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ABSTRACT 

This paper is concerned with the scalability of large-scale grid monitoring and informa­
tion services, which are mainly used for the discovery of resources of interest. Large-scale 
grid monitoring systems have to balance between three competing performance metrics: 
query response time, imposed network overhead, and information freshness. Improving 
one of the three metrics will affect another; any solution will be based on a trade-off. The 
paper is motivated by the observation that existing grid monitoring systems can only be 
manually configured for a trade-off among the three metrics, which applies equally to 
all monitored resources; this implies that all resources in a grid are considered to be of 
equal importance. Assuming that in a large-scale grid setting this is unlikely to hold, the 
paper proposes an importance-based monitoring architecture for large-scale grid infor­
mation services, based on an adaptation of the web crawling paradigm. The main idea 
is that , since not all resources are of equal importance, one can vary the trade-off based 
on the relative importance of the monitored resources. The proposed architecture is de­
scribed and evaluated based on large-scale deployments of a prototype implementation 
on PlanetLab. 

Keywords: Grid Information Services, Large-Scale Grids, Importance-Aware Prefetching, 
Grid Monitoring 

1. Introduction 

The state of Grid computing, despite significant advances, is far from the original 
vision of a unified, worldwide Grid which would serve as a single platform for on­
line resource sharing. Numerous grids have been deployed across the world, but arc 
being used in isolation. The fragmentation of existing grid deployments reduces the 
overall value of the Grid as a sharing platform. This fragmentation of grids is due 
to a number of both technical and political issues that need to be addressed, such 
as scalability and interoperability. Generally speaking, existing middleware appears 
to be incapable of operating seamlessly for increasing numbers of grid administra­
tive domains, resources and users, whereas, there is a lack of integration between 
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competing or overlapping software development efforts. 
Of the above issues, this paper focuses on the scalability problem, specifically 

for grid monitoring and information services. Grid monitoring systems have to bal­
ance between three competing performance metrics (query response time, imposed 
network overhead, and information freshness). Improving one of the three metrics 
will affect another; any solution will be based on a trade-off. The key observation 
underpinning the work in this paper is that existing grid monitoring systems arc 
essentially configured to provide a specific trade-off among the three metrics that 
applies equally to all monitored resources. This implies that all resources in a grid 
arc considered to be of equal importance. However, in a large grid this may not be 
likely to hold; some resources may be more important than others. 

Thus, the main contribution of this paper is a proposal for an importance-based 
monitoring architecture for large-scale grid information services, which is based on 
an adaptation of the web crawling paradigm. Since not all resources arc of equal im­
portance, the key idea is that one can vary the trade-off separately for each resource, 
depending on the importance of the monitored resources. This implies an increased 
frequency of updates for the sites that host the most important resources, while 
lower freshness is maintained for the sites hosting the least important resources. A 
prototype of the proposed architecture has been implemented and experimentally 
evaluated. 

The remainder of the paper is organised as follows. Section 2 provides some back­
ground related to the proposal in this paper and highlights some relevant work from 
the literature. Section 3 presents the proposed architecture for importance-aware 
grid monitoring and describes the functionality of different components. Section 4 
evaluates experimentally the proposed architecture, based on large-scale deploy­
ments of a prototype implementation on PlanetLab. Section 5 reviews the paper's 
contributions, and discusses potential future work. 

2. Background and Related Work 

Existing grid monitoring and information services typically have a hierarchical (i.e., 
tree) structure. High level nodes collect and republish resource information from 
their child nodes (i.e., immediate descendants). Nodes at the lowest level (i.e., leaf 
nodes of the tree) are typically responsible for collecting resource information from 
a specific grid site. Users (with the right permissions) can query any of the nodes 
in the hierarchy for specific resource information. Every node maintains a local 
cache, where it caches resource information that it receives from its child nodes. A 
node may be configured to periodically collect all the information that is available 
from its child nodes, or may collect (and cache) resource information only upon the 
arrival of a query. The former approach answers queries making use of prefetching, 
whereas the latter approach is based on just in time evaluation of the query. 

