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Abstract. A technique for estimating the cost of executing a loop nest
in parallel (parallel start-up overhead) is described in this paper. This
technique is of utmost importance for parallelizing compilers which take
decisions on the basis of predicting performance through the quantifica-
tion of overheads. Such a model is analyzed and the necessary conditions
for computing an estimate for the parallel start-up overhead are pre-
sented. Based on this estimate, it is shown how to transform paralleliz-
able loop nests in such a way that the start-up cost for parallel execution
does not outweigh the gains. Experimental results demonstrate that this
transformation results in performance improvements. Finally, it is also
shown that such an estimate is essential to predict the performance of
codes whose parallelization is based on the multiple execution of a small
parallelized program fragment.

1 Introduction

Parallelizing compilers [28, 30] have been promoted as a promising means for
emancipating programmers from the laborious task of the parallelization of codes
written in sequential languages. Ideally, such compilers must be capable of con-
verting a sequential program into a semantically equivalent parallel program au-
tomatically (or with minimal user intervention); furthermore, the performance
of the transformed parallel program must be comparable to that achieved by
expert parallel programmers.

However, parallelizing compilers usually fail to accomplish the latter expec-
tation. The main line of thought attributes this ‘deficiency’ to their inability to
detect fully the inherent parallelism of programs [5]. Although more robust tech-
niques for detecting parallelism are undoubtedly needed, an issue of equal, if not
greater concern, is the compiler’s internal strategy. A strategy of parallelizing
anything parallelizable does not necessarily yield the best performance results;
instead, it may even slow down significantly the execution time of the parallel
program. The reason for this phenomenon is that parallelism may often trade off
with other overheads; thus, it may be preferable to execute potentially parallel
parts of the code sequentially, in order to reduce, for instance, the number of
cache misses or avoid interprocessor communication.

Existing commercial parallelizing compilers typically attempt to parallelize
all loops whose parallel execution does not alter program semantics, and are



N=500 DOALL K1=-990,480

D0 J1=10,N DO K2=MAX(10,5-FLOOR(K1/2)),
D0 J2=10,N & MIN(500,250-CEILING (K1/2))
A(J1,32)=A(J1-2,72-4) A(K2,K1+2%K2)=A (K2-2,K1+2%K2-4)
& +A(J1-1,J2-2) & +A (K2-1,K1+2%K2-2)
ENDDO ENDDO
ENDDO ENDDO

Fig. 1. Semantically equivalent codes which cause different overheads.

also capable of applying a number of loop transformations; more sophisticated
program restructuring transformations [2, 3] are applied by experimental paral-
lelizing compilers [4, 22]. In any case, the disadvantage of the ad hoc program
restructuring is that different transformations may significantly affect program
performance.

To illustrate this, consider the example shown in Figure 1. The two codes
are semantically equivalent; the transformed loop nest, shown on the right-hand
side, is the result of a unimodular transformation applied to the original loop
nest, shown on the left-hand side [24]. Although the transformed loop nest can
run in parallel (this is denoted by the DOALL construct in the code), a non-unit
stride access pattern for array A is established; instead, simply applying loop
interchange [28, Section 9.5] to the original loop nest, this amended (albeit still
sequential) version runs approximately 5 times faster than the parallel version
on a virtual shared memory multiprocessor, the KSR1 (see [23, 29] for details of
its architecture).

Thus, in order to evaluate the trade-offs among different transformations, a
parallelizing compiler needs some capability of performance estimation. In this
paper, we consider such a model based on quantitative estimates of different
sources of overheads; this is described in the next section. Attention is subse-
quently focused on the estimation of the overhead due to the parallelization of
a code. The latter may be important to avoid performance losses, for instance,
from the parallelization of loop nests having a relatively small number of itera-
tions. Although this problem has been pointed out in an effectiveness study of
parallelizing compilers [5], as well as observed from a scientific user’s experience
[17, 20], to the best of our knowledge, there has been no work in the literature
attempting to estimate it in a systematic way; this paper provides a contribu-
tion to this. It also shows how to transform a code using this estimate, while
the performance benefits from incorporating this estimation capability into a
parallelizing compiler are presented in Section 4.

2 A Model for Compile-Time Performance Prediction

Predicting the performance of a parallel program has been an issue well addressed
in the literature [13, 21]. However, accurate performance prediction often requires
either a particular machine model [7] or a specific application domain [27]. Both



these restrictions are not desirable in the context of a parallelizing compiler where
portability and the ability of performing equally well on a wide range of programs
and architectures are expected. An additional problem, posed by the nature of
parallelizing compilers per se, is that, during the process of evaluating different
sequences of transformations, the performance prediction model may have to be
called repeatedly. Consequently, its execution time cannot be prohibitively high
and the model must be simple, albeit still accurate.

