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Abstract

This paper addresses the issue of efficient and accurate
performance prediction of large-scale message-passing
applications on high performance architectures using
simulation. Such simulators are often based on parallel
discrete event simulation, typically using the conservative
protocol to synchronize the simulation threads. The  paper
considers how a compiler can be used to automatically
extract information about the lookahead present in the
application, and how this can be used to improve the
performance of the null protocol used for synchronization.
These techniques are implemented in the MPI-Sim
simulator and dHPF compiler, which had previously been
extended to work together for optimizing the simulation of
local computational components of an application. The
results show that the availability of lookahead information
improves the runtime of the simulator by factors ranging
from 9% up to two orders of magnitude, with 30-60%
improvements being typical for the real-world codes.  The
experiments also show that these improvements are
directly correlated with reductions in the number of null
messages required by the simulations.

.

1 Introduction

Direct-execution simulators make use of available
system resources to execute directly portions of the
application code and simulate architectural features that
are of specific interest, or are unavailable. For instance,
direct execution simulators can be used to study various
architectural components such as the memory subsystem
or the interconnection network. The benefits of this direct-
execution simulation are obvious: first, one can estimate
the value of the new hardware without the expense of
manufacturing or purchasing it; second, one can do the
simulation fast: there is no need to simulate the
workstation's behavior (for example down to the level of
memory references) since that part of the hardware is
readily available. However, the constraint of direct
execution requires the simulator to use at least as much
memory as the target application and constrains the
simulator to run at least as long as the application.

To alleviate the cost of direct execution while still
maintaining accuracy, in recent work we used compiler
support to optimize the simulation of local code [3].
Compiler analysis identifies portions of local code whose
results do not affect program performance. These sections
of the local code are replaced by estimates of their
execution time using an analytical model of their
performance built by the compiler. Data used only in such
computations can also be eliminated. As a result, we
observed dramatic savings both in the simulator’s runtime
as well as its memory requirements [3].

In this paper, we examine how compiler analysis can be
used to improve lookahead in parallel simulation, and
hence further reduce simulation time. When a simulation
thread (Logical Process (LP)) knows that before sending
the next message, it will process a local code block whose
execution time can be predicted, the LP can communicate
that information (increased lookahead) to other LPs in the
system, possibly allowing those LPs to process events that
might not be otherwise processed.

This paper makes three main contributions to parallel
simulation of parallel applications:
1. It demonstrates how compiler analysis of a target

application program can be used to extract lookahead
information useful to a parallel simulation algorithm.

2. It augments an existing compiler-supported simulation
system (the MPI-Sim simulator and the Rice dHPF
parallelizing compiler) to incorporate this technique in
parallel simulation, and

3. It presents a preliminary experimental evaluation
demonstrating the potential benefits of this technique.
We present preliminary results evaluating the potential

improvements that could be obtained by exploiting
lookahead information when using the null message
protocol [11] for LP synchronization.  Using two synthetic
codes and two standard applications (an ASCI benchmark,
Sweep3D, and the NAS benchmark, SP), we compare how
the simulator performs when it has no lookahead
information versus when it can use the compiler-generated
lookahead. The synthetic codes allow us to vary the
granularity of computation between communications,
which has a direct impact on the benefit of lookahead
information. The two real codes have deterministic
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communication patterns for which MPI-Sim would not
require a synchronization protocol, but by forcing the null
protocol we can examine how much similar applications
would potentially benefit from the information about
lookahead.  Our results show that the simulations of the
two real codes are 9% to 60% faster when using the
lookahead information, and the improvements are higher
when the granularity of local computations is higher.  The
synthetic applications show improvements by up to two
orders of magnitude, as the granularity of computations is
varied. In all the benchmarks, the improvements in
simulation time are directly caused by reductions in the
number of null messages required for the simulations.
Although these results are preliminary and need to be
confirmed by studies with additional applications, they
illustrate the large potential benefits that could be achieved
via compiler analysis of lookahead in target applications.