The performance of grid monitoring and information services is mainly measured 
in terms of: (i) how quickly queries are answered (query response time); (ii) how 
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much network traffic a service generates to answer user queries (network overhead); 
and (iii) the extent that query results are fresh compared to the actual properties 
of the resources they describe (information freshness). A system cannot perform 
well in all of the above metrics at the same time: design choices affect the perfor­
mance trade-offs. An information service can be considered perfectly scalable when 
it can maintain low query response time, low network overhead and high informa­
tion freshness, in the face of a large number of monitored resources and a large 
number of queries. 

The grid community has developed several monitoring and information services 
[8, 17, 25, 24, 4, 1, 7]. These can be manually configured (e.g., via a static config­
uration file) for either prefetching or just-in-time evaluation (or a combination of 
the two). They are also configured to support a trade-off among the aforementioned 
performance metrics; this trade-off applies equally to all monitored grid resources. 
The performance of grid monitoring and information services has been the sub­
ject of several experimental studies. Some studies evaluate a single implementation 
[21, 16, 15], while others compare several systems [20, 19, 28, 29]. Some of the find­
ings indicate that current hierarchical structures cannot guarantee a consistently low 
Query Response Time. Although prefetching may improve Query Response Time it 
may impose a significant network overhead. Experimental studies indicate that the 
latter can vary greatly across different Grid settings, depending on the number of 
monitored resources, and that it grows in proportion to the number of cache misses, 
query selectivity, and query match size. To strike a balance for overall good per­
formance, the predominant view is that hierarchical structures for grid information 
services should be "rather narrow and deep" [29]. 

Going beyond the current state-of-the-art, the architecture proposed in this pa­
per aims to provide additional flexibility by using centrally-controlled prefetching, 
which makes use of a dynamically adjusted frequency of updates for each grid site, 
depending on the site's importance. The proposals in [14, 12] are similar to the one 
in this paper in that they also collect grid-wide resource information at a central 
relational database. However, both proposals collect detailed host and network re­
lated information (as opposed to the collections per grid site used in our proposal) 
and do not prescribe how monitoring is performed nor do they cope with varying 
frequencies of updates. Sundaresan et al. [23, 22] propose a host monitor in which 
the frequency of updates is dynamically adjusted, and information freshness is ex­
plicitly measured. The frequency of updates is adjusted after every update, based 
on whether the previously monitored value is up to date compared to the value 
retrieved from the latest update; thus, the frequency of updates becomes correlated 
to the frequency of resource changes, something that may not be desirable in the 
case of frequently changing properties. In contrast, our proposal provides more flex­
ibility by adjusting the frequency of updates based on specific information about 
the importance of the resources of a grid site. None of the cited systems has a notion 
of resource importance, and hence none allows to treat resources differently based 
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Fig. 1. Overall system architecture. 

on their importance. 
An important feature of this paper's proposal is the trade-off between informa­

tion freshness on the one hand and network overhead on the other. A relevant effort 
in the context of the web [9, 5] evaluates adaptive combinations of push and pull 
data acquisition methods to explore the trade-offs among freshness tolerance, com­
putational and network overheads and resiliency. Freshness tolerance refers to the 
acceptable deviation of the monitored value from the actual value, or the maximum 
age of non-fresh values (e.g., a user may assert that "non-fresh values arc acceptable 
but only for up to 5 minutes"). The work in [9, 5] is concerned with the frequency of 
change of a single monitored value and the acceptable tolerance of lack of freshness. 
This approach is not easily applicable in the grid context, as one would have to 
consider the frequency of change and freshness tolerance for all monitored resource 
properties. Instead, the present paper assumes that user expectations about infor­
mation freshness vary based on the importance of a resource, i.e., that users arc 
more likely to tolerate stale information when it refers to less important resources. 

3. An Architecture Based on Importance-Aware Prefetching 

Assuming that in a large-scale grid one may reasonably expect that not all resources 
are of equal importance, one can redefine the large-scale grid monitoring problem 
by allowing the information freshness versus network overhead trade-off to be dealt 
with at a site-level basis, taking into account the importance of grid resources at 
every site. This would imply an increased frequency of updates (hence, maintaining 
higher freshness) for the sites that host the most important resources, while lower 
freshness is maintained for the sites hosting the least important resources. Further­
more, the frequency of updates per site can be dynamically adjusted by periodically 
re-evaluating the importance of all known grid resources. 

