
Estimating the Parallel Start-Up Overhead forParallelizing CompilersRizos SakellariouDepartment of Computer Science, University of Manchester,Oxford Road, Manchester M13 9PL, U.K.e-mail: rizos@cs.man.ac.ukAbstract. A technique for estimating the cost of executing a loop nestin parallel (parallel start-up overhead) is described in this paper. Thistechnique is of utmost importance for parallelizing compilers which takedecisions on the basis of predicting performance through the quanti�ca-tion of overheads. Such a model is analyzed and the necessary conditionsfor computing an estimate for the parallel start-up overhead are pre-sented. Based on this estimate, it is shown how to transform paralleliz-able loop nests in such a way that the start-up cost for parallel executiondoes not outweigh the gains. Experimental results demonstrate that thistransformation results in performance improvements. Finally, it is alsoshown that such an estimate is essential to predict the performance ofcodes whose parallelization is based on the multiple execution of a smallparallelized program fragment.1 IntroductionParallelizing compilers [28, 30] have been promoted as a promising means foremancipating programmers from the laborious task of the parallelization of codeswritten in sequential languages. Ideally, such compilers must be capable of con-verting a sequential program into a semantically equivalent parallel program au-tomatically (or with minimal user intervention); furthermore, the performanceof the transformed parallel program must be comparable to that achieved byexpert parallel programmers.However, parallelizing compilers usually fail to accomplish the latter expec-tation. The main line of thought attributes this `de�ciency' to their inability todetect fully the inherent parallelism of programs [5]. Although more robust tech-niques for detecting parallelism are undoubtedly needed, an issue of equal, if notgreater concern, is the compiler's internal strategy. A strategy of parallelizinganything parallelizable does not necessarily yield the best performance results;instead, it may even slow down signi�cantly the execution time of the parallelprogram. The reason for this phenomenon is that parallelism may often trade o�with other overheads; thus, it may be preferable to execute potentially parallelparts of the code sequentially, in order to reduce, for instance, the number ofcache misses or avoid interprocessor communication.Existing commercial parallelizing compilers typically attempt to parallelizeall loops whose parallel execution does not alter program semantics, and are



N=500DO J1=10,NDO J2=10,NA(J1,J2)=A(J1-2,J2-4)& +A(J1-1,J2-2)ENDDOENDDO
DOALL K1=-990,480DO K2=MAX(10,5-FLOOR(K1/2)),& MIN(500,250-CEILING(K1/2))A(K2,K1+2*K2)=A(K2-2,K1+2*K2-4)& +A(K2-1,K1+2*K2-2)ENDDOENDDOFig. 1. Semantically equivalent codes which cause di�erent overheads.also capable of applying a number of loop transformations; more sophisticatedprogram restructuring transformations [2, 3] are applied by experimental paral-lelizing compilers [4, 22]. In any case, the disadvantage of the ad hoc programrestructuring is that di�erent transformations may signi�cantly a�ect programperformance.To illustrate this, consider the example shown in Figure 1. The two codesare semantically equivalent; the transformed loop nest, shown on the right-handside, is the result of a unimodular transformation applied to the original loopnest, shown on the left-hand side [24]. Although the transformed loop nest canrun in parallel (this is denoted by the DOALL construct in the code), a non-unitstride access pattern for array A is established; instead, simply applying loopinterchange [28, Section 9.5] to the original loop nest, this amended (albeit stillsequential) version runs approximately 5 times faster than the parallel versionon a virtual shared memory multiprocessor, the KSR1 (see [23, 29] for details ofits architecture).Thus, in order to evaluate the trade-o�s among di�erent transformations, aparallelizing compiler needs some capability of performance estimation. In thispaper, we consider such a model based on quantitative estimates of di�erentsources of overheads; this is described in the next section. Attention is subse-quently focused on the estimation of the overhead due to the parallelization ofa code. The latter may be important to avoid performance losses, for instance,from the parallelization of loop nests having a relatively small number of itera-tions. Although this problem has been pointed out in an e�ectiveness study ofparallelizing compilers [5], as well as observed from a scienti�c user's experience[17, 20], to the best of our knowledge, there has been no work in the literatureattempting to estimate it in a systematic way; this paper provides a contribu-tion to this. It also shows how to transform a code using this estimate, whilethe performance bene�ts from incorporating this estimation capability into aparallelizing compiler are presented in Section 4.2 A Model for Compile-Time Performance PredictionPredicting the performance of a parallel program has been an issue well addressedin the literature [13, 21]. However, accurate performance prediction often requireseither a particular machine model [7] or a speci�c application domain [27]. Both