2 Related Work

Many of the early program simulators were designed
for sequential execution [8, 12, 13].  However, even with
the use of direct execution, sequential program simulators
tended to be slow with slowdown factors ranging from 2 to
35 for each process in the simulated program [8].  Several
efforts have been exploring the use of parallel execution
[10, 14, 17, 19, 22] to reduce the model execution times,
with varying degrees of success. Many such simulators use
sequential or parallel implementations of the quantum
protocol. In order to support multiple simulation processes
(possibly executing on multiple processors) and maintain
accuracy, parallel simulation protocols are used to
synchronize the processes. The Quantum protocol lets the
processes compute for a given quantum before
synchronizing them. In general, synchronous simulators
that use the quantum protocol must trade-off simulation
accuracy with speed; frequent synchronizations slowdown
the simulation, but synchronizing less frequently
introduces errors, by possibly executing statements out-of-
order [24].

Parallel simulators include MPI-Sim [6, 21], described
in the next section, the Wisconsin Wind Tunnel (WWT)
[18, 22], a shared memory architecture simulation engine
and SimOS [24], a complete system simulator (multiple
programs plus operating system). SimOS, which simulates
the MIPS architecture, takes into account system details
such as cache and CPU models as well as device drivers. It
is possible to use the emulation mode, which in part uses
direct execution to characterize the program execution. In
the emulation mode, the simulation is still ten times slower
than real time. The main drawback of SimOS is that it does
not use any synchronization protocol when running
multiple simulation processes on a parallel platform [23],
thus reducing the accuracy of the simulations.

Although MPI-SIM is the only simulator that identifies
communication patterns and directly exploits them for the

purposes of synchronization, other simulators have used
techniques to reduce the synchronization overhead. Among
them are LAPSE [14] and Parallel Proteus [17]. Both
LAPSE and Parallel Proteus use some form of program
analysis to increase the simulation window beyond a fixed
quantum, without sacrificing accuracy. LAPSE uses a
quantum protocol called WHOA (Window-based Halting
On Appointments) and runtime analysis to determine the
size of the simulation quantum. An appointment is the
earliest time the message can be placed in the network.
Adding the latency of the network to the appointment time
gives the earliest possible arrival for the message.
Processes use the minimum of their appointment times
(incoming) to determine whether a message can be
processed or not. Parallel Proteus reduces the
synchronization overhead caused by frequent barriers of
the quantum protocol by using predictive barriers and
local barriers. The predictive barriers method uses runtime
and compile time analysis to determine, at the beginning of
a simulation quantum, the earliest simulation time at which
any process will send a message to any other process.

In previous work [21], we designed a novel approach to
synchronization in which the blocking time at the receive
statement is reduced by analyzing the communication
patterns in the program. Specifically, each simulation
process uses this analysis to locally identify whether an
incoming application message is safe to process right away
or whether synchronizations with other processes are
necessary. In some cases, the optimization resulted in
simulations where no synchronization was necessary.

3 Background

3.1 Simulation of Large-Scale Applications with
MPI-Sim

The starting point for our work is MPI-Sim [6, 21], a
direct-execution parallel simulator for performance
prediction of MPI programs. MPI-Sim simulates an MPI
application running on a parallel system (referred to as the
target program and system respectively). The machine on
which the simulator is executed (the host machine) may be
either a sequential or a parallel machine. In general, the
number of processors in the host machine will be less than
the number of processors in the target architecture being
simulated, so the simulator must support multi-threading.
The simulation kernel on each processor schedules the
threads and ensures that events on host processors are
executed in their correct timestamp order. A target thread
is simulated as follows. The local code is simulated by
directly executing it on the host processor. In the compiler-
enhanced version of MPI-Sim, portions of the local code
are modeled by an analytical performance model, while the
remaining local code is directly executed. Communication
commands are trapped by the simulator, which uses an
appropriate model to predict the execution time for the



corresponding communication activity on the target
architecture.

MPI-Sim supports most of the commonly used MPI
communication routines, such as point-to-point and
collective communications. In the simulator, all collective
communication functions are implemented in terms of
point-to-point communication functions, and all point-to-
point communication functions are implemented using a
set of core non-blocking MPI functions.  The simulator has
been validated against several MPI implementations
including those on the IBM SP and SGI Origin 2000 [6].