A model based on the classification of overheads has been incorporated into
the MARS experimental parallelizing compiler, developed jointly at the Univer-
sity of Manchester and IRISA, Rennes [6]. The underlying idea is rather simple;
assuming that ¢, is the time spent on overheads and ¢ is the time required to
execute the sequential version of a program, then the running time, t,, of the
parallelized version of the program on p processors is given by

tp =to +ts/p. (1)

The crucial point for the efficiency of the model is the estimation of ¢,. His-
torically, this approach goes back to Gene Amdahl, who associated t, with the
inherently sequential parts of the program [1]; more generalized models, also
based on the serial and the parallel fractions of a program, are considered in
[10, 12]. However, it is essential to consider distinctly all possible sources of
overhead, as, for instance, attempted in [8, 9, 11]. Thus, the following classes are
identified:

Unparallelized code: this refers to the overhead caused by sections of the

program which are (or have to be) executed sequentially.

Load imbalance: this refers to the overhead caused by poor distribution of

the parallelized computational work among processors.

— Communication: this refers to the overhead which occurs when a processor
is waiting for data to be moved from memory; it is subdivided into two
further classes, depending on whether data are moved between two different
processors’ memories, or between various levels of the memory hierarchy
within a single processor (e.g. between cache and main memory).

— Synchronization: this refers to the overhead caused when a processor is wait-
ing to acquire a lock or at a barrier.

— Parallel start-up: this refers to the overhead caused because of any additional

computation required for the exploitation of parallelism.

The total time spent on overheads, t,, is given by the sum of the time spent
on each of the above classes, i.e.,

to =tyc +trr +tc +ts +itps. (2)

To estimate the time spent as a result of the occurrence of each particular source
of overhead, we model time as a function of some machine-dependent and some
machine-independent parameters; the latter represent a quantitative metric for
each individual source of overhead. For instance, in the case of load imbalance,
this metric is determined by the amount of computational work (say in machine



instructions) assigned to the most ‘overloaded’ processor [24, 25]; in the case of
synchronization, it may be determined by the number of synchronization points
required [26], while, in the case of communication, by the number of cache misses
[14] (but not only). In the latter case, the cost, in CPU cycles, of moving data
from the main memory to the cache on a particular parallel platform multiplied
by the number of cache misses may provide an estimate for ¢¢ (if no other
communication costs occur).

The ultimate goal of any parallelization techniques is to minimize t, in (2).
Given that the machine-dependent parameters have a fixed cost, this implies
that the compiler aims to transform the program in such a way that the particu-
lar quantitative metrics are minimized. However, trade-off situations may arise;
reducing one source of overhead may increase another and wvice versa. Dealing
with all the overheads at once may be intractable; thus, it is usually attempted
to reduce one source of overhead at a time, avoiding actions for which there is
evidence that another source of overhead may increase.

3 Dealing with the Parallel Start-Up Overhead

From the five sources of overhead identified in the previous section, the parallel
start-up overhead is a notable exception in that it is independent of the particu-
lar program characteristics; it largely depends on the parallelization mechanism
applied (from those provided by the particular parallel machine in use) and,
possibly, the number of processors employed. These properties, alongside the
assessment that this overhead is unavoidable but relatively low, have led re-
searchers to underestimate its importance [6]. Nonetheless, having an estimate
for it can be helpful in deciding which loops should be executed in parallel, a
need remarked in [5, 17, 20], as well as to evaluate the performance of codes
whose parallelized loops are enclosed in the body of large sequential loops.

In order to estimate the parallel start-up overhead, we use Equations (1) and
(2). Assume that, in a parallelized code fragment, the value of all the remaining
overheads is zero and the time, t,, for executing the sequential version of the
code is known; then, for a given number of processors, p, the time spent due to
the parallel start-up overhead, tpg, is given by

tpg:tpfts/p. (3)

Based on the above, any program fragment used for computing ¢pg must
take into account the following:

— No unparallelized code should exist; a program fragment consisting of a
single loop without data dependences provides a simple solution to this.

— Perfect load balance (i.e. zero load imbalance) should be possible for any
number of processors. In the case of a single loop, the number of iterations
must be a multiple of the number of processors, and the loop body should
not contain statements whose execution depends on the value of the loop
index.



— No communication should occur. Thus, the loop body should not contain

array elements.
— Synchronization must be avoided.

— A ‘useful’ computation (that is, one which yields some output results) must

be performed to avoid dead-code elimination.