This approach has been realized by the architecture shown in Figure 1. In its 
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abstract form, this can be seen as an adaptation of the web crawling paradigm 
[3] for the purpose of large-scale grid monitoring [10, 11, 27]. In the figure, boxes 
with solid lines denote administrative boundaries; boxes with dashed lines denote 
hosts; boxes with rounded corners denote software programs. The architecture dis­
tinguishes between two kinds of administrative domains: grid sites, which host grid 
resources, and one (or more) monitoring site, which monitors the resources across 
grid sites. These two kinds of sites, and the functionality therein are explained next. 

3.1. Grid Sites 

Administrative domains that host grid resources are referred as grid sites. A grid site 
is one or more networks and resources therein with a common sharing policy, and 
at least one grid information service. Every grid site is expected to host a proxy. A 
proxy periodically collects information about the resources in its site, cither directly 
from resources themselves or via the site's information service(s) (the latter case 
is shown in Figure 1). The purpose of proxies is to provide a contact point with 
a consistent network interface and resource representation for every grid site. The 
proposed architecture is intended to operate on top of existing information services; 
thus, to overcome interoperability problems due to the diversity of existing grid 
information services, a simplified version of the GLUE information model [2] has 
been adapted (see [26, Section 4.4]). 

Proxies provide information about their local resources upon request, via stan­
dard HTTP (HyperText Transfer Protocol). Four types of queries to proxies can 
be made: (i) provide all available resource information; (ii) provide all available in­
formation about a specific resource; (iii) provide all available resource information, 
excluding data that has not changed since a specified timestamp; and (iv) provide 
all available information about a specific resource, excluding data (about this re­
source) that has not changed since a specified timestamp. The response to queries 
of the first two types is a full update (either for all the resources or for specific 
resources), whereas the response to queries of the last two types is a differential up­
date. Differential updates are implemented using a standard if-modified-since HTTP 
header. Their purpose is to minimize the network overhead by not collecting the 
same information more than once; that is, information that is already available at 
the monitoring site and has not changed since the last query to the proxy was made 
(hence, it is up to date). A differential update may include three types of events: 
(i) a change of information that has been previously collected; (ii) an addition of 
new resources, and thus newly available information that has to be collected; (iii) a 
removal of previously monitored resources, in which case the relevant information 
about the removed resources at the monitoring site has to be discarded. 

3.2. Monitoring Sites 

The purpose of monitoring sites is to provide large-scale information services for 
grid resources. To do so, a monitoring site has to systematically collect resource 
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1 retrieve proxy addresses, importance of sites, 
2 timestamp of previous update at every site 
3 while true { 
4 for every site { 
5 if site has not been visited before { 
6 request full update from proxy 
7 store received update in temporary store 
8 } else if now - timestamp of previous site update 
9 + window > site update interval { 
10 request differential update from proxy 
11 store received update in temporary store 
12 } 
13 } 
14 if a notification was received from the importance evaluator { 
15 retrieve latest site importance values from main store 
16 re-evaluate the update interval of every site 
17 > 
18 } 

Fig. 2. High-level pseudo-code of the crawler. 

information from proxies throughout the Grid, keep it up to date, and perform 
any necessary pre-processing to enable high-performance querying of information 
about all known grid resources. This work does not explicitly deal with proxy dis­
covery by the monitoring sites. In the simplest case, it can be assumed that grid 
site administrators manually submit their sites' proxy addresses to a monitoring 
site. Alternatively, a monitoring site could use an automated method that scans IP 
addresses for certain services (e.g., [6]). 

The remainder of this section describes the software infrastructure of a monitor­
ing site: a crawler, a data manager, an importance evaluator, a database front-end, 
and the relevant storage requirements (Figure 1). 

Crawler The crawler is responsible for collecting resource information from 
proxies. At the core, the present implementation of the crawler is a HTTP client 
that uses non-blocking I/O for high performance, and implements policies to deter­
mine the frequency of requests to every proxy. Figure 2 shows a highly abstracted 
description of the crawler's logic (which does not account for the complex network­
ing functionality). 