The simulation kernel provides support for sequential
and parallel execution of the simulator. Parallel execution
is supported via a set of conservative parallel simulation
protocols [20], which typically work as follows: Each
application process in the simulation is modeled by a
Logical Process (LP). Each LP can execute independently,
without synchronizing with other LPs, until it executes a
wait operation (such as an MPI-Recv, MPI-Barrier, etc); a
synchronization protocol is used to decide when such an
LP can proceed. We briefly describe the default protocol
used by MPI-Sim. Each LP in the model computes local
quantities called Earliest Output Time (EOT) and Earliest
Input Time (EIT) [5]. The EOT represents the earliest
future time at which the LP will send a message to any
other LP in the model; similarly the EIT represents a lower
bound on the receive timestamp of future messages that the
LP may receive. Upon executing a wait statement, an LP
can safely select a matching message (if any) from its
input buffer, that has a receive timestamp less than its EIT.
Different asynchronous protocols differ only in their
method for computing EIT. However, in this paper, we
concentrate on the Null Message protocol [11], where the
EOT is communicated between the LPs via null messages.
In our model, when an LP is blocked at a receive statement
and cannot find a matching message, the LP requests null
messages from all LPs in the system  (or a subset of LPs
with which it communicates) and recomputes its EIT
whenever a null message arrives. An LP can get a null
message request at any time, at which point it returns its
EOT. Later, we show how we use the compiler derived
analytical models to extract the lookahead present in the
application and thus improve an LP’s estimate of its EOT.

3.2 Compiler  Analysis

In previous work [3], we implemented and evaluated
compiler techniques to improve the performance of
parallel simulation of very large message-passing parallel
programs. The key idea underlying this work was to apply
compiler analysis to locate fragments of local computation
whose resulting values do not affect performance, and to
avoid simulating those fragments in detail by replacing
them with (symbolic) analytical performance estimates.
For example, computations of values that determine loop

bounds, branches, message patterns, and message sizes all
have a direct impact on performance. In contrast, the
results of other computations do not affect performance,
and only their execution times are required for
performance prediction.  The latter, which we term as
‘ redundant’ , do not need to be simulated in detail and can
be abstracted away and replaced by an analytic
performance estimate of their execution time, while
simulating the rest of the program in detail. During
simulation, the simulator can use the analytical estimate to
advance the clock accordingly. As a corollary, it is also
possible to avoid performing data transfers1 for many
messages whose values do not affect performance, while
simulating the performance of the messages in detail.

The compiler analysis for accomplishing the above has
three major aspects: (1) identifying the values in the
program that do not affect performance (a value is a pair
<variable, statement> representing the data stored in that
variable at that statement); (2) identifying computations
that only affect these values and therefore can be
abstracted away; and (3) generating symbolic estimates for
the execution time of these computations.

For the first step, we use a compiler-synthesized static
task graph model [2, 4], an abstract program
representation that identifies the sequential computations
(tasks), the parallel structure of the program (task
precedences, explicit communication), and the control-
flow that determines the parallel structure. The symbolic
expressions in the task graph for control flow conditions,
communication patterns and volumes, and scaling
expressions for sequential task execution times capture all
these program variables that have a direct impact on
program performance.

For the second step, we use a compiler technique called
program slicing [16] to identify those portions of the
computation that determine the values of those variables;
these are exactly the computations that must be retained.
(Given a particular value in a program as defined above,
program slicing uses data and control dependence
information to identify those portions of the computations
that may directly or indirectly affect that value in some
execution of the program. This analysis must be performed
interprocedurally, and can be performed for an entire set of
values at once.)  The compiler then generates simplified
MPI code that contains those computations plus the
communication. The remaining code fragments are
replaced by a call to a function that will be interpreted by
the simulator as a command to advance its clock by a
specified value; this value should correspond to the
execution time of the abstracted computation.
                                                       
1 This saves simulation time because performing the data transfer
may require significant overhead, e.g., if the source and
destination threads of the message are mapped to different host
processors in the simulation.



Finally, in order to estimate the execution time of the
abstracted code, the compiler generates simple symbolic
expressions parameterized by direct measurement.

The above techniques have been implemented in the
Rice dHPF compiler [1]. In [3], we evaluated the above
techniques for three benchmarks: Sweep3D [25], a key
ASCI benchmark; NAS SP from the NAS benchmark suite
[7] and Tomcatv, a SPEC92 benchmark. Over a wide
range of problem sizes and numbers of processors (on the
distributed memory IBM SP), the errors in the predicted
execution times, compared with direct measurement, were
at most 17% in all cases we studied, and often were
substantially less (the direct execution MPI-Sim had errors
of about 7%). Moreover, in each application, the compiler
techniques led to a significant reduction in simulator
memory usage (up to 2000 times) and simulation time (up
to 10 times), thus allowing us to simulate problem sizes up
to 100 times larger than what was possible with state-of-
the-art simulation tools before.

