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ABSTRACT

Grids and clouds are utilized for the execution of appli-
cations composed of dependent tasks, usually modeled as
workflows. To efficiently run the application, a scheduler
must distribute the components of the workflow in the avail-
able resources using information about duration of tasks and
communication between tasks in the workflow. However,
such information may be subject to imprecisions, thus not
reflecting what is observed during the execution. In this pa-
per we propose a simple way of representing the costs of the
components in a workflow in order to reduce the impact of
uncertainties introduced by wrong estimations, and also to
ease the application specification for the user. Evaluation
shows that the use of relative costs in tasks and dependen-
cies can improve in many cases the resulting schedule when
compared to cases where the input data carries an uncer-
tainty of 20% and 50%.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems— Cloud Computing; D.4.1 [Operating Systems]:
Process Management—Scheduling

General Terms
Algorithms

Keywords

Uncertainty, scheduling, workflow

1. INTRODUCTION

Scheduling algorithms rely on information about how long
tasks and data transmissions take to occur during the appli-
cation execution [10]. In systems such as grids and clouds,
this application information is combined with information
about the processing capacities and bandwidth available in
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the heterogeneous resources in order to estimate the exe-
cution time of the application components on different re-
sources, allowing the scheduler to perform the decision mak-
ing according to an objective function. Combining this infor-
mation, the scheduler is capable of estimating the execution
time for the application as a whole [13].

While the estimation of tasks execution times is impor-
tant for any application, the estimation of data transmission
times is especially important when dependent tasks are ex-
ecuted. Nowadays, a wide variety of scientific and business
applications can be modeled as workflows [17]. These ap-
plications can take advantage of distributed systems such as
grids and clouds to speed up their execution, and they are
the focus of this work.

The input data for a workflow scheduler can be separated
in two sets: the first one with information about the appli-
cation components and their dependencies, and the second
one with information about the performance of the resources
(processors and links) in the target system. The informa-
tion in the first set can be obtained from two sources: (i) the
workflow programming model, where the user is responsible
for estimating the “size” (or cost) of each task and each data
dependency; and (ii) from previous executions of the same
application, if available. The information about resource
performance can be obtained from its hardware character-
istics as well as from benchmarks. An important aspect of
both sets is that they are prone to inaccuracy, introducing
uncertainty to the scheduling process [4]. The imprecision
in the input information given to the scheduler is associated
to the concept of quality of information [7].

In this paper we focus on the first set of information,
which provides data about the application. Scheduling al-
gorithms generally consider this information to be precise,
using it during the decision making process without taking
into account possible variations of the task duration and
data transmission times. However, it is hard to estimate
task computation demands or data dependency sizes for all
application components. Because of that, estimates given
by the scheduler for the workflow execution duration can be
often impaired by low quality of information.

In this paper we propose a novel way of interpreting the
input data given by the user for the workflow execution. In
the proposed approach, the scheduler does not need to know
the estimated cost of each task or data dependency, but only
their relative costs. With this, the user can provide to the
scheduler only a list of tasks and data dependencies sorted by
their expected duration, however without any numeric value.



Note that we are not dealing with performance fluctuations
in the resources, and therefore dynamic rescheduling is not
effective. As a first evaluation of the proposal, we used it
with the well known heuristic called Heterogeneous Farliest
Finish Time (HEFT) [18]. Preliminary results show that
providing only a relation of costs for tasks and transmis-
sion times can result in schedules in many cases with lower
makespan than when the input data carries an uncertainty
of 50%.

This paper is organized as follows. Section 2 presents re-
lated work. In Section 3 we present some background and
motivation behind this work. The proposed use of relative
costs in workflow scheduling is presented in Section 4, along
with a description on how it is applied to HEFT. The evalu-
ation is shown in Section 5, and the conclusion is presented
in Section 6.