At launch time, the crawler (lines 1-2 in Figure 2) retrieves from the main 
store (as discussed in the paragraph "Storage" of this section, this is a relational 
database): (i) the address of every site's proxy; (ii) the importance of every site; 
and, (iii) the timestamp of the latest update that has been received from every 
site (a special value is used to denote that a site has never been visited). The 
timestamp of the latest update of every site is renewed as soon as the crawler 
performs a new update at that site. The crawling process is described in lines 3-13 
of Figure 2. The crawler iterates over the list of proxy addresses. If a site has never 
been visited before, a full update is requested. Otherwise, the crawler requests from 
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the proxy a differential update, on the condition that the time since the previous 
update from that proxy plus a predefined window exceeds the update interval for the 
specific site (the window is meant to mitigate potential delays between requesting 
an update from a proxy until a response has been received.) The if-modified-since 
HTTP header for the differential update is set to the timestamp of the previous 
update that has been received from the specific site. 

The importance evaluator notifies the crawler whenever the former re-evaluates 
the importance of all sites. On this occasion, the crawler retrieves the latest site 
importance values. These values are between 0 and 1 and they arc used to re­
calculate the update interval of every site (lines 14-17 in Figure 2). In other words, 
the frequency of visits per site is determined based on site importance, the general 
principle being that the freshness of the information about a resource should be 
proportional to the importance of the resource the information refers to. 

The crawler implements two ways of mapping site importance to frequency of 
updates: topn and proportional. In topn mode, the crawler operator specifies the 
frequency of updates for (i) the top N% most important sites; and (ii) the remaining 
100—N% less important sites (e.g., update the top 10% of sites every 5 minutes, and 
the remaining 90% every 20 minutes). In proportional mode, the crawler operator 
specifies the minimum and maximum allowed frequency (say minj and rnaxf) and 
the crawler dynamically maps importance (say imp) to an appropriate frequency 
(say / ) between the minimum and maximum. This is based on standard linear 
mapping, i.e., / = minj + (1 — imp) x (maxf — minf). 

Data Manager The resource information, as provided by proxies, is encoded in 
RDF/XML, a standard way to notate RDF triples in XML. However the current 
state of the art for querying RDF cannot deliver the low query response time that 
is required in grid-wide information services. On this basis, resource information is 
transformed for storage in a relational database. Specifically, a data manager uses 
the incoming RDF/XML resource updates to generate the appropriate SQL insert, 
update and delete statements. The data manager constructs such statements on the 
fly based on a predefined mapping between the source RDF schema and the target 
relational schema. 

Importance Evaluator The importance evaluator (or simply evaluator) is the 
program that calculates the importance of all sites based on a predetermined cri­
terion. This criterion is orthogonal to the description of the architecture and the 
reader is referred to [26, Ch. 5] for further information. In this paper, wc only need 
to assume that importance values range from 0 (least important) to 1 (most im­
portant). The importance values are periodically re-evaluated to reflect potential 
changes that can affect a site's importance (e.g. the addition of a new cluster ser­
vice). The assumption is that the importance of sites may vary over time, and that 
has to be taken into account for the adjustment of the update frequency of every 
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site. Upon completion of re-evaluating resource importance, the evaluator notifies 
the crawler to retrieve the latest importance of all sites and rc-cvaluatc accordingly 
the frequency of updates per grid site. 

Storage The crawler stores proxy responses (i.e., full and differential updates) 
in a temporary store, along with the time at which they are downloaded. The data 
manager processes the updates as a FCFS queue (i.e., ordered by time of arrival 
and starting from the oldest). Both the temporary store and the main store arc 
RDBMSs, although a filesystem could also be used for the temporary store. The 
main store, however, is required to have the query expressiveness of SQL. The 
RDF/XML updates in the temporary store are processed by the data manager 
to generate the appropriate SQL statements for inserting, updating and removing 
resource information to and from the main store. Conventional database replication 
techniques can be used to distribute the query load imposed on the main store 
across several databases. 

Database Front-end The database front-end is a program that accepts query 
identifiers via a TCP port, and forks a message handler thread for every incoming 
message. A message handler thread submits the query that corresponds to the 
identifier that is specified in the received message, to the main store, and records 
QRT upon the completion of the query. The database front-end is located at the 
same host as the main store. In a setting where the main store would be replicated, 
the database front-end should also perform load-balancing. 

3.3. Example Operation 

To exemplify, this section describes the operation of the described architecture in a 
hypothetical scenario. The following assumptions are made: (i) the monitoring site 
has a list of proxy addresses; (ii) the crawler operates in topn mode, in which the top 
10% sites are updated every 5 minutes and the remaining 90% of sites arc updated 
every 20 minutes; and, (iii) the importance evaluator re-evaluates the importance 
of sites every 24 hours. 