This paper extends the preceding work in two
directions. First, we assume that the receive statements are
not deterministic and an LP must use some
synchronization algorithm to identify safe messages (we
use a conservative null message algorithm for this).
Second, we use the compiler-derived representation to
extract the lookahead present in the application to improve
performance of the null message protocol.

4 Lookahead Extraction

Lookahead plays an important role in improving the
performance of conservative simulation protocols. In the
context of the application, we focus on portions of the code
where the simulation thread is blocked (such as in blocking
receives and sends). When a logical process (LP) executes
a receive statement, it checks if its input message queue
contains any safe messages, i.e., any message with a
timestamp less than the EIT of the LP. If so, the safe
message(s) can be processed; otherwise the LP is blocked
until its EIT is advanced using the underlying null message
based protocol.

In general, for program simulations using direct
execution, the lower bound on the EOT of an LP is its
current simulation time (T) plus L, the minimum latency of
any message that can be sent. However, if the LP can
compute an accurate lower bound on the execution time of
a local code block that precedes any message
transmissions, perhaps via compiler analysis, it can
compute a more accurate EOT. At some point in its
execution, let TLC represent the execution time of a code
block of an LP, then its EOT becomes T+L+TLC, and thus
enables the blocked LPs to have a better estimate of the
EIT.  In previous work, researchers have estimated this
execution time using pre-simulation [15]. In this paper, we
show how this can be computed using compiler analysis,
and used to improve the efficiency of the resulting model.

Example 1:

MPI _Recv( ……)
f or  ( j =1;  j <N;  j ++)  {

mdi ag[ j ]  = mdi ag[ j - 1] ;
ndi ag = ndi ag + mdi ag[ j ] ;   }

MPI _Recv( &a,  … …) ;
f or  ( k=0;  k<ndi ag;  k++ )

a[ k]  = a[ k- 1]  + …
MPI _Send( &a,  … …) ; (a)

f or  ( j =1;  j <N;  j ++)  {
mdi ag[ j ]  = mdi ag[ j - 1] ;
ndi ag = ndi ag + mdi ag[ j ] ;  }

MPI _Recv( &a,  … …) ;
advance_cl ock( ndi ag *  w_3) ;
MPI _Send( &a,  … …) ; (b)

f or  ( j =1;  j <N;  j ++)  {
mdi ag[ j ]  = mdi ag[ j - 1] ;
ndi ag = ndi ag + mdi ag[ j ] ;  }

set _l ookahead( ndi ag*  w_3) ;
MPI _Recv( &a,  … …) ;
r eset _l ookahead( ) ;
advance_cl ock( ndi ag* w_3) ;
MPI _Send( &a,  … …) ; (c)

Example 1a shows a portion of a code where boundary
conditions of a loop are calculated, a receive statement is
posted2, values of an array “a”  are calculated, and finally
the computed data is sent to the next processor.  Such a
code structure is common in many scientific applications,
including applications discussed in this paper. The
compiler can estimate that the amount of time the second
loop is executed is the number of times the second loop is
executed (ndi ag) times the average duration of a single
iteration of the loop (w_3)3. The compiler also determines,
based on the task graph analysis described in the previous
section, that in order to predict the performance of the
code, the actual values computed in array a are not
necessary.  Hence, it replaces that portion of the code with
a call to advance the simulation clock by the estimated
execution time of the loop (Example 1b) (For details about
how the compiler calculates the analytic estimates, please
see [3].) The first loop cannot be abstracted away since the
value of ndi ag computed by the loop body is needed to
estimate the performance of the second loop. The compiler
can also notice that a communication primitive precedes
                                                       
2 In real applications, the receive would be posted before the loop
boundary calculation. We use this code here only to illustrate
better the example.

3 This is clearly a simplistic estimate, but it can be improved
using existing compiler-driven modeling techniques for
sequential code (e.g., [9]). The specific choice of this model is
orthogonal to the optimizations we have proposed.



the second loop, and assumes that simulation process
synchronization might occur during the communication
call. The compiler then provides the simulator with
lookahead information before the communication call is
made (set _l ookahead( ndi ag* w_3) ) and then resets
the lookahead to 0 after the communication call. Note that
this use of lookahead information introduces no additional
approximations in the simulation, beyond the compiler-
enhanced simulation described in our previous work.