these restrictions are not desirable in the context of a parallelizing compiler whereportability and the ability of performing equally well on a wide range of programsand architectures are expected. An additional problem, posed by the nature ofparallelizing compilers per se, is that, during the process of evaluating di�erentsequences of transformations, the performance prediction model may have to becalled repeatedly. Consequently, its execution time cannot be prohibitively highand the model must be simple, albeit still accurate.A model based on the classi�cation of overheads has been incorporated intothe MARS experimental parallelizing compiler, developed jointly at the Univer-sity of Manchester and IRISA, Rennes [6]. The underlying idea is rather simple;assuming that to is the time spent on overheads and ts is the time required toexecute the sequential version of a program, then the running time, tp, of theparallelized version of the program on p processors is given bytp = to + ts=p: (1)The crucial point for the e�ciency of the model is the estimation of to. His-torically, this approach goes back to Gene Amdahl, who associated to with theinherently sequential parts of the program [1]; more generalized models, alsobased on the serial and the parallel fractions of a program, are considered in[10, 12]. However, it is essential to consider distinctly all possible sources ofoverhead, as, for instance, attempted in [8, 9, 11]. Thus, the following classes areidenti�ed:{ Unparallelized code: this refers to the overhead caused by sections of theprogram which are (or have to be) executed sequentially.{ Load imbalance: this refers to the overhead caused by poor distribution ofthe parallelized computational work among processors.{ Communication: this refers to the overhead which occurs when a processoris waiting for data to be moved from memory; it is subdivided into twofurther classes, depending on whether data are moved between two di�erentprocessors' memories, or between various levels of the memory hierarchywithin a single processor (e.g. between cache and main memory).{ Synchronization: this refers to the overhead caused when a processor is wait-ing to acquire a lock or at a barrier.{ Parallel start-up: this refers to the overhead caused because of any additionalcomputation required for the exploitation of parallelism.The total time spent on overheads, to, is given by the sum of the time spenton each of the above classes, i.e.,to = tUC + tLI + tC + tS + tPS : (2)To estimate the time spent as a result of the occurrence of each particular sourceof overhead, we model time as a function of some machine-dependent and somemachine-independent parameters; the latter represent a quantitative metric foreach individual source of overhead. For instance, in the case of load imbalance,this metric is determined by the amount of computational work (say in machine



instructions) assigned to the most `overloaded' processor [24, 25]; in the case ofsynchronization, it may be determined by the number of synchronization pointsrequired [26], while, in the case of communication, by the number of cache misses[14] (but not only). In the latter case, the cost, in CPU cycles, of moving datafrom the main memory to the cache on a particular parallel platform multipliedby the number of cache misses may provide an estimate for tC (if no othercommunication costs occur).The ultimate goal of any parallelization techniques is to minimize to in (2).Given that the machine-dependent parameters have a �xed cost, this impliesthat the compiler aims to transform the program in such a way that the particu-lar quantitative metrics are minimized. However, trade-o� situations may arise;reducing one source of overhead may increase another and vice versa. Dealingwith all the overheads at once may be intractable; thus, it is usually attemptedto reduce one source of overhead at a time, avoiding actions for which there isevidence that another source of overhead may increase.3 Dealing with the Parallel Start-Up OverheadFrom the �ve sources of overhead identi�ed in the previous section, the parallelstart-up overhead is a notable exception in that it is independent of the particu-lar program characteristics; it largely depends on the parallelization mechanismapplied (from those provided by the particular parallel machine in use) and,possibly, the number of processors employed. These properties, alongside theassessment that this overhead is unavoidable but relatively low, have led re-searchers to underestimate its importance [6]. Nonetheless, having an estimatefor it can be helpful in deciding which loops should be executed in parallel, aneed remarked in [5, 17, 20], as well as to evaluate the performance of codeswhose parallelized loops are enclosed in the body of large sequential loops.In order to estimate the parallel start-up overhead, we use Equations (1) and(2). Assume that, in a parallelized code fragment, the value of all the remainingoverheads is zero and the time, ts, for executing the sequential version of thecode is known; then, for a given number of processors, p, the time spent due tothe parallel start-up overhead, tPS , is given bytPS = tp � ts=p: (3)Based on the above, any program fragment used for computing tPS musttake into account the following:{ No unparallelized code should exist; a program fragment consisting of asingle loop without data dependences provides a simple solution to this.{ Perfect load balance (i.e. zero load imbalance) should be possible for anynumber of processors. In the case of a single loop, the number of iterationsmust be a multiple of the number of processors, and the loop body shouldnot contain statements whose execution depends on the value of the loopindex.



