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Abstract .  A technique for estimating the cost of executing a loop nest 
in parallel (parallel start-up overhead) is described in this paper. This 
technique is of utmost importance for parallelizing compilers which take 
decisions on the basis of predicting performance through the quantifica- 
tion of overheads. Such a model is analyzed and the necessary conditions 
for computing an estimate for the parallel start-up overhead are pre- 
sented. Based on this estimate, it is shown how to transform paralleliz- 
able loop nests in such a way that the start-up cost for parallel execution 
does not outweigh the gains. Experimental results demonstrate that this 
transformation results in performance improvements. Finally, it is also 
shown that such an estimate is essential to predict the performance of 
codes whose parallelization is based on the multiple execution of a small 
parallelized program fragment. 

1 I n t r o d u c t i o n  

Parallelizing compilers [28, 30] have been promoted as a promising means for 
emancipating programmers from the laborious task of the parallelization of codes 
written in sequential languages. Ideally, such compilers must be capable of con- 
verting a sequential program into a semantically equivalent parallel program an- 
tomatically (or with minimal user intervention); furthermore, the performance 
of the transformed parallel program must be comparable to that  achieved by 
expert parallel programmers. 

However, parallelizing compilers usually fail to accomplish the latter expec- 
tation. The main line of thought attributes this 'deficiency' to their inability to 
detect fully the inherent parallelism of programs [5]. Although more robust tech- 
niques for detecting parallelism are undoubtedly needed, an issue of equal, if not 
greater concern, is the compiler's internal strategy. A strategy of parallelizing 
anything parallelizable does not necessarily yield the best performance results; 
instead, it may even slow down significantly the execution time of the parallel 
program. The reason for this phenomenon is that  parallelism may often trade off 
with other overheads; thus, it may be preferable to execute potentially parallel 
parts of the code sequentially, in order to reduce, for instance, the number of 
cache misses or avoid interprocessor communication. 

Existing commercial parallelizing compilers typically a t tempt  to parallelize 
all loops whose parallel execution does not alter program semantics, and are 
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N=500 
D0 JI=10,N 

DO J2=10,N 
A(JI0J2)=A(J1-2,J2-4) 

+A(JI - I , J2-2)  
ENDDO 

ENDDO 

DOALL K1=-990,480 
DO K2=MAX(IO,5-FLOOR(KI/2)), 

MIN(SOO,250-CEILING(KI/2)) 
A(K2,KI+2*K2)=A(K2-2,KI+2*K2-4) 

+A(K2-1,Kl+2*K2-2) 
ENDDO 

ENDDO 

Fig. 1. Semax~tically equivalent codes which cause different overheads. 

also capable of applying a number of loop transformations; more sophisticated 
program restructuring transformations [2, 3] are applied by experimental paral- 
lelizing compilers [4, 22]. In any case, the disadvantage of the ad hoc program 
restructuring is that different transformations may significantly affect program 
performance. 

To illustrate this, consider the example shown in Figure 1. The two codes 
are semantically equivalent; the transformed loop nest, shown on the right-hand 
side, is the result of a unimodular transformation applied to the original loop 
nest, shown on the left-hand side [24]. Although the transformed loop nest can 
run in parallel (this is denoted by the DOALL construct in the code), a non-unit 
stride access pattern for array A is established; instead, simply applying loop 
interchange [28, Section 9.5] to the original loop nest, this amended (albeit still 
sequential) version runs approximately 5 times faster than the parallel version 
on a virtual shared memory multiprocessor, the KSR1 (see [23, 29] for details of 
its architecture). 

Thus, in order to evaluate the trade-offs among different transformations, a 
parallelizing compiler needs some capability of performance estimation. In this 
paper, we consider such a model based on quantitative estimates of different 
sources of overheads; this is described in the next section. Attention is subse- 
quently focused on the estimation of the overhead due to the parallelization of 
a code. The latter may be important to avoid performance losses, for instance, 
from the paralletization of loop nests having a relatively small number of itera- 
tions. Although this problem has been pointed out in an effectiveness study of 
parallelizing compilers [5], as well as observed from a scientific user's experience 
[17, 20], to the best of our knowledge, there has been no work in the literature 
attempting to estimate it in a systematic way; this paper provides a contribu- 
tion to this. It also shows how to transform a code using this estimate, while 
the performance benefits from incorporating this estimation capability into a 
parallelizing compiler are presented in Section 4. 