 Example 2:

f or  ( j =1;  j <N;  j ++)  {
mdi ag[ j ]  = mdi ag[ j - 1] ;
ndi ag = ndi ag + mdi ag[ j ] ; }

MPI _Recv( &a,  … …) ;
f or  ( k=0;  k<ndi ag;  k++ )  {

a[ k]  = a[ k- 1]  + …}
MPI _Send( &a,  … …) ; (a)

Set _l ookahead( N* w_2) ;
MPI _Recv( … …)
r eset _l ookahead( ) ;
f or  ( j =1;  j <N;  j ++)  {

mdi ag[ j ]  = mdi ag[ j - 1] ;
ndi ag = ndi ag + mdi ag[ j ] ;  }

set _l ookahead( ndi ag* w_3) ;
MPI _Recv( &a,  … …) ;
r eset _l ookahead( ) ;
advance_cl ock( ndi ag* w_3)
MPI _Send( &a,  … …) ;  (b)

Even though we used analytic performance estimates
only for code blocks that were abstracted away, for the
purpose of lookahead we can also use compiler-generated
performance estimates for portions of the code that need to
be directly executed (such as loop boundary calculations).
The key requirement is that these estimates must be lower-
bounds for the actual execution time, so that the simulator
does not violate causality. Consider Example 2. In 2a,
there is a receive before the loop boundary calculation.
Although we need to calculate the value of ndi ag in the
loop body, the compiler can let the simulator know that,
when it is blocked in communications, it will not send a
message with a timestamp smaller than the current
simulation time plus the minimum message latency (L)
plus the lookahead (N* w_2) (Example 2b). After the
communication call is completed, the lookahead is reset to
0. This extension is not included in this paper because
developing lower-bound performance estimates via
compiler analysis requires substantial new research and is
a subject for future work.

5 Results

MPI-Sim and the compiler optimized MPI-Sim have
been previously validated [3, 6, 21] on a variety of
applications such as NAS, ASCI and SPEC92 benchmarks
on two hardware platforms: the IBM SP and the SGI
Origin 2000. The original MPI-Sim predicted the

performance of the applications within 7% of the measured
system. The compiler-enhanced simulator, which used
analytical models for portions of the computation,
validated to within 17% of the measured system.  The use
of lookahead information in this work does not introduce
any additional approximations over the latter. Therefore,
we focus here on the improvement in performance of the
null message protocol achieved by using the compiler-
extracted lookahead information. All the following
experiments were run on the IBM SP-2 at Lawrence
Livermore, and used up to 128 processors on the machine.

5.1 Benchmarks

We use two synthetic benchmarks and two real world
applications in our experiments. In the first synthetic code,
the processes of the application are logically arranged in a
ring topology. The processes execute several computation
and communication iterations. First, the even processors
perform a given amount of computation and then decide
whether to send the results to the “right”  or to the “ left” .
The odd processes then enter the computation and
communication phase. In each iteration, the receiving
process does not know where the next message is coming
from and therefore may need to request null messages
from other simulation processes (assuming that a demand
driven null message algorithm is used) to decide whether a
given message is safe to process. The second application
increases the dimension of the process topology to two.
Again the processes are divided into two communicating
groups. The first group computes its values and decides
whether to send the values first horizontally and then
vertically, or the other way around. Once again, the
receiver needs to use null messages to identify safe
messages. In both applications, the computation is
abstracted away by the compiler and replaced with
compiler generated analytical models. We will refer to the
two synthetic benchmarks as 1D and 2D, respectively.

We also use two standard benchmarks, the ASCI
Sweep3D code [25], a key benchmark used in the DOE
ASCI program, and NAS SP, a fluid dynamics code from
the NAS benchmark suite [7]. The compiler abstracted
away most of the computation present in the codes. The
most aggressive version of MPI-Sim [21] detects from the
parameters to MPI calls that the null message protocol is
not necessary for these two codes. We force the simulator
to use the null message protocol in order to characterize
the value of the lookahead in these codes and examine the
potential benefits of the optimization. Many other
applications such as NAS LU (which solves the same
problem as NAS SP using a different algorithm) do require
the null protocol, but are currently not supported by our
dHPF compiler extensions for simulation.

In the following experiments, we compare the absolute
performance improvement between MPI-Sim using no
lookahead information (NOL) and MPI-Sim using the



lookaheads calculated by the compiler (LO). In both
versions, the previous compiler optimization of abstracting
away redundant computations is included so that we use a
sophisticated and efficient simulation system as a baseline,
and so that the two versions have identical accuracy.