At launch time, the crawler retrieves the addresses of all known proxies. For 
simplicity, the discussion assumes that all sites have not been monitored before. 
The crawler requests from every proxy a full update (containing data about all 
resources at every site). Every update that is received is stored by the crawler at 
the temporary store. Some proxies may occasionally timeout, in which case the 
crawler resets the corresponding connections and rc-sends the request. This process 
is performed until all proxies have responded with a full update. 

At the same time, the data manager constructs SQL INSERT statements to 
populate the main store based on the full updates that are placed at the temporary 
store by the crawler. As soon as all updates are received by the crawler and processed 
by the data manager, the latter notifies the importance evaluator. The importance 
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cvaluator calculates every site's importance, stores the outcome at the main store, 
and notifies the crawler. 

The crawler retrieves from the main store the latest importance values of all sites. 
The values arc used to rank the sites. Based on the ranking the crawler determines 
whether a site should be updated every 5 or 20 minutes. Eventually, at 295 seconds 
(5 minutes minus a window of 5 seconds) after the receipt of the full update of every 
one of top 10% most important sites, a new request is sent to each of the topn sites. 
The request is conditional, using the timestamp of every site's previous update as 
the value for the if-modified-since header. The crawler stores the differential updates 
at the temporary store as soon as they arrive. The data manager uses the differential 
updates to construct the equivalent SQL UPDATE statements. 

The same process is performed two more times (at 10 and 15 minutes since the 
initial crawl) until minute 20, at which point all proxies, including the 90% least 
important, are contacted for differential updates. In the mean time, some sites may 
host new cluster services while others may seize to host previously offered cluster 
services. These additions and removals are reported by proxies in differential up­
dates. In these cases, the data manager constructs SQL INSERT and SQL DELETE 
statements to keep up to date the main store. After the user-specified 24 hour in­
terval, the importance evaluator re-evaluates the importance of all sites, taking into 
account potential changes in the cluster service offerings at every site. Once again, 
the crawler is notified by the importance evaluator, and re-calculates the update 
interval per site accordingly. 

4. Evaluat ion of t he Proposed Archi tec ture 

4 .1 . Prototype Implementation and Deployment Issues 

The proposed architecture has been implemented as a prototype. The crawler, data 
manager, importance evaluator, proxies, database front-end and query generator 
are implemented in Java using JDK version 1.5. The programs that interact with 
any of the two databases (namely, crawler, data manager, importance generator, 
and database front-end) use MySQL Connector version 3.1.8. The monitoring site's 
crawler, data manager, importance evaluator and databases are deployed across 4 
hosts, as shown in Figure 1. These hosts are located at the University of Manch­
ester, and are interconnected via a 100 Mbps LAN. The main store is MySQL, 
version 4.1.12-standard. The PC hosting the main store is a Pentium 4 at 2.4 GHz, 
with 512KB cache size, 512MB RAM, running Linux 2.4.20-31.9. The prototype's 
behaviour has been validated, for a number of settings [26, Section 6.2.2]. 

In order to assess the performance trends of the proposed architecture for various 
problem settings and grid sizes in realistic conditions, PlanetLab [18] has been 
used to deploy proxies in up to 100 hosts across North America, Europe, Australia 
and Asia. PlanetLab is a worldwide tcstbed for experimenting with Internet-scale 
services, with more than 800 nodes over about 400 sites as of mid-2007. Every 
PlanetLab node is potentially used by many users, and no guarantees are made 
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about host availability or performance (e.g., hosts may be rebooted or get overloaded 
at any time). As a result, the successful completion of an experiment that involves 
a large number of nodes is non-trivial. PlanetLab is a suitable evaluation platform 
for the present work, because it exhibits a dynamic behaviour, similar to what one 
would expect from geographically distributed servers that host grid information 
services. 

To ease the execution of experiments, we run 50 proxy instances per Planet­
Lab host. The collocation of many proxies per host does not have any significant 
impact on the measured performance metrics because proxies arc not computation­
ally intensive. (Proxies' main tasks are to keep track of information regarding local 
resources, and to respond to fairly infrequent HTTP requests from crawlers.) For 
efficiency reasons, primarily memory usage, all proxy instances located in one host 
arc running within a single Java Virtual Machine (JVM). Nevertheless, proxy in­
stances within the same JVM are independent: they have distinct state and threads 
of execution, maintain a separate log file, and listen to a different TCP port. 