2 A M o d e l  f o r  C o m p i l e - T i m e  P e r f o r m a n c e  P r e d i c t i o n  

Predicting the performance of a parallel program has been an issue well addressed 
in the literature [13, 21]. However, accurate performance prediction often requires 
either a particular machine model [7] or a specific application domain [27]. Both 
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these restrictions are not desirable in the context of a paralletizing compiler where 
portability and the ability of performing equally well on a wide range of programs 
and architectures are expected. An additional problem, posed by the nature of 
parallelizing compilers per se, is that, during the process of evaluating different 
sequences of transformations, the performance prediction model may have to be 
called repeatedly. Consequently, its execution time cannot be prohibitively high 
and the model must be simple, albeit still accurate. 

A model based on the classification of overheads has been incorporated into 
the MARS experimental parallelizing compiler, developed jointly at the Univer- 
sity of Manchester and IRISA, Rennes [6]. The underlying idea is rather simple; 
assuming that to is the time spent on overheads and ts is the time required to 
execute the sequential version of a program, then the running time, tp, of the 
parallelized version of the program on p processors is given by 

t p = t o + t ~ / p .  (1) 

The crucial point for the efficiency of the model is the estimation of to. His- 
torically, this approach goes back to Gene Amdahl, who associated to with the 
inherently sequential parts of the program [1]; more generalized models, also 
based on the serial and the parallel fractions of a program, are considered in 
[10, 12]. However, it is essential to consider distinctly all possible sources of 
overhead, as, for instance, attempted in [8, 9, 11]. Thus, the following classes are 
identified: 

- Unparallelized code: this refers to the overhead caused by sections of the 
program which ave (or have to be) executed sequentially. 

- Load imbalance: this refers to the overhead caused by poor distribution of 
the parallelized computational work among processors. 

- Communication: this refers to the overhead which occurs when a processor 
is waiting for data to be moved from memory; it is subdivided into two 
further classes, depending on whether data are moved between two different 
processors' memories, or between various levels of the memory hierarchy 
within a single processor (e.g. between cache and main memory). 

- Synchronization: this refers to the overhead caused when a processor is wait- 
ing to acquire a lock or at a barrier. 

- Parallel start-up: this refers to the overhead caused because of any additional 
computation required for the exploitation of parallelism. 

The total time spent on overheads, to, is given by the sum of the time spent 
on each of the above classes, i.e., 

t o : tUC -~- t L i  -{- t C --}- t S -~- t p s .  (2) 

To estimate the time spent as a result of the occurrence of each particular source 
of overhead~ we model time as a function of some machine-dependent and some 
machine-independent parameters; the latter represent a quantitative metric for 
each individual source of overhead. For instance, in the case of load imbalance, 
this metric is determined by the amount of computational work (say in machine 
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instructions) assigned to the most 'overloaded' processor [24, 25]; in the case of 
synchronization, it may be determined by the number of synchronization points 
required [26], while, in the case of communication, by the number of cache misses 
[14] (but not only). In the latter case, the cost, in CPU cycles, of moving data 
from the main memory to the cache on a particular parallel platform multiplied 
by the number of cache misses may provide an estimate for t c  (if no other 
communication costs occur). 

The ultimate goal of any parallelization techniques is to minimize to in (2). 
Given that the machine-dependent parameters have a fixed cost, this implies 
that the compiler aims to transform the program in such a way that the particu- 
lar quantitative metrics are minimized. However, trade-off situations may arise; 
reducing one source of overhead may increase another and vice versa.  Dealing 
with all the overheads at once may be intractable; thus, it is usually attempted 
to reduce one source of' overhead at a time, avoiding actions for which there is 
evidence that another source of overhead may increase. 

