
Compiler Synthesis of Task Graphs for Parallel

Program Performance Prediction

Vikram Adve1 and Rizos Sakellariou2

1 Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, U.S.A.

vadve@cs.uiuc.edu
2 Department of Computer Science, University of Manchester, Oxford Road,

Manchester M13 9PL, U.K.
rizos@cs.man.ac.uk

1 Introduction

Task graphs and their equivalents have proved to be a valuable abstraction for
representing the execution of parallel programs in a number of different appli-
cations. Perhaps the most widespread use of task graphs has been for perfor-
mance modeling of parallel programs, including quantitative analytical mod-
els [3, 19, 25, 26, 27], theoretical and abstract analytical models [14], and pro-
gram simulation [5, 13]. A second important use of task graphs is in parallel pro-
gramming systems. Parallel programming environments such as PYRROS [28],
CODE [24], HENCE [24], and Jade [20] have used task graphs at three differ-
ent levels: as a programming notation for expressing parallelism, as an internal
representation in the compiler for computation partitioning and communication
generation, and as a runtime representation for scheduling and execution of par-
allel programs. Although the task graphs used in these systems differ in represen-
tation and semantics (e.g., whether task graph edges capture purely precedence
constraints or also dataflow requirements), there are close similarities. Perhaps
most importantly, they all capture the parallel structure of a program separately
from the sequential computations, by breaking down the program into computa-
tional “tasks”, precedence relations between tasks, and (in some cases) explicit
communication or synchronization operations between tasks.

If task graph representations could be constructed automatically, via com-
piler support, for common parallel programming standards such as Message-
Passing Interface (MPI), High Performance Fortran (HPF), and OpenMP, the
techniques and systems described above would become available to a much wider
range of programs than they are currently. Within the context of the POEMS
project [4], we have developed a task graph based application representation
that is used to support modeling of the end-to-end performance characteristics
of a large-scale parallel application on a large parallel system, using a combina-
tion of analytical, simulation and hybrid models, and models at multiple levels
of resolution for individual components. This paper describes how parallelizing
compiler technology can be used to automate the process of constructing this
task graph representation for HPF programs compiled to MPI (and, in the near

S.P. Midkiff et al. (Eds.): LCPC2000, LNCS 2017, pp. 208–226, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Compiler Synthesis of Task Graphs 209

future, for existing MPI programs directly). In particular, this paper makes the
following contributions:

– We describe compiler techniques to derive a static, symbolic task graph rep-
resenting the MPI code generated for a given HPF program. A key aspect
of this process is the use of symbolic integer sets and mappings to capture a
number of dynamic task instances or edge instances as a single node or edge
at compile time. These techniques allow the compiler to describe sophis-
ticated computation partitionings and communication and synchronization
patterns in symbolic terms.

– We describe how standard analysis techniques can be used to condense the
task graph and simplify control flow, whenever less than fully detailed infor-
mation suffices (as in many performance modeling applications in practice).

– Finally, we describe an approach to instantiate a dynamic task graph repre-
sentation from the static task graph, based on a novel use of code generation
from symbolic integer sets.

In addition to the above techniques, which to our knowledge are new, the
compiler also uses standard techniques to compute symbolic scaling functions
for task computation times and message communication volumes.

The techniques described above have been implemented in the Rice dHPF
compiler system, which compiles HPF programs to MPI for message-passing
systems using aggressive techniques for computation partitioning and communi-
cation optimization [1, 6, 22]. This implementation was recently used in a joint
project with the parallel simulation group at UCLA to improve the scalability of
simulation of message passing programs [5]. In that work, we showed how com-
piler information captured in the task graph can be used to reduce the memory
and time requirements for simulating message-passing programs in detail. In the
context of the present paper, these results illustrate the potential importance of
automatically constructing task graphs for widely used programming standards.

The next section briefly describes the key features of our static and dy-
namic task graph representations. Section 3 is the major technical section, which
presents the compiler techniques described above to construct the task graph rep-
resentations. Section 4 provides some results about the structure of the compiler-
generated task graphs for simple programs and illustrates how task graphs have
been used to improve the scalability of simulation, as mentioned above. We con-
clude with a brief overview of related work (Section 5) and a discussion of future
plans (Section 6).

2 Background: The Task Graph Representation

The POEMS project [4] aims to create a performance modeling environment
for the end-to-end modeling of large parallel applications on complex parallel
and distributed systems. The wide range of modeling techniques supported by
POEMS, and the goal of integrating multiple modeling paradigms make it chal-
lenging, if not impossible, for the end-user to generate the required workload



210 Vikram Adve and Rizos Sakellariou

information manually for a large-scale application. Thus, since the conception
of the project, it has been deemed essential to use compiler support to simplify
and partially automate the process of constructing the workload information. To
achieve this, we have designed a common task graph based program represen-
tation that provides a uniform platform for capturing the parallel structure of
a program as well as its associated workloads for different modeling techniques.
This representation uses two flavors of a task graph, the static task graph and
the dynamic task graph. Its design is described in detail in [2] and is briefly
summarized here. The specific information we aim to collect for a given program
includes: (1) The detailed computation partitioning and communication struc-
ture of the program, described in symbolic terms. (2) Source code for individual
tasks to support source-code-driven uses such as detailed program-driven sim-
ulation of memory hierarchy performance. (3) Scaling functions that describe
how computation and communication scale as a function of program inputs and
processor configuration. (4) Optionally, the detailed dynamic behavior of the
parallel program, for a specified program input and processor configuration.

The Static Task Graph: The static task graph (STG) captures the static parallel
structure of a program and is defined only by the program per se. Thus, it is in-
dependent of runtime input values, intermediate program results, and processor
configuration. Each node (or task) of the graph may represent one of the follow-
ing main types: control flow statements such as loops and branches, procedure
calls, communication, or pure computation. Edges between nodes may denote
control flow within a processor or synchronization between different processors
(due to communication tasks). For example, the STG for a simple parallel pro-
gram is shown in Figure 1, and is explained in more detail in the next section.