Parallel Number of processors
construct 2 3 4 5 6
I o m o I o n o I o
PAR.REGION || 17829 1132 |18912 132719583 965 |21796 1041 |23060 884
TILE 22456 172224081 1683 |24534 1984 (26231 1833 |27043 1323
7 8 9 10 11
u o 7 o N o 7 o N o
PAR.REGION || 23766 1023 |24963 98725680 620|26424 893 (26693 692
TILE 27896 117129368 1302 |30551 983|31891 1124 (33145 870
12 13 14 15 16
I o m o I o n o I o
PAR.REGION || 27101 731|27425 758|28857 831|30334 543(31943 723
TILE 34776 95436092 83237820 82038842 773|40246 821

Table 1. Parallel start-up overhead, in CPU cycles, on the KSR1.

Using a model code respecting the above constraints, we compute the par-
allel start-up overhead for the two types of constructs, parallel regions and tile
families [20, 19], employed for loop parallelization on the KSR1. The mean, pu,
as well as the standard deviation, o, of the values of tpg, in CPU cycles (note
that each KSR1 processor has a 20 MHz clock), are shown in Table 1; these
values are computed based on (3), after running the code 10000 times (for each
given number of processors) and measuring ¢, and t,. For both parallel regions
and tile families, the parallel start-up overhead keeps increasing as the number
of processors increases. Moreover, the cost for tiling is higher than that of a
parallel region; this difference is reasonable considering the cost for barrier syn-

chronization involved in the low-level implementation of the two constructs [16].

4 Application Examples

We evaluate the benefits from using an estimate for the parallel start-up overhead
on two codes:

— TRED2, an approximately 100-line-long FORTRAN program taken from the
eigenvalue solver package EISPACK, which reduces a symmetric matrix to
symmetric tridiagonal form, and,



L=N+1-II

DOALL J=1,L L=N+1-II L=I-1
Z(J,L+1)=D(J) DOALL J=1,L DOALL J=1,L
G=E(J) TEMP1=D (J) G=0.0D0
D0 K=1,J TEMP2=E (J) DO K=1,L
G=G+Z(J,K) *D (K) DO K=J,L G=G+Z (K, I)*Z(K,J)
ENDDO Z(K,1=Z(K,D ENDDO
DO K=J+1,L & ~TEMP1*E (K) DO K=1,L
G=G+Z(K,J)*D(K) & ~TEMP2%*D (K) Z(X,J)=Z (K, J)-G*D (K)
ENDDO ENDDO ENDDO
E(J)=G ENDDO ENDDO
ENDDO

a) First loop nest. b) Second loop nest. ¢) Third loop nest.

Fig. 2. Parallelized loops in TRED2.

— aprogram performing numerical weather prediction using a barotropic model.

In the first case, it is shown how an estimate for the parallel start-up overhead can
be used to transform the code in such a way that potentially parallel fragments
of a program are parallelized only if some performance gains are expected. In
the second case, it is shown how such an estimate may be essential for good
compile-time performance prediction.

4.1 TRED2

The version of TRED2 used in our experiments is analyzed in [19]. Three loop
nests, which account for over 93% of the execution time on a single processor
for a problem size N=128, are parallelized; these are shown in Figure 2. All three
loop nests are contained in the body of an outer sequential DO loop with lower
bound 2, upper bound N, and loop index II (for the first two), and I (for the
third).

The three loop nests are parallelized by KAP (a commercial parallelizing
compiler available on the KSR1) and MARS regardless of the value of L. However,
the value of L varies from 1 to N-1; for small values of L the parallel start-up
cost may outweigh the gains and, in this case, it may be more efficient to execute
the loops sequentially. In order to find for which values of L the latter approach
must be followed, we consider again Equation (3); then, for a given number of
processors, p, parallel execution is preferred whenever

ts > tps +1ts/p <= ts;(1 —1/p) —tps > 0. (4)

Certainly, the three loop nests may incur other overheads (e.g. communication),
which the above formulation of the problem does not consider. Here, our aim is
to find only a lower bound for the values of L which may result in performance
gains.
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Fig. 3. Execution time of TRED2 on the KSRI.

We modelled ¢, in terms of L by considering the amount of work performed by
the body of each loop. Thus, for the first loop nest, let W represent the amount
of work performed by the three assignment statements which are executed only
by the J loop, Wk, represent the amount of work performed by the body of
the first K loop, and Wi, represent the amount of work performed by the body
of the second K loop; similarly, we consider W; and Wy for the second loop
nest, and Wy, Wg, and Wk, for the third loop nest. An estimate for each of
these values is based on the number of the corresponding CPU cycles, namely:
Wy = 97, Wk, = 51, and Wg, = 51, for the first loop nest; W; = 50, and
Wk = 53, for the second loop nest; and W; = 17, Wg, = 46, and Wk, = 39,
for the third loop nest. Then, the work performed by each loop nest is given by

97L + 51L2, for the first loop nest,
50L + 53L(L + 1)/2, for the second loop nest,
17L + 85L2, for the third loop nest.