The first task performed by every JVM is to synchronize its clock with the 
clock of the data manager (which has a thread specifically for this purpose) at the 
monitoring site. This time synchronisation is necessary for the following reasons: 
(i) information freshness is calculated based on timestamped logs of proxies and 
the data manager; (ii) PlanetLab hosts are located in different time zones; and 
(iii) although PlanetLab hosts are meant to be synchronised (using the Network 
Time Protocol) this is not always the case. 

The launch script runs remotely a script (via non-interactive ssh) on every Plan­
etLab host; the latter script launches the main Java program that forks a given 
number of proxy instances on every PlanetLab host. Once all proxies are up and 
running at a host and the TCP ports at which they listen to are known, the crawler 
is run to perform a full update on all proxies. Once all information for all sites 
has been retrieved and inserted into the database, one can then launch the actual 
experiment. This involves: (i) Launch of the data manager for processing the RDF-
encoded differential updates that are downloaded by the crawler, (ii) Re-launch of 
the crawler, this time requesting from proxies exclusively differential updates, (iii) 
Launch of the importance evaluator. (iv) Initiation of resource event generation: all 
proxies are notified to start generating resource changes according to a pre-specified 
setting, (v) Launch of the database front-end: a program that accepts identifiers of 
predefined queries, submits the associated queries to the database, and records the 
response time to every query. The database front-end is hosted at the same node 
as the main RDBMS for performance reasons, (vi) Launch of the query generator, 
which emulates a specified query workload (submitted from the users). A query 
workload determines the type, number and arrival pattern of queries that should 
be submitted to the database front-end. Finally, it is noted that all experiments 
terminate after 60 minutes. 

For the purpose of the experiments, proxies do not actually collect data from 
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deployed information services, as this would have had many practical complications. 
Instead, proxies generate synthetic site profiles (i.e., information about a site and 
the cluster services hosted therein) in RDF/XML according to the adapted GLUE 
model. For every cluster service of a grid site, the site profile includes information 
about properties of this cluster service, such as hardware and software configura­
tion, load status, etc. The work in [13] has been used to generate the hardware 
configuration, whereas a number of basic assumptions have been made with respect 
to other properties. It is noted that, at this stage, the aim is to evaluate the be­
haviour of the architecture with respect to changes of these properties as opposed 
to the precise fine-grain modelling of these properties. 

With respect to events that denote changes in the status of resources and their 
properties, a separate thread in every proxy, the EventGenerator, is used. Whenever 
a new event occurs, the EventGenerator notifies the main proxy thread to update 
its RDF representation of site profile. The average time between consecutive occur­
rences of every event type is predetermined. 

4.2. Performance Metrics 

As already stated in Section 2, the performance of a grid information service is 
measured primarily according to three performance metrics: network overhead, in­
formation freshness and query response time. In the context of our experiments 
these are measured as follows. 

Network Overhead Network overhead is measured as the number of bytes that 
the crawler downloads during an experiment. Essentially, this is the sum of the 
number of bytes downloaded for each update of the monitoring site carried out by 
the crawler. We further distinguish the network overhead to the network overhead 
due to: (i) full updates that the crawler carries out when it first visits every site; and, 
(ii) differential updates that the crawler carries out after it has visited at least once 
a site and where only information that has changed since the last visit is collected. 
Clearly, the total network overhead is the sum of the two. 

Information Freshness A value for a particular resource property stored at a 
monitoring site is considered fresh, at a given point in time, if it is synchronised 
with its real-world equivalent value at the grid site (that is, both values arc the 
same). Thus, information freshness, at time t, of a collection of resources C that 
has k resource property values pj is given by: 

j=0 

where F(pj,t) is 1, if the property value pj is up to date at time t, and 0 other­
wise. This implies that, at a given time, the information freshness of a collection 
of properties indicates the percentage of resource properties that arc up to date at 
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that point in time. To measure information freshness throughout an experiment, it 
is useful to define time-average information freshness or simply average freshness 
as the average of the information freshness at j consecutive equally-distanced time 
points during a time interval T (e.g., the duration of the experiment). Thus: 

1 i~1 

FC,T = -Y,Fc,t- (2) 
7 — 

The prototype keeps timestamped logs of resource changes in every proxy, and of 
database updates by the data manager. At the end of an experiment, all proxy logs 
arc collected at a single host. By processing the proxies' logs and the data manager's 
logs, a script calculates information freshness for every property of every resource, 
at consecutive periods of 1 minute, using the formulas above. The results reported 
next refer to average information freshness. It is noted that only the 5 properties 
that do change during experiments are taken into account in the calculation of 
freshness. This makes it easier to study the behaviour of this metric; including 
all properties would produce significantly higher values for freshness and smaller 
deviations between different measurements. 