{ No communication should occur. Thus, the loop body should not containarray elements.{ Synchronization must be avoided.{ A `useful' computation (that is, one which yields some output results) mustbe performed to avoid dead-code elimination.Parallel Number of processorsconstruct 2 3 4 5 6� � � � � � � � � �PAR.REGION 17829 1132 18912 1327 19583 965 21796 1041 23060 884TILE 22456 1722 24081 1683 24534 1984 26231 1833 27043 13237 8 9 10 11� � � � � � � � � �PAR.REGION 23766 1023 24963 987 25680 620 26424 893 26693 692TILE 27896 1171 29368 1302 30551 983 31891 1124 33145 87012 13 14 15 16� � � � � � � � � �PAR.REGION 27101 731 27425 758 28857 831 30334 543 31943 723TILE 34776 954 36092 832 37820 820 38842 773 40246 821Table 1. Parallel start-up overhead, in CPU cycles, on the KSR1.Using a model code respecting the above constraints, we compute the par-allel start-up overhead for the two types of constructs, parallel regions and tilefamilies [20, 19], employed for loop parallelization on the KSR1. The mean, �,as well as the standard deviation, �, of the values of tPS , in CPU cycles (notethat each KSR1 processor has a 20 MHz clock), are shown in Table 1; thesevalues are computed based on (3), after running the code 10000 times (for eachgiven number of processors) and measuring ts and tp. For both parallel regionsand tile families, the parallel start-up overhead keeps increasing as the numberof processors increases. Moreover, the cost for tiling is higher than that of aparallel region; this di�erence is reasonable considering the cost for barrier syn-chronization involved in the low-level implementation of the two constructs [16].4 Application ExamplesWe evaluate the bene�ts from using an estimate for the parallel start-up overheadon two codes:{ tred2, an approximately 100-line-long Fortran program taken from theeigenvalue solver package Eispack, which reduces a symmetric matrix tosymmetric tridiagonal form, and,



L=N+1-IIDOALL J=1,LZ(J,L+1)=D(J)G=E(J)DO K=1,JG=G+Z(J,K)*D(K)ENDDODO K=J+1,LG=G+Z(K,J)*D(K)ENDDOE(J)=GENDDOa) First loop nest.
L=N+1-IIDOALL J=1,LTEMP1=D(J)TEMP2=E(J)DO K=J,LZ(K,J)=Z(K,J)& -TEMP1*E(K)& -TEMP2*D(K)ENDDOENDDOb) Second loop nest.

L=I-1DOALL J=1,LG=0.0D0DO K=1,LG=G+Z(K,I)*Z(K,J)ENDDODO K=1,LZ(K,J)=Z(K,J)-G*D(K)ENDDOENDDOc) Third loop nest.Fig. 2. Parallelized loops in tred2.{ a program performing numerical weather prediction using a barotropic model.In the �rst case, it is shown how an estimate for the parallel start-up overhead canbe used to transform the code in such a way that potentially parallel fragmentsof a program are parallelized only if some performance gains are expected. Inthe second case, it is shown how such an estimate may be essential for goodcompile-time performance prediction.4.1 TRED2The version of tred2 used in our experiments is analyzed in [19]. Three loopnests, which account for over 93% of the execution time on a single processorfor a problem size N=128, are parallelized; these are shown in Figure 2. All threeloop nests are contained in the body of an outer sequential DO loop with lowerbound 2, upper bound N, and loop index II (for the �rst two), and I (for thethird).The three loop nests are parallelized by KAP (a commercial parallelizingcompiler available on the KSR1) and MARS regardless of the value of L. However,the value of L varies from 1 to N-1; for small values of L the parallel start-upcost may outweigh the gains and, in this case, it may be more e�cient to executethe loops sequentially. In order to �nd for which values of L the latter approachmust be followed, we consider again Equation (3); then, for a given number ofprocessors, p, parallel execution is preferred wheneverts > tPS + ts=p() ts(1� 1=p)� tPS > 0: (4)Certainly, the three loop nests may incur other overheads (e.g. communication),which the above formulation of the problem does not consider. Here, our aim isto �nd only a lower bound for the values of L which may result in performancegains.
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Fig. 3. Execution time of TRED2 on the KSR1.We modelled ts in terms of L by considering the amount of work performed bythe body of each loop. Thus, for the �rst loop nest, let WJ represent the amountof work performed by the three assignment statements which are executed onlyby the J loop, WK1 represent the amount of work performed by the body ofthe �rst K loop, and WK2 represent the amount of work performed by the bodyof the second K loop; similarly, we consider WJ and WK for the second loopnest, and WJ , WK1 and WK2 for the third loop nest. An estimate for each ofthese values is based on the number of the corresponding CPU cycles, namely:WJ = 97, WK1 = 51, and WK2 = 51, for the �rst loop nest; WJ = 50, andWK = 53, for the second loop nest; and WJ = 17, WK1 = 46, and WK2 = 39,for the third loop nest. Then, the work performed by each loop nest is given by97L+ 51L2; for the �rst loop nest;50L+ 53L(L+ 1)=2; for the second loop nest;17L+ 85L2; for the third loop nest.Considering the above expressions as an approximation of ts, substituting into(4) and using the results of Table 1, a lower bound for L, for each loop nest andparallelization strategy, can easily be computed. Based on this value, tred2was modi�ed by including each parallelizable loop nest in the body of an IFstatement which determines whether its execution is performed in parallel orsequentially.The modi�ed versions, as well as the original versions for both KAP andMARS, were run on the KSR1 for a problem size N=128; their execution timesare shown in Figure 3. Both the modi�ed versions, KAP-NEW and MARS-NEW, leadto a clear performance improvement over the original versions.