Considering the above expressions as an approximation of t,, substituting into
(4) and using the results of Table 1, a lower bound for L, for each loop nest and
parallelization strategy, can easily be computed. Based on this value, TRED2
was modified by including each parallelizable loop nest in the body of an IF
statement which determines whether its execution is performed in parallel or
sequentially.

The modified versions, as well as the original versions for both KAP and
MARS, were run on the KSR1 for a problem size N=128; their execution times
are shown in Figure 3. Both the modified versions, KAP-NEW and MARS-NEW, lead
to a clear performance improvement over the original versions.



DOALL J=2,M1
DOALL I=2,L1
IF (((I+J)/2)*2.EQ.(I+J)) THEN
IF (I-L1+1) 12,11,11

11 R=(X(2,J)+X(L1,J)-2.%X(I,J)) /DX (J)*%2
& +(X(I,J+1)+X(I,J-1)-2.%X(I,J))/DY**2
R=(R-Y(I,J))*DY*DX(J)
GOTO 13
12 R=(X(I+1,J)+X(I-1,J3)-2.*X(I,J))/DX(J)**2
& +(X(I,J+1)+X(1,J-1)-2.*X(I,J)) /DY*%*2
R=(R-Y(I,J))*DY*DX(J)
13 IF (LSC-NSC) 14,14,15
14 X(I,J)=X(I,J)+ALFA*R
15 IF (ABS(R).LE.EPS) THEN
NREL=NREL+1
ENDIF
ENDIF
ENDDO
ENDDO

Fig. 4. The parallelized loop of the barotropic weather prediction program.

4.2 A Barotropic Model for Numerical Weather Prediction.

The version of the program we use for numerical weather prediction based on
a barotropic model is analyzed in [18]. In order to parallelize the program, we
concentrate on the parallelization of a double loop nest which accounts for over
85% of the program execution time on a single processor for a problem size
L1=50, M1=20. This loop nest implements a Successive Over-Relazation (SOR)
type of operation based on a five-point stencil [15]. Thus, the original sequen-
tial loop nest can be split into two consecutive parallel loop nests. The first
of these loop nests is shown in Figure 4; the sole difference with the second
loop nest is the logical condition of the third statement (which is changed to
(((I+J)/2)*2.NE. (I+J))). For the given problem size used in our experiments,
both loop nests are executed a total of 2741 times in order to achieve a desired
precision.

Contrary to the parallel loops of TRED2, the parallel loops of this example
are always executed for the same number of iterations; the average execution
time of each parallel loop is 0.00416 sec. Thus, applying (4), it can be easily seen
that the performance gains from parallel execution are expected to outweigh the
losses due to the parallel start-up overhead. However, because of the multiple
execution of the parallel loop nests, it is anticipated that the parallel start-up
overhead will constitute a large fraction of the overall overhead.

Using the performance prediction model presented in Section 2, we estimate
the execution time of the parallel program based on Equations (1) and (2). We
consider tr; = tc = ts = 0, tye = 3.92, and t;, = 22.81 (after profiling the
sequential code); from Table 1 we also compute a value for ¢tpg. This estimate
is compared with the execution time of the parallel program in Figure 5 (the
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Fig.5. Actual and predicted execution time of the barotropic weather prediction
model.

former noted as predicted, the latter noted as actual). It can be seen that,
although only two sources of overhead are considered, the predicted performance
of the parallel program is close to the actual performance; this is because the
particular overheads dominate the parallel execution.

5 Conclusion

This paper described an overhead based model for predicting performance for
parallelizing compilers, and concentrated on estimating the overhead caused by
the initialization of parallelism. Based on such an estimate, a transformation
has been suggested; incorporating this into existing parallelizing compilers may
result in performance gains. Although, in absolute terms, this overhead is rather
small, it becomes increasingly important in codes where parallelizable loop nests
with a relatively small amount of work are contained in the body of sequential
loops which are executed a large number of times. Then, as demonstrated by
our experiments, the parallel start-up overhead may be necessary to evaluate
the program’s performance behaviour.

In future work, we aim to consider the parallel start-up overhead in conjunc-
tion with other sources of overhead. Our main objective is to establish overhead
analysis as a means of reasoning for parallelizing compilers in a similar way to
what can be used when expert programmers tune programs for parallel execu-
tion [23].
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