Query Response T ime Query Response Time is measured as the server-side cost, 
i.e., the interval from the receipt of a query identifier by the database front-end until 
the time at which the query results are ready to be sent back to the user who set the 
query. The database front-end keeps a log-file with the response time of each query 
processed during an experiment. Same as before, it is helpful to use the average 
query response time to denote the average value of the set of Query Response Time 
values in the database front-end's log-file at the end of a given experiment. 

4.3. Exploring the Evaluation Space / Settings 

The evaluation is carried out for several problem settings that are defined in terms of 
the following parameters: grid size (i.e., number of grid sites and cluster services per 
site); event generation mode (i.e., frequency of changes per event type); frequency 
of updates; total number of queries and distribution of query arrivals; and query 
complexity and selectivity. It is noted that the number of possible problem settings 
is potentially too large. The evaluation considers 20 different settings: a baseline 
setting, and 19 settings that differ from the baseline only in terms of one param­
eter. The purpose of this is to investigate performance trends for each parameter 
separately. 

The rationale for choosing parameter values is as follows. The baseline represents 
the average case, and at least two more values are considered for every parameter: 
one more and another less demanding than the baseline setting. The exact parameter 
values that are chosen are not particularly important, as long as they represent a 
reasonably wide problem space. 

The baseline setting has the following parameter values: (i) grid size: 2000 grid 
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setting id 

gr 
si 
s2 
s3 
s4 
sO 
s6 
s7 
s8 
s9 

r l 
rO 
r3 

u l 
uO 
u3 
u4 
u5 

ql 
qO 
q3 
q4 

cl 
cO 
c3 

value of varied property 

id size (number of grid sites and cluster services per site) 
500 grid sites; 1 cluster service per site 
500; 5 , 
500; 10 
2000; 1 
2000; 5 
2000; 10 
5000; 1 
5000; 5 
5000; 10 

average frequency of resource changes (per event type) 
all 5 event types every 1 minute 
every 1, 2.5, 5, 10, 20 minutes, respectively 
all 5 event types every 10 minutes 

update frequency of grid sites 
all sites every 1 minute 
all sites every 5 minutes 
all sites every 15 minutes 
10% of sites every 5 minutes; 90% of sites every 15 minutes 
between 1 and 15, determined proportionally to site importance 

number of queries and query arrivals 
2000 queries uniformly distributed 
4000 queries uniformly distributed 
2000 queries distributed uniformly over 10 bursts 
4000 queries distributed uniformly over 10 bursts 

query complexity and selectivity 
low-complexity queries 
high-complexity queries with high selectivity (40%) 
high-complexity with low selectivity (10%) 

Fig. 3. Problem settings considered in the evaluation. 

sites and 5 cluster services per site; (ii) event generation mode: resource changes 
for 5 event types (each one corresponding to a different resource property) occur 
on average every 1, 2.5, 5, 10, 20 minutes, respectively; for instance, property A 
changes on average every 1 minute, property B every 2.5 minutes, and so on; (iii) 
update frequency: all sites are visited by the crawler every 5 minutes; (iv) number of 
queries and query arrivals: 4000 queries uniformly distributed over the experiment 
duration; (v) query complexity and selectivity: high complexity query with high 
selectivity (described below). 

The 19 variations of the baseline setting are shown in Figure 3. In the "setting 
id" column of the table, every parameter is denoted with a different letter; every 
value that is considered for a parameter is indicated with a distinctive number. The 
baseline value for a given parameter is indicated with the number zero. For example, 
the letter 's' indicates the grid size parameter, and 'sO' indicates the baseline setting 
for grid size. 