A key aspect of the STG is that each node represents a set of instances
of the task, one per processor that executes the task at runtime. Similarly, an
edge in the STG actually represents a set of edge instances connecting pairs
of dynamic node instances. We use symbolic integer sets to describe the set
of instances for a given node, e.g., a task executed by P processors would be
described by the set: {[p] : 0 ≤ p ≤ P − 1}, and symbolic integer mappings
to describe the edge instances, e.g., an edge from a SEND task on processor
p to a RECV task on processor q = p + 1 (i.e., each processor sends data to
its right neighbor, if any) would be described by the mapping: {[p] → [q] :
q = p + 1 ∧ 0 ≤ p < P − 1}. This kind of mapping enables precise symbolic
representations of arbitrary regular communication patterns. Irregular patterns
(i.e., data-dependent patterns that cannot be determined until runtime) have
to be represented as an all-to-all communication, which is the best that can be
done statically.

To capture high level communication patterns where possible (e.g., shift,
pipeline, broadcast, etc. [21]) we group the communication operations in the
program into related groups, each describing a single “logical communication
event”. A communication event descriptor, kept separate from the STG, cap-
tures all information about a single communication event. This includes the
communication pattern, the set of communication tasks involved, and a symbolic



Compiler Synthesis of Task Graphs 211

expression for the communication size. The CPU components of each commu-
nication event are represented explicitly as communication tasks in the STG,
allowing us to use task graph edges between these tasks to explicitly capture the
synchronization implied by the underlying communication calls. The number of
communication nodes and edges depends on the communication pattern and also
on the type of message passing calls used. This technique does not work for MPI
receive operations that use a wildcard message tag (because the matching send
cannot be easily identified). It does work for receive operations that use a wild-
card for the sending processor, but the symbolic mapping on the communication
edges may be an all-to-all mapping (for the processors that execute the send and
receive statements). Making the communication tasks explicit in the STG has
proved valuable also because it allows us to describe arbitrary interleavings (i.e.,
overlaps) of communication and computation tasks on individual processors and
across processors.

In addition to the symbolic sets and mappings above, each node and com-
munication event in the STG includes a symbolic scaling function that describes
how the task computation time or the message size scales as a function of pro-
gram variables. Finally, note that the STG of a program containing multiple
procedures is represented as a number of unconnected graphs, each correspond-
ing to a single procedure. Each call site is represented by a CALL task that
identifies the called procedure by name.

The Dynamic Task Graph: The dynamic task graph (DTG) is a directed acyclic
graph that captures the execution behavior of a program on a given input and
given processor configuration. This representation is important for detailed per-
formance modeling because it corresponds closely with the actual execution be-
havior being modeled by a particular program performance model (whether using
detailed simulation or abstract analytical models).

The nodes of a dynamic task graph are computational tasks and individ-
ual communication tasks. In particular, the DTG does not contain control flow
nodes (loops, branches, jumps, and jump targets). It can be thought of as being
instantiated from the static task graph by unrolling all the loops, resolving all
the branches, and instantiating all the instances of parallel tasks, edges, and
communication events.

There are two approaches to making this representation tractable for large-
scale programs, and these approaches can be combined: (1) we can condense tasks
allocated to a process between synchronization points so that only (relatively)
coarse-grain parallel tasks are explicitly represented, and (2) if necessary, we
can compute the dynamic task graph “on the fly,” rather than precomputing
it and storing it offline. We describe techniques to automatically condense the
task graph in Section 3.2. The approach to instantiate the task graph on-the-fly
is outside the scope of this paper, but is a direct extension of the compile-time
instantiation of the DTG described in Section 3.3.



212 Vikram Adve and Rizos Sakellariou

3 Compiler Techniques for Synthesizing the Task Graphs

As noted in the Introduction, there are three major aspects to synthesizing our
task graph representation for a parallel program: (1) synthesizing the static,
symbolic task graph; (2) condensing the task graph; and (3) optionally instanti-
ating a dynamic task graph representing an execution on a particular program
input. Each of these steps relies on information about the message-passing pro-
gram gathered by the compiler, although for many programs the third step can
be performed purely by inspecting the static task graph, as explained in Sec-
tion 3.3. These steps are described in detail in the following three subsections.

3.1 Synthesizing the Static Task Graph

Four key steps need be performed in synthesizing the static task graph (STG):
(1) generating computation and control-flow nodes; (2) generating communica-
tion tasks for each logical communication event; (3) generating symbolic sets
describing the processors that execute each task, and symbolic mappings de-
scribing the pattern of communication edges; and (4) eliminating excess control
flow edges.

Generating computation and control-flow nodes in the STG can be done in a
single preorder traversal of the internal representation for each procedure; in our
case, the representation is an Abstract Syntax Tree (AST). STG nodes are cre-
ated as appropriate statements are encountered in the AST. Thus, program state-
ments, such as DO, IF, CALL, PROGRAM/FUNCTION/SUBROUTINE, STOP/RETURN,
trigger the creation of a single node in the graph; encountering one of the first two
also leads to the creation of an enddo-node or an endif-node, a then-node
and an else-node, respectively. Any contiguous sequence of other computation
statements that are executed by the same set of processors are grouped into a
single computational task (contiguous implies that they are not interrupted by
any of the above statements or by communication).

Identifying statements that are computed by the same set of processors is
a critical aspect of the above step. This information is derived from the com-
putation partitioning phase of the compiler and is translated into a symbolic
integer set [1] that is included with each task. By having a general representa-
tion of the set of processors associated with each task, our representation can
describe sophisticated computation partitioning strategies. The explicit set rep-
resentation also enables us to check equality by direct set operations, in order
to group statements into tasks. These processors sets are also essential for the
fourth step listed above, namely eliminating excess control-flow edges between
tasks, so as to expose program parallelism. In particular, a control flow edge is
retained between two tasks only if the intersection of their processor sets is not
empty. Otherwise, the sink node is connected to its most immediate ancestor in
the STG for which the result of this intersection is a non-empty set.