3 D e a l i n g  w i t h  t h e  P a r a l l e l  S t a r t - U p  O v e r h e a d  

From the five sources of overhead identified in the previous section, the parallel 
start-up overhead is a notable exception in that it is independent of the particu- 
lar program characteristics; it largely depends on the parallelization mechanism 
applied (from those provided by the particular parallel machine in use) and, 
possibly, the number of processors employed. These properties, alongside the 
assessment that this overhead is unavoidable but relatively low, have led re- 
searchers to underestimate its importance [6]. Nonetheless, having an estimate 
for it can be helpful in deciding which loops should be executed in parallel, a 
need remarked in [5, 17, 20], as well as to evaluate the performance of codes 
whose parallelized loops are enclosed in the body of large sequential loops. 

In order to estimate the parallel start-up overhead, we use Equations (1) and 
(2). Assume that, in a parallelized code fragment, the value of all the remaining 
overheads is zero and the time, ts ,  for executing the sequential version of the 
code is known; then, for a given number of processors, p, the time spent due to 
the parallel start-up overhead, t p s ,  is given by 

t g s  = tp - t s / p .  (3) 

Based on the above, any program fragment used for computing t p s  must 
take into account the following: 

- No unparattelized code should exist; a program fragment consisting of a 
single loop without data dependences provides a simple solution to this. 

- Perfect load balance (i.e. zero load imbalance) should be possible for any 
number of processors. In the case of a single loop, the number of iterations 
must be a multiple of the number of processors, and the loop body should 
not contain statements whose execution depends on the value of the loop 
index. 



87 

- No communication should occur. Thus, the loop body should not contain 
array elements. 

- Synchronization must  be avoided. 
- A 'useful'  computat ion ( that  is, one which yields some output  results) must  

be performed to avoid dead-code elimination. 

Par~lel Number of processors 
construct 2 3 4 5 6 

# a # a p a # a # a 

PAR.REGION 17829 1132 18912 1327 19583 965 21796 1041 23060 884 
iTILE 22456 1722 24081 1683 24534 1984 26231 1833 27043 1323 

7 8 9 10 11 
# a # a # a # a # a 

PAR.REGION 

TILE 

23766 1023 
:27896 1171 

24963 987 
29368 1302 

25680 620 
30551 983 

26424 893 
31891 1124 

26693 692 
33145 870 

12 13 14 15 16 
# a # a # a ~ a # a 

PAR.REGION i27101 731127425 758 28857 831 30334 543 31943 723 
TILE 34776 95436092 832 37820 820 38842 773 40246 821 

Table  1. Parallel start-up overhead, in CPU cycles, on the KSR1. 

Using a model code respecting the above constraints, we compute  the par- 
allel s tar t -up overhead for the two types of constructs,  parallel regions and tile 
families [20, 19], employed for loop parallelization on the KSR1. The mean, #, 
as well as the s tandard deviation, a ,  of the values of tps, in CPU cycles (note 
tha t  each KSR1 processor has a 20 MHz clock), are shown in Table 1; these 
values are computed based on (3), after running the code 10000 times (for each 
given number  of processors) and measuring ts and tp. For both  parallel regions 
and tile families, the parallel s tar t -up overhea~i keeps increasing as the number  
of processors increases. Moreover, the cost for tiling is higher than tha t  of a 
parallel region; this difference is reasonable considering the cost for barrier syn- 
chronization involved in the low-level implementat ion of the two constructs [16]. 