DOALL J=2,M1DOALL I=2,L1IF (((I+J)/2)*2.EQ.(I+J)) THENIF (I-L1+1) 12,11,1111 R=(X(2,J)+X(L1,J)-2.*X(I,J))/DX(J)**2& +(X(I,J+1)+X(I,J-1)-2.*X(I,J))/DY**2R=(R-Y(I,J))*DY*DX(J)GOTO 1312 R=(X(I+1,J)+X(I-1,J)-2.*X(I,J))/DX(J)**2& +(X(I,J+1)+X(I,J-1)-2.*X(I,J))/DY**2R=(R-Y(I,J))*DY*DX(J)13 IF (LSC-NSC) 14,14,1514 X(I,J)=X(I,J)+ALFA*R15 IF (ABS(R).LE.EPS) THENNREL=NREL+1ENDIFENDIFENDDOENDDOFig. 4. The parallelized loop of the barotropic weather prediction program.4.2 A Barotropic Model for Numerical Weather Prediction.The version of the program we use for numerical weather prediction based ona barotropic model is analyzed in [18]. In order to parallelize the program, weconcentrate on the parallelization of a double loop nest which accounts for over85% of the program execution time on a single processor for a problem sizeL1=50, M1=20. This loop nest implements a Successive Over-Relaxation (SOR)type of operation based on a �ve-point stencil [15]. Thus, the original sequen-tial loop nest can be split into two consecutive parallel loop nests. The �rstof these loop nests is shown in Figure 4; the sole di�erence with the secondloop nest is the logical condition of the third statement (which is changed to(((I+J)/2)*2.NE.(I+J))). For the given problem size used in our experiments,both loop nests are executed a total of 2741 times in order to achieve a desiredprecision.Contrary to the parallel loops of tred2, the parallel loops of this exampleare always executed for the same number of iterations; the average executiontime of each parallel loop is 0:00416 sec. Thus, applying (4), it can be easily seenthat the performance gains from parallel execution are expected to outweigh thelosses due to the parallel start-up overhead. However, because of the multipleexecution of the parallel loop nests, it is anticipated that the parallel start-upoverhead will constitute a large fraction of the overall overhead.Using the performance prediction model presented in Section 2, we estimatethe execution time of the parallel program based on Equations (1) and (2). Weconsider tLI = tC = tS = 0, tUC = 3:92, and ts = 22:81 (after pro�ling thesequential code); from Table 1 we also compute a value for tPS . This estimateis compared with the execution time of the parallel program in Figure 5 (the
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Fig. 5. Actual and predicted execution time of the barotropic weather predictionmodel.former noted as predicted, the latter noted as actual). It can be seen that,although only two sources of overhead are considered, the predicted performanceof the parallel program is close to the actual performance; this is because theparticular overheads dominate the parallel execution.5 ConclusionThis paper described an overhead based model for predicting performance forparallelizing compilers, and concentrated on estimating the overhead caused bythe initialization of parallelism. Based on such an estimate, a transformationhas been suggested; incorporating this into existing parallelizing compilers mayresult in performance gains. Although, in absolute terms, this overhead is rathersmall, it becomes increasingly important in codes where parallelizable loop nestswith a relatively small amount of work are contained in the body of sequentialloops which are executed a large number of times. Then, as demonstrated byour experiments, the parallel start-up overhead may be necessary to evaluatethe program's performance behaviour.In future work, we aim to consider the parallel start-up overhead in conjunc-tion with other sources of overhead. Our main objective is to establish overheadanalysis as a means of reasoning for parallelizing compilers in a similar way towhat can be used when expert programmers tune programs for parallel execu-tion [23].Acknowledgements: The author would like to thank the members of the Centrefor Novel Computing at the University of Manchester for their help during thepreparation of this paper.
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