Finally, the compiler abstracts
away those parts of the computational code (and corresponding data structures),
replacing them with simple, analytical performance estimates. It also flags messages
for which the data transfer does not have to be performed within the simulation.
All of the communication code is retained by the compiler and is simulated in detail
by MPI-Sim.

Our experimental evaluation shows that this approach introduces relatively small
errors into the prediction of program execution times. The benefit we achieve is
significantly reduced simulation times (typically more than a factor of 2) and
greatly reduced memory usage (by two to three orders of magnitude). This gives us
the ability to accurately simulate detailed performance behavior of regular message
passing programs for systems and problem sizes that are 10-100 times larger than is
possible with current state-of-the-art simulation techniques.

One direction in which we are building on this work is to explore other strategies
for exploiting compiler information to make parallel simulation more efficient. One
promising possibility is to use the compiler estimates of computation times to
increase the “lookahead” in conservative synchronization algorithms for parallel
simulation [15]. By predicting how far ahead one simulation thread will run
without performing communication events, other simulation threads can be notified
to also simulate further ahead, thus increasing the effective parallelism and there-
fore the speedup of parallel simulation. A second interesting possibility is that the
compiler optimizations may make optimistic parallel simulation more competitive.
A major overhead in optimistic simulation is due to the costs of checkpointing and
rollback of simulation state. Since our compiler-based techniques have achieved
large reductions in simulator memory usage, these costs should be much smaller.

Perhaps the most significant limitation of our work is that the benefits could be
much smaller for applications where the parallelism and communication patterns
depend extensively on intermediate results of the computations. In particular, so-
called ““irregular” applications may have this property. The benefits for such appli-
cations will depend heavily on the ratio of the number of computations that affect
future computation costs and communication patterns to the number of those that
do not (e.g., computations that update statistics, test for convergence, check errors,
etc., as well as any subsets of such applications that have a regular structure).
Evaluating the benefits for such applications requires further research, and prob-
ably a refinement of the techniques developed here.
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A different direction would be to explore whether the techniques described here
can be extended to other types of distributed applications (i.e., nonscientific appli-
cations) that use network communication intensively. If very fast simulation tech-
niques could be developed for such applications, they could prove valuable for
predicting performance of network-intensive codes (e.g, distributed multimedia
codes). They could also prove valuable in controlling runtime optimization deci-
sions such as object migration, load balancing, or adaptation for quality-of-service
requirements, which are critical decisions for many distributed applications.
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