When the first communication statement for a logical communication event
is encountered, the communication event descriptor and all the communication
tasks that are pertinent to this single event are built. The processor mappings
for the synchronization between the tasks are also built at this time.



Compiler Synthesis of Task Graphs 213

CHPF$ DISTRIBUTE A(*,BLOCK)

DO I=2,N

DO J=1,M-1

A(I,J) = A(I-1,J+1)

ENDDO

ENDDO

(a) HPF source code fragment

blk = block size per processor

DO I=2,N

IF (myid < P-1)

irecv B(i, myid*blk+blk+1) from myid+1

! Execute local iterations of j-loop

DO J=myid*blk+1, min(myid*blk+blk-1, M-1)

A(I,J) = A(I-1,J+1)

ENDDO

IF (myid > 0) isend B(i, myid*blk+1) to myid-1

IF (myid < P-1) wait-recv

IF (myid > 0) wait-send

! Execute non-local iterations of j-loop

J=myid*blk+blk

IF (J <= M-1)

A(I,J) = A(I-1,J+1)

ENDDO

(b) Unoptimized MPI code generated by dHPF

TASK

RECV

IRECV

DO

IF

ENDIF

DO

END
DO

IF

WAIT

COMP.

ISEND

WAIT

ENDIF

COMP.

SEND

IF

IF

ENDIF

TASK

ENDIF

IF

ENDIF

COMP.
TASK

END
DO

(c) Static task graph

Fig. 1. An example of generating the communication tasks.

For an explicit message-passing program, the computation partitioning in-
formation can be derived by analyzing the control-flow expressions that depend
on process id variables. The communication pattern information has to be ex-
tracted by recognizing the communication calls syntactically, analyzing their ar-
guments, and identifying the matching send and receive calls. In principle, both
the control-flow and the communication can be written in a manner that is too
complex for the compiler to decipher, and some message passing programs will
probably not be analyzable. But in most of the programs we have looked at, the
control-flow idioms for partitioning the computation and the types of message
passing operations that are used are fairly simple. We believe that the required
analysis to construct the STG would be feasible with standard interprocedural
symbolic analysis techniques [16].

To illustrate the communication information built by the compiler, consider
the simple HPF example, which, along with the MPI parallel code generated by
the dHPF compiler, are shown on the left-hand side of Figure 1. The paralleliza-
tion of the code requires the boundary values of array A along the j dimension to



214 Vikram Adve and Rizos Sakellariou

be communicated inside the I loop. (In practice, the compiler pipelines the com-
munication in larger blocks by strip-mining the I loop [17] but that is omitted to
simplify the example.) The corresponding STG is shown on the right-hand side of
the figure. Solid lines represent control flow edges and dashed lines represent in-
terprocessor synchronization. In this example, the compiler uses the non-blocking
MPI communication primitives. The two dashed lines show that the wait-recv
operation cannot complete until the isend is executed, and the isend cannot
complete until the irecv is issued by the receiver (the latter is true because our
target MPI library uses sender-side buffering).1 Also, the compiler interleaves
the communication tasks and computation so as to overlap waiting time at the
isend with the computation of local loop iterations, i.e., the iterations that do
not read or write any off-processor data. The use of explicit communication tasks
within the task graph allows this overlap to be captured precisely in the task
graph. The dashed edge between the isend and the wait-recv tasks is associ-
ated with the processor mapping: {[p0] → [q0] : q0 = p0 − 1 ∧ 0 ≤ q0 < p − 1},
denoting that each processor receives data from its “right” neighbor, except the
rightmost boundary processor. The other dashed edge has the inverse mapping,
i.e., q0 = p0 + 1.

Finally, the compiler constructs the symbolic scaling functions for each task
and communication event, using direct symbolic analysis of loop bounds and
message sizes. For a communication event, the scaling function is simply an
expression for the message size. For each do-node the scaling function describes
the number of iterations executed by each processor, as a function of processor id
variables and other symbolic program variables. In the simple example above, the
scaling functions for the two do nodes are N-1 and min(myid*blk+blk-1,M-1) -
(myid*blk+1) + 1, respectively. For a computational task, the scaling function
is a single parameter representing the workload corresponding to the task. At
this stage of the task graph construction, no further handling (such as symbolic
iteration counting for more complex loop bounds), takes place.

3.2 Condensing Nodes of the Static Task Graph

The process described above produces a first-cut version of the STG. For many
typical modeling studies of parallel program performance, however, a less de-
tailed graph will be sufficient. For instance, a coarse-grain modeling approach
could assume that all operations of a single process between two communication
points constitute a single task. In order to add this functionality, the compiler
traverses the STG and marks contiguous nodes, connected by a control-flow edge,
that do not include communication. Such sequences of nodes are then collapsed
and replaced in the STG by a single condensed task. Note that such a task will
have a single point of entry and a single point of exit. For example, the two large
1 More precisely, the isend task should be broken into two tasks, one that performs

local initialization and does not depend on the irecv, and a second one that can
only be initiated once the irecv has been issued but does not block the local com-
putation on the sending node. This would be simply require introducing additional
communication tasks into the task graph.



Compiler Synthesis of Task Graphs 215

DO I=1,N

RECV

DO J=1,M

S1

IF (f)

S2

ENDIF

S3

ENDDO

SEND

ENDDO

DO

DO

RECV

IF

ENDIF

END
DO

END
DO

SEND

S1

S2

S3

DO

RECV

IF

ENDIF

SEND

END
DO

T1 T2

DO

RECV

SEND

END
DO

T

(a) Source; (b) Initial STG; (c) Collapsed STG if f=G(I); (d) Collapsed STG if f=Y(J)

Fig. 2. Collapsing Branches of the Static Task Graph.

dotted rectangles in Figure 1 (c) correspond to sequences of tasks that can be
collapsed into a single condensed task.