2. RELATED WORK

Scheduling in both homogeneous and heterogeneous dis-
tributed systems is vastly studied. Mostly, scheduling efforts
have been directed to heuristics [18] and meta-heuristics
[12]. There are also works in approximation algorithms for
scheduling [15], and mixing integer linear programming with
heuristics [11]. Extensive description of the scheduling prob-
lem and solutions for computational grids were done by Akl
and Dong [10] and Yu et al. [13].

Batista and Fonseca [4] presented a fuzzy-based algorithm
to deal with uncertainties for the workflow scheduling prob-
lem in grids. The authors compare their algorithm with
static ones, including HEFT. However, only a superficial
evaluation of HEFT performance in the presence of uncer-
tainty, with a 4-node workflow, was performed. In the present
work we extend this evaluation, showing HEFT performance
in a variety of scenarios with uncertainty, and also how it
performs when our relative cost approach is used.

Other approaches for uncertainty, such as dynamic schedul-
ing [1], adaptive scheduling [6], re-scheduling [16], and self-
adjusting [5] can be found in the literature. Such approaches
react to fluctuations on the resource performance during the
application execution, i.e, they are /em reactive. The con-
tinuous monitoring needed during the application execution
to perform reactive actions can produce imprecise informa-
tion due to intrusion effects and may also lead to unnecessary
job migration and overheads [4].

Internet-based computing scheduling (IC-scheduling) [14]
has the goal of maximizing the number of eligible tasks for
execution at each scheduling step. While many traditional
scheduling algorithms assume to have precise information
about the costs of the workflow components, IC-scheduling
assumes no knowledge about such costs. Our proposal falls
in the middle of these two approaches, assuming high level
knowledge about the costs of the workflow components.

We propose an approach to avoid reactive actions by pro-
ducing a reasonable schedule in the face of uncertainty in the
input data about the application. In this case, since in the
considered scenario the problem does not lie with resource
performance, reactive approaches like dynamic rescheduling
would be ineffective because rescheduling would be contin-
uously performed using imprecise input data about the ap-
plication. Moreover, in a cloud computing scenario, reactive
techniques could lead to more expensive execution if the
rescheduling results in the utilization of resources yet to be
leased. Our proposal is new in the sense that it does not rely

on numeric data provided as input to the scheduler, but only
on relative values among tasks and data transmission times.

3. BACKGROUND

Grids and clouds are heterogeneous distributed systems
that exist over shared networking and computing resources.
Grids are shared distributed systems that allow users to per-
form computation over a set of heterogeneous processors to
collaborate towards a common objective. On the other hand,
clouds are systems that isolate resources through virtualiza-
tion [3] and that can be used in a pay-per-use basis. A re-
markable characteristic of the cloud computing paradigm is
elasticity, which provides on-demand extension of a private
pool of resources during high-peak loads. With this, the
cloud client pays only the effective use of those resources,
avoiding upfront investments, maintenance costs, and idle-
ness during low-peak demand.

The elasticity provided by clouds allows the composition
of the so-called hybrid clouds, where the user has its own pri-
vate cloud (which can be a computational grid) and leases
resources from public clouds when the private pool of re-
sources is not enough to attend the demand. During the
composition process, the scheduler has a main role in decid-
ing whether a task should execute in the private cloud or
in the public cloud. This decision making process is done
based on data about both characteristics of the application
and of the computational resources, supported by an objec-
tive function to be optimized.

The application model considered in this paper is a work-
flow represented by a Directed Acyclic Graph (DAG) G =
(T, E), where each node t € T is a task and each edge e € E
represents a data dependency '. In the DAG, each node
and edge has, respectively, a computation cost and a com-
munication cost (amount of data) associated. Since grids
and clouds are heterogeneous, the processing time of each
task and the data transmission times for each dependency
are computed based also on the knowledge about the per-
formance of each resource.