4 Application Examples 

We evaluate the benefits from using an est imate for the parallel s ta r t -up  overhead 
on two codes: 

-- TRED2, all approximately 100-line-long FORTRAN program taken from the 
eigenvatue solver package EISPACK, which reduces a symmetr ic  matr ix  to 
symmetric  tridiagonal form, and, 
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L=N+I-II 
DOALL J=I,L L=N+I-II L=I-1 

Z(J,L+I)=D(J) DOALL J=I,L DOALL J=I,L 
G=E(J) TEMPI=D(J) G=O.ODO 
DO K=l,J TEMP2=E(J) DO K=I,L 

G=G+Z(J,K)*D(K) DO K=J,L G=G+Z(K,I)*Z(K,J) 
ENDDO Z(K,J)=Z(K,J) ENDDO 
D0 K=J+I,L & -TEMPI*E(K) D0 K=I,L 

G=G+Z(K,J)*D(K) ~ -TEMP2*D(K) Z(K,J)=Z(K,J)-G*D(K) 
ENDDO ENDDD ENDDO 
E(J)=G ENDDO ENDDO 

ENDDO 

a) First loop nest. b) Second loop nest. e) Third loop nest. 

Fig. 2. Paxallelized loops in TRED2. 

- a program performing numerical weather prediction using a barotropic model. 

In the first case, it is shown how an estimate for the parallel start-up overhead can 
be used to transform the code in such a way that  potentially parallel fragments 
of a program are parallelized only if some performance gains are expected. In 
the second ease, it is shown how such an estimate may be essential for good 
compile-time performance prediction. 

4.1 T R E D 2  

The version of TRED2 used in our experiments is analyzed in [19]. Three loop 
nests, which account for over 93% of the execution time on a single processor 
for a problem size N=128, are parallelized; these are shown in Figure 2. All three 
loop nests are contained in the body of an outer sequential D0 loop with lower 
bound 2, upper bound N, and loop index I I  (for the first two), and I (for the 
third). 

The three loop nests are parallelized by KAP (a commercial paratlelizing 
compiler available on the KSR1) and MARS regardless of the value of L. However, 
the value of L varies from 1 to N-I; for small values of L the parallel start-up 
cost may outweigh the gains and, in this case, it may be more efficient to execute 
the loops sequentially. In order to find for which values of L the latter approach 
must be followed, we consider again Equation (3); then, for a given number of 
processors, p, parallel execution is preferred whenever 

ts > tps  + ts /p  ~ ts(1 - l / p )  - tps  > O. (4) 

Certainly, the three loop nests may incur other overheads (e.g. communication)~ 
which the above formulation of the problem does not consider. Here, our aim is 
to find only a lower bound for the values of L which may result in performance 
gains. 
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Fig. 3. Execution time of TRED2 on the KSR1. 

We modelled ts in terms of L by considering the amount of work performed by 
the body of each loop. Thus, for the first loop nest, let W j  represent the amount 
of work performed by the three assignment statements which are executed only 
by the J loop, WK1 represent the amount of work performed by the body of 
the first K loop, and WK2 represent the amount of work performed by the body 
of the second K loop; similarly, we consider W j  and WK for the second loop 
nest, and W j ,  WK 1 and WK~ for the third loop nest. An estimate for each of 
these values is based on the number of the corresponding CPU cycles, namely: 
W3 = 97, WK1 = 51, and WK2 = 51, for the first loop nest; W j  = 50, and 
WK = 53, for the second loop nest; and W j  = 17, WKI = 46, and WK2 = 39, 
for the third loop nest. Then, the work performed by each loop nest is given by 

97L + 51L 2, for the first loop nest, 

50L + 53L(L + 1)/2, for the second loop nest, 

17L + 85L 2, for the third loop nest. 

Considering the above expressions as an approximation of ts, substituting into 
(4) and using the results of Table 1, a lower bound for L, for each loop nest and 
paraltelization strategy, can easily be computed. Based on this value, TRED2 
was modified by including each parallelizable loop nest in the body of an IF 
statement which determines whether its execution is performed in parallel or 
sequentially. 