To preserve precision, the computation of the scaling function of the new
condensed task is of particular importance. Ignoring conditional control flow for
the moment, this scaling function is the symbolic sum of the scaling functions
of the individual collapsed tasks, each multiplied by the symbolic number of
iterations of the surrounding loops, where appropriate (only if these loops are
also collapsed).

In cases with conditional control flow, tasks can sometimes be condensed
with no loss of accuracy, using sophisticated compiler analysis. For example, no
accuracy will be lost in cases where all dynamic instances of the resulting col-
lapsed task have identical computational time; that is, the workload expressions
are free of any input parameters whose value changes for different instances of
that task. In other cases, condensing would result in some loss of accuracy, and
the goals of the modeling study should be used to dictate the degree to which
tasks are collapsed together.

To illustrate, consider the code shown in Figure 2 (a). Let w1, w2, w3 rep-
resent the workload (i.e., the scaling function) for statements S1, S2 and S3,
respectively. The initial version of the STG is shown in Figure 2 (b); the nodes
inside the dotted rectangle are candidates for collapsing. Assuming that the
function f in the IF depends on at least one of I or J, we distinguish between:

– If f is a function of I only, the IF statement can be moved outside the J
loop and the J loop can be collapsed with no loss of accuracy. In this case,
we are left with two separate tasks, representing the two possible versions of
the J loop, as shown in part (c) of the figure. These two tasks have scaling
functions given by M × (w1 + w2 + w3), M × (w1 + w3), respectively.



216 Vikram Adve and Rizos Sakellariou

– If f is a function of J only, the code can be condensed into a single task as
shown in Figure 2(d). The scaling function of the task T would be M × w,
where w is the workload inside the J loop body per iteration of the I loop.

– Finally, if f is a function of both I and J, we can condense the code only
by introducing a branching probability parameter. If p(I) represents the
probability that S2 will be executed for a given value of I, then the entire
code inside the dotted rectangle can be condensed into a single task (as in
part (d)) with a combined scaling function given by M×(w1+p(I)×w2+w3).
Since this probabilistic expression for execution time can lead to inaccuracies,
the decision to condense the task graph in such cases should depend on the
goals of the modeling study.

The three cases can be differentiated using well-known but aggressive dataflow
analysis. We note that the first two cases correspond directly to loop unswitching
and identifying loop-invariant code respectively, except that only the static task
graph is modified and the code itself is not transformed. A key point to note is
that in the first two cases, there is no resulting loss of accuracy in condensing the
task graph. For example, in the ASCI benchmark Sweep3D [4] used in Section 4,
the one significant branch is in fact of the first type, which can be pulled out
of the task and enclosing loops (the analysis would have to be interprocedural
because the enclosing loops are not in the same procedure as the branch).

3.3 Instantiating the Dynamic Task Graph

As noted in Section 2, the dynamic task graph (DTG) is essentially an instantia-
tion of the STG representing a single execution for a particular input. The DTG
is an acyclic graph containing no control-flow nodes. The time for instantiating
the DTG grows linearly with the number of task instances in the execution of
the program, but much less computation per task is usually required for the
instantiation than for the actual execution. This is an optional step that can be
performed when required for detailed performance prediction.

The information required to instantiate the DTG varies significantly across
programs. For a regular, non-adaptive code, the parallel execution behavior of the
program can usually be determined directly from the program input (in which
we include the processor configuration parameters). In such cases, the DTG can
be instantiated directly from the STG once the program input is specified. In
general, and particularly in adaptive codes, the parallel execution behavior (and
therefore the DTG) may depend on intermediate computational results of the
program. For example, this could happen in a parallel n-body problem if the
communication pattern changed as the positions of the bodies evolved during
the execution of the program. In the current work, we focus on the techniques
needed to instantiate the DTG in the former case, i.e., that of regular non-
adaptive codes. These techniques are also valuable in the latter case, but they
must be applied at runtime when the intermediate values needed are known.
The issues to be faced in that case are briefly discussed later in this section.

There are two main aspects to instantiating the DTG: (1) enumerating the
outcomes of all the control flow nodes, effectively by unrolling the DO nodes and



Compiler Synthesis of Task Graphs 217

resolving the dynamic instances of the branch nodes; and (2) enumerating the
dynamic instances of each node and edge in the STG. These are discussed in turn
below. Of these, the second step is significantly more challenging in terms of the
compile-time techniques required, particularly for sophisticated message passing
programs with general computation partitioning strategies and communication
patterns.

Interpreting control-flow in the static task graph Enumerating the outcomes of
all the control flow nodes in an execution can be accomplished by a symbolic
interpretation of the control flow of the program for each process. First, we must
enumerate loop index values and resolve the dynamic instances of branch con-
ditions that have not been collapsed in the STG. This requires evaluating the
values of these symbolic expressions. We can perform this evaluation directly
at compile-time when these quantities are determined solely by input values,
surrounding loop index variables, and processor id variables. Under these con-
ditions, we know all the required variable values in the expressions, as follows.
The input variable values are specified externally. The loop index values are ex-
plicitly enumerated for all DO nodes that are retained in the static task graph.
The processor id variables are explicitly enumerated for each parallel task using
the symbolic processor sets, as discussed below. Therefore, we can evaluate the
relevant symbolic expressions for enumerating the control-flow outcomes.

We assumed above that key symbolic quantities were determined solely by
input values, surrounding loop index variables, and processor id variables. These
requirements only apply to those loop bounds and branch conditions that are re-
tained in the collapsed static task graph (i.e., which affect the parallel task graph
structure of the code), and not to loops and branches that have been collapsed
because they only affect the internal computational results of a task. With the
exception of a few common algorithmic constructs, we find these requirements to
be satisfied by a fairly large class of regular scientific applications. For example,
in a collection of codes including the three NAS application benchmarks (SP,
BT and LU), an ASCI benchmark Sweep3D [4], and other standard data-parallel
codes such as Erlebacher [1] and the SPEC benchmark Tomcatv, the sole excep-
tions were terminating conditions testing convergence in the outermost timestep
loops. In such cases, we would rely on the user to specify a fixed number of time
steps for which the program performance would be modeled.