Incorrect estimations related to the application compo-
nents (i.e., nodes and edges costs) are one point of uncer-
tainty that affects the quality of information. Such estimates
can come from the programming model or from a history of
executions of the same application. In both cases, imprecise
data will lead the scheduler to perform the decision making
using information about tasks and data transmission dura-
tions that will not turn out to be true during execution. As
a consequence, the estimated execution time of the applica-
tion is distorted.

The uncertainty introduced in these estimations leads to
a negative impact in the schedule at running time, conse-
quently delaying the application execution as well as ris-
ing monetary costs when using the elasticity provided by
one or more public clouds. In this scenario, mechanisms to
avoid makespan augmentation and budget overrun should
be developed. Uncertainty-aware schedulers are one way of
reducing misleading information to heavily impact the ap-
plications makespan, also minimizing unforeseen monetary
costs in the application execution in hybrid clouds. In this
paper we address the problem of imprecise estimation of
application component costs (i.e., size of tasks and data de-

The terms DAG and workflow are used interchangeably in
this text.



pendencies). By considering only relative costs among the
workflow components, we avoid numeric estimations for the
size of each component, which is a source of uncertainty.

4. THE RELATIVE COST SCHEDULING

We propose that scheduler’s decision making relies on in-
formation of relative cost (or relative size), instead of relying
on numeric information about tasks and data dependency
sizes. With this, the scheduler input should not represent a
numeric estimation of how long a task will take to run, but
a hint if a task will take longer than the other tasks in the
workflow. The same is valid for data dependencies among
tasks. The motivation behind this proposal is that it is easier
to the user to sort tasks by their duration than to numer-
ically estimate their duration. More than that, a numeric
estimation given by the user is likely to be inaccurate, in-
troducing uncertainty and worsening the scheduling results.
By providing a higher level information to the scheduler, we
aim at avoiding decisions carried out over imprecise data
(assumed to be precise by the scheduler), and we expect the
resulting schedule to be better than when the user numeric
estimations are not reliable.

4.1 Relative cost assignment

In order to avoid precise information about the workflow
components to be required from the user, we propose three
different approaches based on the relative costs of tasks and
dependencies: relative costs of tasks and edges (RCTE), rel-
ative costs with CCR (RC-CCR), and relative costs alto-
gether (RCA).

4.1.1 Relative costs of tasks and edges (RCTE)

In the relative costs of tasks and edges (RCTE) approach,
tasks and edges are separately sorted into two sets. To ac-
complish this, the user must separate the tasks of the DAG
into sets T; such that all tasks in each T; have the same rel-
ative cost. This can be done by assigning a relative cost
w; = 1 to all tasks in 7;. In practice, this means that
the user thinks all tasks in a set T; have the same execu-
tion times. We define a partially ordered set (poset) 7 =
{T1,Tz,....,Tp}, p < |T|, where we, < we,,,, 1 <3< p—1,
which is used as the scheduler input. Similarly, let E; be a
subset of E such that all edges in E; have the same weight
w; = j. We define a poset & = {F1, Es, ..., Eq}, ¢ < |E|,
where we; < we;,,, 1 <j < g —1, as another input to the
scheduler.

A hypothetical example of a Montage workflow with rel-
ative costs given by the user is shown in Figure 1. Tasks
in the second level have relative cost of 1 (the fastest exe-
cution), thus being in the set Ty € 7. Tasks from the fifth
level would be in 7>, meaning that they would take longer to
run then tasks from the second level, and so on. The same
reasoning is applied to the edges of the DAG, separating
them in another set. For example, all edges linking tasks
from the first level to the second level have relative cost of
1, thus they would be in the set first set E1 of the partially
ordered set £.

Thus, in RCTE, the scheduler receives as input a set of
tasks sorted by their weights, where a task with larger weight
means only that it “takes longer to run” than tasks with
smaller weights if they are placed in the same processor.
The same is valid for the data dependencies: a dependency
with larger weight should take longer to be transmitted than

Figure 1: Montage DAG with relative costs.

dependencies with smaller weights when the transmission is
done over the same link. Note that both the posets 7 and £
can be automatically computed from a DAG with numeric
costs associated to its nodes and edges, which is a common
input of workflow scheduling algorithms, relieving the user
from manually specifying the relative costs.