5.2 I mpact of Lookahead for  Synthetic
Benchmarks

The amount of computation in the 1D synthetic
benchmark is related to the minimum message latency in
the system (L=54µsec). The amount of computation
(which is abstracted away) is taken from a normal
distribution with three different means. Experiments are
conducted for means of L/4, L/8 and L/20 and a standard
deviation of 10% of the mean. In the first experiments, the
number of host processors is the same as the number of
target processors.

Table 1 shows the results for the 1D benchmark with
the 3 different means. The rows are divided into three
groups, representing the three means 2.7µsec, 6.75µsec
and 13.5µsec. The number of target processors is varied
from 4 to 100. The shaded areas represent a simulator’s
runtime greater than 2hrs (7,200sec), the maximum readily
available machine time. Clearly, the simulator’s ability to
extract lookahead results in better performance. As the
amount of lookahead increases (when the mean of the
distribution for the abstracted computation is increased),
the performance difference between NOL and LO also
increases.

Mean = L/20=
2.7µµµµsec

Runtime in seconds

Procs NOL LO

4 862.428 26.9109
16 4262.14 127.972

64 >7200 500.037

100 >7200 853.927

Mean = L/8=
6.75µµµµsec

4 2565.98 63.2986
16 >7200 325.567

64 >7200 1344.2

100 >7200 2413.35

Mean = L/4=
13.5µµµµsec

4 5901.44 149.262

16 >7200 859.935

64 >7200 4873.38

100 >7200 >7200

Table 1: Runtime for  MPI-Sim with and without
lookahead, 1D benchmark with var ious means.

Mean = L/20=
2.7µµµµsec

Number  of Protocol Messages

Procs NOL LO

4 4,445,148 111,258

16 22,226,220 556,800
64 2,351,223

100 3,713,391
Mean = L/8=
6.75µµµµsec

4 13,333,479 333,483
16 1,673,325

64 7,017,570

100 11,065,032
Mean = L/4=
13.5µµµµsec

4 30,613,356 740,817

16 4,558,590

64 24,971,247

100

Table 2 Null message per formance for  the 1D
synthetic benchmark.

The great differences in the runtimes of the simulators
are directly related to the number of protocol messages
needed to perform the simulation, as can be seen from
Table 2.

Similarly, for the 2D benchmark (with a fixed amount
of lookahead), MPI-Sim is able to use the lookahead to
improve the simulator’s performance by as much as two
orders of magnitude for up to 49 target processors (host
processors = target processors), as seen in Figure 1. For
more than 49 processors, the simulator which had no
lookahead information did not complete the simulation in
the available time (7,200sec). The improvement in
performance is directly related to the reduction in the
number of necessary null messages, as shown in Figure 2.

Runtime for 2D problem size
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Figure 1: 2D Synthetic Problem, the number  of host
processors equals the number  of target processors.



2D problem size
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Figure 2: Null message per formance for  the 2D
synthetic benchmark.

5.3 I mpact of Lookahead for  Sweep3D and SP

The previous results characterized the simulator’s
performance when the number of available host processors
was equal to the number of simulated (target) processors.
However, it is more often the case that the number of host
processors is smaller than the number of target processors.
Table 3 shows how the simulator performs when four host
processors are used to simulate a system of 4, 16, 64 and
100 processors. The benchmark is the 1D code and the
results are shown for normal distributions with means of
2.7µsec, 6.75µsec and 13.5µsec. The shaded areas
represent again a simulator’s runtime greater than
7,200sec. The NOL version is on the average 36 times
slower than the LO version.

Mean Target procs NOL LO

2.7µµµµsec 4 850.096 24.3271
16 891.166 27.26

64 1123.99 29.1321

100 1494.79 38.8056

6.75µµµµsec 4 2577.2 66.2126
16 2704.15 67.6685

64 3363.05 84.3307
100 4476.27 114.975

13.3µµµµsec 4 5952.25 145.72

16 6148.76 260.634

64  >7200 457.22

100  >7200 489.049

Table 3: Simulator ’s runtime for  the 1D problem
running on 4 host processors.