More generally, and particularly for adaptive codes, we expect the parallel
structure to depend on intermediate computational results. This would require
generating the DTG on the fly, e.g., when performing program-driven simulation
during which the actual computational results would be computed. In this case,
the most efficient approach to synthesizing the DTG would be to use program
slicing to isolate the computations that do affect the parallel control flow. (This
is very similar to the use of slicing for optimizing parallel simulation as described
in Section 4.) These extensions are outside the scope of this paper.

Enumerating the symbolic sets and mappings The second challenge is that we
must enumerate all instances of each parallel task and each communication edge



218 Vikram Adve and Rizos Sakellariou

between tasks. These instances are described by symbolic sets and mappings
respectively. In the context of complex computation partitioning strategies and
arbitrary communication patterns, this presents a much more difficult problem
at compile-time (i.e., without executing the actual program).

CHPF$ distribute rsd(*,block,block,*)
CHPF$ distribute u(*,block,block,*)
CHPF$ distribute flux(*,block,block,*)

do k = 2, nz-1
do j = jst, jend

CHPF$ INDEPENDENT, NEW(flux)
do indep dummy loop = 1, 1

do i = 1, nx

do m = 1, 5 ! ON HOME rsd(m,i-1,j,k)
⋃

rsd(m,i+1,j,k)

flux(m,i,j,k) = F( u(m,i,j,k) )
enddo

enddo
do i = ist, iend

do m = 1, 5 ! ON HOME rsd(m,i,j,k)
rsd(m,i,j,k) = G( flux(m,i-1,j,k), flux(m,i+1,j,k) )

enddo
enddo

enddo
enddo

enddo (a) Source code and computation partitioning

ProcsThatSend = {[p0, p1] : jst ≤ 17p1 + 17, jend, 65 ∧ 0 ≤ p0 ≤ 3 ∧ 0 ≤ p1 ≤ 3

∧ 17p0 < nx ∧ 17p1 < jend ∧ 3 ≤ nz}⋃
{[p0, p1] : jst ≤ 17p1+17, jend, 65 ∧ 0 ≤ p0 ≤ 3 ∧ 0 ≤ p1 ≤ 3

∧ 17p0 <nx ∧ 17p1 <jend ∧ 3≤nz ∧ 2≤nx ∧ 17p1 <jend}
SendToRecvProcsMap = {[p0, p1] → [q0, q1] : q1 = p1 ∧ 0, q0 − 1 ≤ p0 ≤ 3

∧ jst ≤ 17p1 + 17, 65, jend ∧ 0 ≤ p1 ≤ 3

∧ 17p0 < nx ∧ 3 ≤ nz ∧ 17q0 ≤ nx ∧ 17p1 < jend}⋃
{[p0, p1] → [q0, q1] : 0, p0 − 1 ≤ q0 ≤ p0 ≤ 3

∧ jst ≤ 17p1 + 17, 65, jend ∧ 0 ≤ p1 ≤ 3 ∧ 17p0 < nx

∧ 3 ≤ nz ∧ 2 + 17q0 ≤ nx ∧ 17p1 < jend}

(b) Processor sets and task mappings

subroutine ProcsThatSend(nx, nz, jst, jend)
integer nx, nz, jst, jend
if (jend >= 1 && jst <= jend && nz >= 3 && jst <= 65) then

do p0 = 0, min(intDiv(nx-1,17), 3)
do p1 = max(intDiv(jst-17+16,17), 0), min(intDiv(jend-1,17), 3)
! Emit SEND task for processor (p0,p1)

enddo
enddo

endif
(c) Parameterized code to enumerate the set ProcsThatSend

Fig. 3. Example from NAS LU illustrating processor sets and task mappings for
communication tasks. Problem size: 65× 65× 65; Processor configuration: 4× 4.



Compiler Synthesis of Task Graphs 219

For example, consider the loop fragment from the NAS LU benchmark shown
in Figure 3. The compiler automatically chooses a sophisticated computation
partitioning, denoted by the on home descriptors for each statement in the fig-
ure. For example, the on home descriptor for the assignment to flux indicates
that the instance of the statement in iteration (k,j,i,m) should be executed
by the processors that own either of the array elements rsd(m,i-1,j,k) or
rsd(m,i+1,j,k). This means that each boundary iteration of the statement will
be replicated among the two adjacent processors. This replication eliminates the
need for highly expensive inner-loop communication for the privatizable array
flux [6]. Communication is still required for each reference to array u, all of
which are coalesced by the compiler into a single logical communication event.
The communication pattern is equivalent to two SHIFT operations in opposite
directions. Part (b) of the figure shows the set of processors that must execute
the SEND communication task (ProcsThatSend), as well as the mapping be-
tween processors executing the SEND and those executing the corresponding
wait-recv (SendToRecvProcsMap). (Note that both these quantities are de-
scribed in terms of symbolic integer sets, parameterized by the variables jst,
jend, nx and nz.) Each of these sets combines the information for both SHIFT
operations. Correctly instantiating the communication tasks and edges for such
communication patterns in a pattern-driven manner can be difficult and error-
prone, and would be limited to some predetermined class of patterns that is
unlikely to include such complex patterns.

Instead, we develop a novel and general solution to this problem that is based
on an unusual use of code generation from integer sets. In ordinary compilation,
dHPF and other advanced parallelizing compilers use code generation from inte-
ger sets to synthesize loop nests that are executed at runtime, e.g., for a parallel
loop nest or for packing and unpacking data for communication [1, 7, 8, 11].
If we could invoke the same capability but execute the generated loop nests at
compile-time, we could use the synthesized loop nests to enumerate the required
tasks and edges.