4.1.2 Relative costs with CCR (RC-CCR)

We assume that the user provides additional information
about the application along with the relative costs: the com-
putation to communication ratio (CCR) of the workflow.
Given a DAG G = (T, E), the CCR is defined in Equation 1.
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In this approach, after assigning weights w; and we sepa-
rately for tasks and edges in the same way as in the RCTE
approach, the weight of each task is multiplied by a factor
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where CCR is the communication to computation ratio given
by the user, |T| is the number of tasks, and | F| is the number
of edges in the DAG. After the multiplication of each task
relative weight by ¢, the generated DAG with relative costs
will have the CCR given by the user.

4.1.3 Relative costs altogether (RCA)

In this approach, tasks and edges are sorted in a single
set and weighted according to the same rules of the RCTE
approach.



4.2 Relative HEFT

The three ways of “relaxing” the input data presented
above are intended to make it easier for the user to provide
to the scheduler useful information about the application.
These relative costs are used as input for the scheduling
algorithm. In this paper we evaluated how this relative as-
signment approaches perform when used within the HEFT
algorithm.

The Heterogeneous Earliest Finish Time heuristic (HEFT)
[18] has been one of the most often used, having the advan-
tage of simplicity and producing generally good schedules
with a short makespan. HEFT is essentially a list schedul-
ing heuristic that constructs first a priority list of tasks and
then makes locally optimal allocation decisions for each task
on the basis of the task’s estimated finish time. The priority
value rank, is computed by traversing the DAG backwards
and using information about the application and the target
system. The rank, for each task ¢; is defined in Equation 2.

ranky(t;) =w; + max (G,; + ranku(t;)), (2)

tjEsuc(t;)

where w; is the average execution time of ¢; in all resources,
suc(t;) is the set of immediate successors of ¢;, and ¢; ; is the
average communication cost between ¢; and t;. With this,
the rank, of a task t is the weight of ¢ plus the maximum
value resulted from the weight of each successor of ¢ added
to the weight of the edge that connects this successor to
t. After that, tasks are scheduled in non-decreasing order of
rank, in the resource which results in the smallest estimated
finish time (EFT).

With the introduction of our relative weights, the w; and
¢Ci,; values are actually computed over the relative costs given
to each task and each dependency according to one of the
three proposed approaches. For example, following the no-
tation in Section 4, one has to replace w; with the average
over all wy,, we; € T, and ¢;; with the average over all We,
We; € E, to use the versions based on relative costs. As a
consequence, the estimated finish time (EFT) computed by
the standard version of HEFT cannot be assumed to be an
actual estimation of the finish time for the workflow, since
no data about tasks or communication sizes are known by
the algorithm.

5. EVALUATION

We performed the evaluation by scheduling a set of real
world workflow applications, namely Montage (24 tasks) [9];
AIRSN (51 tasks) [19]; LIGO (166 tasks) [8]; Chimera-1 (43
tasks) [2]; and Chimera-2 (123 tasks) [2]. The maximum
number of computational resources were set to 10 and to
50. A maximum of 50 resources means that the simula-
tion was run with from 2 to 50 resources, with this quantity
randomly taken. FEach resource had its processing capac-
ity randomly taken in the interval (10,100) from a uniform
distribution. These resources were fully connected by a het-
erogeneous network, where each link between two resources
had its bandwidth randomly taken in the interval (10, 100)
from a uniform distribution. For each type of DAG, we per-
formed simulations using communication to computation ra-
tios (CCR) of 0.5, 1.0, and 2.0. The metric is the makespan,
and the presented averages are over 500 runs.