The modified versions, as well as the original versions for both KAP and 
MARS, were run on the KSR1 for a problem size N=128; their execution times 
are shown in Figure 3. Both the modified versions, KAP-NEW and MARS-NEW, lead 
to a clear performance improvement over the original versions. 
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DOALL J=2,MI 
DOALL I=2,LI 

IF (((I+J)/2)*2.EQ.(I+J)) THEN 
IF (I-LI+i) 12,11,11 

II R=(X(2,J)+K(LI,J)-2.*X(I,J))/DX(J)**2 

+(X(I ,J+I)+X(I ,J -1)-2 .*X(I ,J ) ) /DY**2 
R=(R-Y(I,J))*DY*DX(J) 
GOT0 13 

12 R=(X(I+I,J)+X(I-I,J)-2.*X(I,J))/DX(J)**2 

+(X(I,J+I)+X(I,J-I)-2.*X(I,J))/DY**2 
R=(R-Y(I,J))*DY*DX(J) 

13 IF (LSC-NSC) 14,14,15 
14 X(I,J)=X(I,J)+ALFA*R 
15 IF (ABS(R).LE.EPS) THEN 

NREL=NREL+I 
ENDIF 

ENDIF 
ENDD0 

ENDD0 

Fig. 4. The parallelized loop ofthe barotropic weather prediction program. 

4.2 A Baro t ropic  Mode l  for Numer ica l  W e a t h e r  Pred ic t ion .  

The version of the program we use for numerical weather prediction based on 
a barotropic model is analyzed in [18]. In order to parallelize the program, we 
concentrate on the parallelization of a double loop nest which accounts for over 
85% of the program execution time on a single processor for a problem size 
Ll=50, Ml=20. This loop nest implements a Successive Over-Relaxation (SOR) 
type of operation based on a five-point stencil [15]. Thus, the original sequen- 
tial loop nest can be split into two consecutive parallel loop nests. The first 
of these loop nests is shown in Figure 4; the sole difference with the second 
loop nest is the logical condition of the third statement (which is changed to 
( ( ( I+J ) /2 )  .2 .  NE. (I+J))) .  For the given problem size used in our experiments, 
both loop nests are executed a total of 2741 times in order to achieve a desired 
precision. 

Contrary to the parallel loops of TRED2, the parallel loops of this example 
are always executed for the same number of iterations; the average execution 
time of each parallel loop is 0.00416 sec. Thus, applying (4), it can be easily seen 
that the performance gains from parallel execution are expected to outweigh the 
losses due to the parallel start-up overhead. However, because of the multiple 
execution of the parallel loop nests, it is anticipated that the parallel start-up 
overhead will constitute a large fraction of the overall overhead. 

Using the performance prediction model presented in Section 2, we estimate 
the execution time of the parallel program based on Equations (1) and (2). We 
consider tL1 -~ t c  = tS -~ O, t v c  ---- 3.92, and ts = 22.81 (after profiling the 
sequential code); from Table 1 we also compute a value for t p s .  This estimate 
is compared with the execution time of the parallel program in Figure 5 (the 
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Fig. 5. Actual and predicted execution time of the barotropic weather prediction 
model. 

former noted as predic ted ,  the latter noted as actual) .  It can be seen that, 
although only two sources of overhead are considered, the predicted performance 
of the parallel program is close to the actual performance; this is because the 
particular overheads dominate the parallel execution. 

5 C o n c l u s i o n  

This paper described an overhead based model for predicting performance for 
parallelizing compilers, and concentrated on estimating the overhead caused by 
the initialization of parallelism. Based on such an estimate, a transformation 
has been suggested; incorporating this into existing parallelizing compilers may 
result in performance gains. Although, in absolute terms, this overhead is rather 
small, it becomes increasingly important in codes where parallelizable loop nests 
with a relatively small amount of work are contained in the body of sequential 
loops which are executed a large number of times. Then, as demonstrated by 
our experiments, the parallel start-up overhead may be necessary to evaluate 
the program's performance behaviour. 

In future work, we aim to consider the parallel start-up overhead in conjunc- 
tion with other sources of overhead. Our main objective is to establish overhead 
analysis as a means of reasoning for parallelizing compilers in a similar way to 
what can be used when expert programmers tune programs for parallel execu- 
tion [23]. 
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