Implementing this approach, however, proved to be a non-trivial task. Most
importantly, each of the sets is parameterized by several variables, including
input variables and loop index variables (e.g., the two sets above are parame-
terized by jst, jend, nx and nz). This means that the set must be enumerated
separately for each combination of these variable values that occurs during the
execution of the original program. We solve this problem as follows. We first
generate a subroutine for each integer set that we want to enumerate, and make
the parameters arguments of the subroutine. Then (still at compile-time), we
compile, link, and invoke this code in a separate process. The desired combina-
tions of variable values for each node and edge are automatically available when
interpreting the control-flow of the task graph as described earlier. Therefore,
during this interpretation, we simply invoke the desired subroutine in the other
process to enumerate the ids for a node or the id pairs for an edge.

To illustrate this approach, Figure 3(c) shows the subroutine generated to
enumerate the elements of the set ProcsThatSend described earlier. The loop



220 Vikram Adve and Rizos Sakellariou

nest in this subroutine is generated directly from the symbolic integer set in
part (b) of the figure. This loop nest enumerates the instances of the SEND
task, which in this case is one task per processor executing the SEND. This
subroutine is parameterized by jst, jend, nx and nz. In this example, these are
all unique values determined by the program input. In general, however, these
could depend on loop index variables of some outer loop and the subroutine has
to be invoked for each combination of values of its arguments.

Overall, the use of code generated from symbolic sets enables us to support
a broad class of computation partitionings and communication patterns in a
uniform manner. This approach fits nicely with the core capabilities of advanced
parallelizing compilers.

4 Status and Results

We have successfully implemented the techniques described above in the dHPF
compiler. We have extended the dHPF compiler to synthesize a static task graph
for the MPI code generated by dHPF, including the symbolic processor sets and
mappings for communication tasks and edges, and the scaling functions for loop
nodes. In computing the condensed static task graph, we collapse all do-nodes
or sequences of computational tasks that do not contain any communication or
any if-nodes (We would rely on user intervention to collapse if-nodes). We
also compute the combined scaling function for the collapsed tasks.

We have also partially implemented the support to instantiate dynamic task
graphs at compile-time. In particular, we are able to enumerate the task instances
and control-flow edges. We also synthesize the code from symbolic integer-sets
required to enumerate the edge mappings at compile-time. We do not yet link
in this code to enumerate the edges at compile-time.

Because of the aggressive computation partitioning and communication strate-
gies used by dHPF, capturing the resulting MPI code requires the full generality
of our task graph representation. This gives us confidence that we can synthe-
size task graphs for a wide range of explicit message-passing programs as well
(including all the ones we have examined so far).

In order to illustrate the size of the static task graph generated and the
effectiveness of condensing the task graph, Table 1 lists some particulars for
the STG produced by the dHPF compiler for three HPF benchmarks: Tom-
catv (from SPEC92), jacobi (a simple 2D Jacobi iterator PDE solver), and expl
(Livermore Loop # 18). The effect of condensing the task graph on reducing
the number of loops (do-node) and computational tasks (comp-task) can be
observed. After condensing, most of the remaining tasks are either if-nodes
and dummy nodes (e.g., endif-node, etc.) or communication tasks (which
are never condensed), since we opted for a detailed representation of com-
munication behavior, rather than compromise on the accuracy of the repre-
sentation. The compiler generated task graphs for the above can be found at
http://www.cs.man.ac.uk/~rizos/taskgraph/



Compiler Synthesis of Task Graphs 221

tomcatv jacobi expl

Lines of source HPF program 227 64 94

Lines of output parallel MPI program 1850 1156 3722

1st pass condensed 1st pass condensed 1st pass condensed

Total number of tasks 247 193 122 83 225 174

# comm-node 54 54 36 36 114 114

# do-node 18 3 13 1 17 3

# comp-task 39 20 16 5 23 6

Table 1. Size of STG for various example codes before and after condensing.

The most important application of our compiler-synthesized task graphs to
date has been for improving the state of the art of parallel simulation of message-
passing programs [5]. Those results are briefly summarized here because they
provide the best illustration of the correctness and benefits of the compiler-
synthesized task graphs. This work was performed in collaboration with the
parallel simulation group at UCLA, using MPI-Sim, a direct-execution parallel
simulator for MPI programs [10].

The basic strategy in using the STG for program simulation is to generate an
abstracted MPI program from the STG where all computation corresponding to
a computational task is eliminated, except those computations whose results are
required to determine the control-flow, communication behavior, and task scaling
functions. We refer to the eliminated computations as redundant computations
(from the point of view of performance prediction), and we use the task scaling
functions to generate simple symbolic estimates for their execution time. The
simulator can avoid simulating the redundant computations, and simply needs
to advance the simulation clock by an amount equal to the estimated execution
time of the computation. The simulator can even avoid allocating memory for
program data that is referenced only in redundant computations.

The key to implementing this strategy lies in identifying non-redundant com-
putations. To do so, we must first identify the values in the program that deter-
mine program performance. These are exactly those variable values that appear
in the control-flow expressions, communication descriptors, and scaling functions
(both for task times and for communication volume) of the STG. Thus, using
the STG makes these values very easy to identify. We can then use a standard
program slicing algorithm [18] to isolate the computations that affect these val-
ues. We then generate the simplified MPI code by including all the control-flow
that appears in the static task graph, all the communication calls, and the non-
redundant computations identified by program slicing. All the remaining (i.e.,
redundant) computations in each computational task are replaced with a single
call to a special simulator delay function which simply advances the simulator
clock by a specified amount. The argument to this function is a symbolic expres-
sion for the estimated execution time of the redundant computation. Note that
the simulator continues to simulate the communication behavior in detail.