In order to evaluate our relative cost proposal, we have set
up scenarios where HEFT was executed under uncertainty in
the workflow input data. To model this uncertainty, we used

the quality of information concept [7]. We assumed that, ini-
tially, all estimates were 100% correct, i.e., the computation
and communication costs associated to the DAG and given
to the scheduler match what is found during the workflow
execution. After running HEFT and performing the sched-
ule, to simulate the variability of the quality of information
in the presence of uncertainty, we introduced a percentage
error to each task and edge cost. The error is uniformly dis-
tributed in the interval [—p, +p|, where p is a value between
0% and 100%. After that, we recomputed the makespan of
the schedule to obtain the final workflow makespan affected
by the uncertainty. We have run simulations for p = 0 (i.e.,
the HEFT without modification), p = 20 and p = 50 (named
HEFT / p=20 and HEFT / p=50 in the result graphs).

The proposed approaches were evaluated using the same
DAGs generated for the HEFT scheduling, but the nodes
and edges costs were replaced by relative values as described
in Section 4.

Figure 2 presents results for all application DAGs. For
the Montage DAG, we observe that for any CCR and for
both 10 and 50 maximum number of resources, the quality
of information is important, since the makespan is incor-
rectly estimated when p = 20 and p = 50. On the other
hand, we observe that the proposed approach RCA (relative
costs altogether) is able to perform better than when p = 50
in all cases, and even better than when p = 20 in some
cases, approximating the makespan given by HEFT without
uncertainty (p = 0) when there are at most 50 resources.

For the other DAGs, the quality of information impor-
tance remains clear, with the average makespan always in-
creasing with p. For example, the uncertainty p = 50 intro-
duced an error in the makespan estimation of up to 14% for
the LIGO DAG when there were up to 10 resources, up to
17% for the DAG Chimera-1, and up to 15% for the DAG
Chimera-2.

Regarding the proposed relative costs input data, for the
AIRSN DAG all the relative approaches performed better
than HEFT with p = 50 for CCR = 1.0 and CCR =
2.0. When CCR = 0.5, only the RCTE approach resulted
in higher average makespan than HEFT with p = 50. A
slightly different behavior is observed for the LIGO DAG,
where the proposed relative costs performed better than
p = 50 and equivalently to p = 20 only when there were at
most 50 resources. When there were at most 10 resources,
RC-CCR and RCA performed slightly worse than p = 50 for
CCR = 2.0, while the RCTE was worse than p = 50 for all
CCRs. On the other hand, RCA performed quite well for
all DAGs when CCR = 0.5.

The variation in the quality of information was observed
to have a negative impact on the HEFT algorithm. The eval-
uation showed that the input data provided for the sched-
uler, when subject to uncertainties, can significantly affect
the application makespan when compared to the estimated
by the scheduler. In grids, this error can lead to delays in
the workflow execution. In clouds, besides the delay in the
execution, this can also compromise the application budget
by taking longer to run in paid resources.

6. CONCLUSION

In the workflow scheduling, data about the computational
costs of application components is important in the quality
of the generated schedule. However, such data is hard to
obtain in a precise manner due to lack of knowledge about
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the application or varying behavior according to the applica-
tion input data. Since most workflow scheduling algorithms
have their decision based on computational costs of the ap-
plication, this information must be supplied by the user or
from estimations based on past executions. In both cases,
providing numeric values and expecting them to help the
scheduler may be actually harmful, introducing uncertainty
and worsening the application makespan. The more impre-
cise is the data, the more noticeable is the negative impact
in the makespan.

In this paper we argue that this input data about the
computational costs can be provided as a relation among
components instead of numeric values that represent the ex-
pected duration of each workflow component. We propose
three different ways of specifying this relative costs. Evalu-
ation results show that specifying relative costs can actually
improve the schedule in most cases when compared to sce-
narios where the numeric estimation given to the scheduler is
up to 50% uncertain. This leads us toward the investigation
of new semantics to specify schedulers input data, avoiding
the requirement of numeric values, which are unlikely to be
precise.
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