Although MPI-Sim with lookahead performed well for
synthetic benchmarks, it is important to evaluate its
performance on standard codes. We first look at the NAS
SP benchmark, size A (the smallest size in the suite).
Figure 3 shows the runtime of both NOL and LO when
simulating NAS SP. In this case, the number of host
processors is equal to the number of target processors. For

the NAS SP benchmark, the lookahead we were able to
extract allowed MPI-Sim to execute on the average 58.4%
faster then the original simulator. Again, the improvement
in performance is consistent with the decreased number of
messages. The simulator without lookahead needs on
average 72.5% more protocol messages (Figure 4).

NAS SP, class A
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Figure 3: Runtime of MPI-Sim when simulating NAS
SP class A.
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Figure 4: The number  of protocol messages needed for
synchronization in NAS SP.

The last set of experiments is for the Sweep3D
benchmark. Figures 5 and 6 show the performance of MPI-
Sim with a per processor fixed problem size of 4×4×255.
The host system uses 16 processors to simulate up to 64
target processors. For this configuration, LO runs on the
average 29.83% faster than the version without lookahead
(Figure 5), which corresponds to the 25% reduction in the
number of null messages (Figure 6).

16 Host Processors, 4x4x255

0

100

200

300

400

500

0 10 20 30 40 50 60 70

Target Processors

M
P

I-
S

IM
's

 r
u

n
ti

m
e

NOL

LO

Figure 5: Runtime of  MPI-Sim simulating Sweep3D,
4××××4××××255 per  processor  size, using 16 processors.
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Figure 6: Number  of null messages used by MPI-Sim
simulating Sweep3D, 4××××4××××255 per processor  problem

size.
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Figure 7: Runtime of  MPI-Sim simulating Sweep3D,
14××××14××××255 per  processor  size, using 16 processors.
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Figure 8: Number  of null messages used by MPI-Sim
simulating Sweep3D, 14××××14××××255 per  processor  size.

When the per-processor problem size is larger
(14×14×255 per processor size), the granularity of the
computation is greater (the lookahead is greater) and thus
the benefit from lookahead is increased. Figure 7 shows
the runtime of NOL and LO when using 16 host processors
and simulating target systems from 16 to 64 processors.
The performance improvement in the LO version is on the
average 45% faster and the decrease of null messages is on
the average 48%.

Our final two figures study the impact of lookahead
information on the speedup of the simulator.  We simulate

Sweep3D for a fixed total problem size of 1003 cells
running on a fixed target system of 128 processors, and
vary the number of host processors.  The LO version of
MPI-Sim performs on the average only 9.2% better than
the NOL version, mainly because the granularity of
computation per target processor is quite low for this case
(Figure 9).
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Figure 9: Runtime of MPI-Sim predicting the
per formance of 1003 total problem size and a 128

processor  target system.
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Figure 10: Speedup of MPI-Sim predicting the
per formance of 1003 total problem size and a 128

processor  target system.

Figure 10 shows that both versions achieve a maximum
speedup of about 3 when using 4 host processors, and their
speedup degrades beyond that point because the
computation granularity per host processor is decreasing,
thus decreasing the available lookahead.  Since only a
relatively small lookahead is available, the efficiency of
the parallel simulation is relatively poor and the difference
in performance of the LO and NOL versions is not as great
as in the cases where computation granularity is greater.  

6 Conclusions

In this paper, we have considered how compiler
analysis can extract lookahead information to improve the
performance of parallel simulation of message-passing
parallel applications. Our prior system used compiler
analysis to abstract away portions of the computational
code and replace them with analytical performance
estimates, yielding large benefits in simulator efficiency



(those benefits are obtained for either sequential or parallel
simulation).  In this paper, we showed that the compiler
estimates can be used to provide lookahead information to
the simulator, which can reduce the synchronization
messages required for the synchronization protocol used in
parallel simulation. We presented preliminary experiments
using two synthetic applications and two widely used real
world codes, which showed that using lookahead
information may potentially lead to large reductions in the
running time of the simulator.

We identify two key issues for future work.  First, we
must examine additional applications to evaluate to what
extent these applications benefit from techniques to
improve lookahead in parallel simulation.  Second, and
perhaps most exciting, we aim to explore how lookahead
estimation techniques could be used for arbitrary
computations, not just those whose results do not affect
performance.  This is important because such a technique
could lead to significant additional improvements for a
broad range of codes, especially irregular codes.  The key
challenge in this work would be to develop compiler
techniques for reliable lower-bound performance estimates
for computational fragments.
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