We have applied this methodology both to HPF programs (compiled to MPI
by the dHPF compiler), and also to existing MPI programs (in the latter case,



222 Vikram Adve and Rizos Sakellariou

Benchmark % Error in prediction vs. measurement
#Procs = 4 8 16 32 64

Tomcatv −5.44 15.75 11.79 8.50 9.27

Sweep3D −7.01 −4.97 9.02 9.80 5.13

NAS SP, class A −2.59 −1.24 7.11 6.10

NAS SP, class C 0.09 −14.01 −1.58

Table 2. Validation of the compiler-generated task graphs using MPI-Sim.

generating the abstracted MPI program by hand). The benchmarks include an
HPF version of Tomcatv, and MPI versions of Sweep3D (a key ASCI bench-
mark) and NAS SP. Table 2 shows the percentage error in the execution times
predicted by MPI-Sim using the simplified MPI code, compared with direct pro-
gram measurement. As can be seen, the error was less than 16% in all cases
tested, and less than 10% in most of these cases. This is important because the
simplified MPI program can be thought of as simply an executable represen-
tation of the static task graph itself. These results show that the task graph
abstraction very accurately captures the properties of the program that deter-
mine performance. We believe that the errors observed could be further reduced
by applying more sophisticated techniques for estimating the execution time of
redundant computations, particularly with simple estimates of cache behavior.

The benefits of using the task graph based simulation strategy were extremely
impressive. For these benchmarks, the optimized simulator requires factors of 5
to 2000 less memory and up to a factor of 10 less time to execute than the
original simulator. These dramatic savings allow us to simulate systems and
problem sizes 10 to 100 times larger than is possible with the original simulator.
Also, they have allowed us to simulate MPI programs for parallel architectures
with hundreds of processors faster than real-time, and have made it feasible to
simulate execution of programs on machines with 10,000+ processors. These
results are described in more detail in [5].

5 Related Work

There is a large body of work on the use of task graphs for various aspects of par-
allel systems but very little work on synthesizing task graphs for general-purpose
parallel programs. The vast majority of performance models that use task graphs
as inputs generally do not specify how the task graph should be constructed but
assume that this has been done [3, 14, 19, 25, 27]. The various compiler-based
systems that use task graphs, namely PYRROS [28], CODE [24], HENCE [24],
and Jade [20] construct task graphs by assuming special information from the
programmer. In particular, PYRROS, CODE and HENCE all assume that the
programmer specifies the task graph explicitly (CODE and HENCE actually
use a graphical programming language to do so). In Jade, the programmer spec-
ifies input and output variables used by each task and the compiler uses this
information to deduce the task dependences for the program.



Compiler Synthesis of Task Graphs 223

The PlusPYR project [12] has developed a task graph representation that has
some similarities with ours (in particular, symbolic integer sets and mappings for
describing task instances and communication and synchronization rules), along
with compiler techniques to synthesize these task graphs. The key difference
from our work is that they start with a limited class of sequential programs
(annotated to identify the tasks) and use dependence analysis to compute de-
pendences between tasks, and then derive communication and synchronization
rules from these dependences. Therefore, their approach is essentially a form of
simple automatic parallelization. In contrast, our goal is to generate task graphs
for existing parallel programs with no special program annotations and with
explicit communication. A second major difference is that they assume a simple
parallel execution model in which a task receives all inputs from other tasks in
parallel and sends all outputs to other tasks in parallel. In contrast, we capture
much more general communication behavior in order to support realistic HPF
and MPI programs.

Parashar et al. [26] construct task graphs for HPF programs compiled by the
Syracuse Fortran 90D compiler, but they are limited to a very simple, loosely
synchronous computational model that would not support many message-passing
and HPF programs in practice. In addition, their interpretive framework for per-
formance prediction uses functional interpretation for instantiating a dynamic
task graph, which is similar to our approach for instantiating control-flow. Like
the task graph model, their interpretation and performance estimation are sig-
nificantly simplified (compared with ours) because of the loosely synchronous
computational model. For example, they do not need to capture sophisticated
communication patterns and computation partitionings, as we do using code
generation from integer sets.

Dikaiakos et al. [13] developed a tool called FAST that constructs task graphs
from user-annotated parallel programs, performs advanced task scheduling and
then uses abstract simulation of message passing to predict performance. The
PACE project [25] proposes a language and programming environment for par-
allel program performance prediction. Users are required to identify parallel
subtasks and computation and communication patterns. Finally, Fahringer [15],
Armstrong and Eigenmann [9], Mendes and Reed [23] and many others have de-
veloped symbolic compile-time techniques for estimating execution time, com-
munication volume and other metrics. The communication and computation
scaling functions available in our static task graph are very similar to the sym-
bolic information used by these techniques, and could be directly extended to
support their analytical models.

6 Conclusion and Future Plans

In this paper, we described a methodology for automating the process of synthe-
sizing task graphs for parallel programs, using sophisticated parallelizing com-
piler techniques. The techniques in this paper can be used without user inter-
vention to construct task graphs message-passing programs compiled from HPF



224 Vikram Adve and Rizos Sakellariou

source programs, and we believe they extend directly to existing message-passing
(e.g., MPI) programs as well. Such techniques can make a large body of existing
research based on task graphs and equivalent representations applicable for these
widely used programming standards. Our immediate goals for the future are: (1)
to demonstrate that the techniques described in this paper can be applied to
message-passing programs (using MPI), by extracting the requisite computation
partitioning and communication information; and (2) to couple the compiler-
generated task graphs with the wide range of modeling approaches being used
within the POEMS project, including analytical, simulation and hybrid models.

Acknowledgements: The authors would like to acknowledge the valuable input
that several members of the POEMS project have provided to the development
of the application representation. We are particularly grateful to the UCLA team
and especially Ewa Deelman for her efforts in validating the simulations of the
abstracted MPI codes generated by the compiler. This work was carried out while
the authors were with the Computer Science Department at Rice University.

References

[1] V. Adve and J. Mellor-Crummey. Using Integer Sets for Data-Parallel Program
Analysis and Optimization. In Proc. of the SIGPLAN ’98 Conference on Pro-
gramming Language Design and Implementation, Montreal, Canada, June 1998.

[2] V. Adve and R. Sakellariou. Application Representations for Multi-Paradigm Per-
formance Modeling of Large-Scale Parallel Scientific Codes. International Journal
of High Performance Computing Applications, 14(4), 2000.

[3] V. Adve and M. K. Vernon. A Deterministic Model for Parallel Pro-
gram Performance Evaluation. Technical Report CS-TR98-333, Com-
puter Science Dept., Rice University, December 1998. Also available at
http://www-sal.cs.uiuc.edu/~vadve/Papers/detmodel.ps.gz.

[4] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. Houstis, J. R.
Rice, R. Sakellariou, D. Sundaram-Stukel, P. J. Teller, and M. K. Vernon. PO-
EMS: End-to-End Performance Design of Large Parallel Adaptive Computational
Systems. IEEE Trans. on Software Engineering, 26(11), November 2000.

[5] V. S. Adve, R. Bagrodia, E. Deelman, T. Phan, and R. Sakellariou. Compiler-
Supported Simulation of Highly Scalable Parallel Applications. In Proceedings of
Supercomputing ’99, Portland, Oregon, November 1999.

[6] V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High Performance Fortran
Compilation Techniques for Parallelizing Scientific Codes. In Proceedings of SC98:
High Performance Computing and Networking, Orlando, FL, November 1998.

[7] S. Amarasinghe and M. Lam. Communication optimization and code genera-
tion for distributed memory machines. In Proc. of the SIGPLAN ’93 Conference
on Programming Language Design and Implementation, Albuquerque, NM, June
1993.

[8] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In Proceedings
of the Third ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Williamsburg, VA, April 1991.

[9] B. Armstrong and R. Eigenmann. Performance Forecasting: Towards a Method-
ology for Characterizing Large Computational Applications. In Proc. of the Int’l
Conf. on Parallel Processing, pages 518–525, August 1998.



Compiler Synthesis of Task Graphs 225

[10] R. Bagrodia, E. Deelman, S. Docy, and T. Phan. Performance prediction of
large parallel applications using parallel simulation. In Proc. 7th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Atlanta, GA,
1999.

[11] P. Banerjee, J. Chandy, M. Gupta, E. Hodges, J. Holm, A. Lain, D. Palermo,
S. Ramaswamy, and E. Su. The Paradigm compiler for distributed-memory mul-
ticomputers. IEEE Computer, 28(10):37–47, October 1995.

[12] M. Cosnard and M. Loi. Automatic Task Graph Generation Techniques. Parallel
Processing Letters, 5(4):527–538, December 1995.

[13] M. Dikaiakos, A. Rogers, and K. Steiglitz. FAST: A Functional Algorithm Simula-
tion Testbed. In International Workshop on Modelling, Analysis and Simulation
of Computer and Telecommunication Systems – Mascots ’94, 1994.

[14] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus Efficiency in
Parallel Systems. IEEE Trans. on Computers, C-38(3):408–423, March 1989.

[15] T. Fahringer and H. Zima. A static parameter based performance prediction tool
for parallel programs. In Proceedings of the 1993 ACM International Conference
on Supercomputing, Tokyo, Japan, July 1993.

[16] P. Havlak. Interprocedural Symbolic Analysis. PhD thesis, Dept. of Computer
Science, Rice University, May 1994. Also available as CRPC-TR94451 from the
Center for Research on Parallel Computation and CS-TR94-228 from the Rice
Department of Computer Science.

[17] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Evaluation of compiler optimiza-
tions for Fortran D on MIMD distributed-memory machines. In Proc. of the 1992
ACM International Conference on Supercomputing, Washington, DC, July 1992.

[18] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Trans. on Programming Languages and Systems, 12:26–60, 1990.

[19] A. Kapelnikov, R. R. Muntz, and M. D. Ercegovac. A Modeling Methodology for
the Analysis of Concurrent Systems and Computations. Journal of Parallel and
Distributed Computing, 6:568–597, 1989.

[20] M. S. Lam and M. Rinard. Coarse-Grain Parallel Programming in Jade. In
Proc. Third ACM SIGPLAN Symposium on Principles and Practices of Parallel
Programming, pages 94–105, Williamsburg, VA, April 1991.

[21] J. Li and M. Chen. Compiling communication-efficient programs for massively
parallel machines. IEEE Trans. on Parallel and Distributed Systems, 2(3):361–
376, July 1991.

[22] J. Mellor-Crummey and V. Adve. Simplifying control flow in compiler-generated
parallel code. International Journal of Parallel Programming, 26(5), 1998.

[23] C. Mendes and D. Reed. Integrated Compilation and Scalability Analysis for
Parallel Systems. In Proc. of the Int’l Conference on Parallel Architectures and
Compilation Techniques, Paris, October 1998.

[24] P. Newton and J. C. Browne. The CODE 2.0 Graphical Parallel Programming
Language. In Proceedings of the 1992 ACM International Conference on Super-
computing, Washington, DC, July 1992.

[25] E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, T. J. Atherton, and J. S. Harper.
An Introduction to the Layered Characterization for High Performance Systems.
Research Report 335, University of Warwick, December 1997.

[26] M. Parashar, S. Hariri, T. Haupt, and G. Fox. Interpreting the Performance
of HPF/Fortran 90D. In Proceedings of Supercomputing ’94, Washington, D.C.,
November 1994.



226 Vikram Adve and Rizos Sakellariou

[27] A. Thomasian and P. F. Bay. Analytic Queueing Network Models for Parallel
Processing of Task Systems. IEEE Trans. on Computers, C-35(12):1045–1054,
December 1986.

[28] T. Yang and A. Gerasoulis. PYRROS: Static task scheduling and code generation
for message passing multiprocessors. In Proceedings of the 1992 ACM Interna-
tional Conference on Supercomputing, Washington, DC, July 1992.


	Introduction
	Background: The Task Graph Representation
	Compiler Techniques for Synthesizing the Task Graphs
	Synthesizing the Static Task Graph
	Condensing Nodes of the Static Task Graph
	Instantiating the Dynamic Task Graph

	Status and Results
	Related Work
	Conclusion and Future Plans