For grid size, we considered 500, 2000 and 5000 sites. Each of these values was 
also considered with 1, 5 and 10 cluster services per site (sl-s9 Figure 3). In terms 
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of the frequency of resource changes, in addition to the baseline, two more cases 
were considered: that all event types occur every 1 minute (rl) or every 10 minutes 
(r3). Proxies were queried by the crawler for differential updates, every 1 or 15 
minutes in the ul and u3 settings. Resource importance was considered in the u4 
and u5 settings (i.e., topn and proportional modes, as described in Section 3.2). With 
respect to query workload, we considered 2000 or 4000 queries uniformly distributed 
throughout the experiment duration (ql and baseline settings, respectively). In 
settings q3 and q4, queries are evenly distributed in 10 bursts. For instance, in q3 
(resp. q4) every burst consists of 200 (rcsp. 400) queries. The bursts arc evenly 
distributed across the experiment duration, with the restriction that the last burst 
must occur 5 minutes before the end of the experiment. The queries of a burst that 
starts at time t arc scheduled at time t + d where d is normally distributed with 
fj, = 0, a = 30 seconds. 

The queries used in the evaluation are listed in Figure 4. It is assumed that 
query complexity is affected by the number of conditions in a SELECT query and 
the potential use of aggregate conditions (i.e., conditions on features that are not 
explicitly stored and have to be calculated on the fly using GROUP BY and HAV­
ING clauses). The cl query is considered low-complexity as it has only one condition 
and one join, cl matches subclusters of at least 64 hosts each, which arc ordered by 
subclustcr size. The cO and c3 queries have more conditions, two of which arc aggre­
gate. cO (resp. c3) matches sites that host at least 64 (resp. 128) hosts (regardless 
of whether they belong to more than one cluster service), and have at least 10 TB 
of aggregate storage and at least 10 GB of aggregate RAM. The queries cO and c3 
arc identical, except that cO selects cluster services at sites that have in total at 
least 64 hosts, as opposed to 128 in c3. These numbers were chosen to adjust the 
selectivity of the queries to approximately 40% and 10%, respectively. 

4.4. Results 

Network overhead The plots in Figure 5 show how the network overhead that 
is imposed by monitoring is affected by frequency of resource changes, grid size, 
and frequency of updates (respectively, top, middle and bottom plots). Every plot 
has one bar per setting, and every bar is separated in two parts, which indicate: 
(i) the total network overhead, and (ii) only the overhead of differential updates 
(i.e., excluding the overhead for the initial full updates). More important is the 
network overhead of differential updates, as the full updates are performed only the 
first time a proxy is visited. 

As expected, the middle plot in Figure 5 shows that the network overhead in­
creases linearly with the number of monitored cluster services. Conversely, the net­
work overhead decreases linearly as the frequency of resource changes increases. 
The same is also true when it comes to the frequency of updates (bottom plot in 
Figure 5). It is interesting to note here that an increase of a certain order in the 
frequency of updates does not guarantee an increase of exactly the same order in the 
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c l : low complexity query 
SELECT C l u s t e r S e r v i c e . s i t e l D , ClusterService.hasClusterServiceName, 

SubCluster.hasNumberOfHosts FROM Clus te rServ ice , SubCluster 
WHERE SubCluster.hasNumberOfHosts >= 64 

AND Clus te rSe rv ice . id = SubCluster .servicelD 
ORDER BY SubCluster.hasNumberOfHosts DESC LIMIT 100 

cO: high complexity query with high s e l e c t i v i t y (approximately 407.) 
SELECT S i t e . i d , S i t e . t o t a l H o s t s , ClusterService.hasClusterServiceName 

SUM(SubCluster.hasSizeGB*SubCluster.hasNumberOfHosts) AS totalStorageGB 
SubCluster.hasRAMsizeMB*SubCluster.hasNumberOfHosts AS totalRAMsizeMB 

FROM S i t e , Clus te rServ ice , SubCluster 
WHERE S i t e . t o t a l H o s t s >= 64 

AND S i t e . i d = C lus t e rSe rv i ce . s i t e lD 
AND ClusterService . ID = SubCluster .servicelD 

GROUP BY Clus t e rSe rv i ce . s i t e lD 
HAVING totalStorageGB >= 10000 

AND totalRAMsizeMB >= 10000 
ORDER BY S i t e . t o t a l H o s t s DESC LIMIT 100 

c3 : high complexity query with low s e l e c t i v i t y (approximately 10'/.) 
SELECT S i t e . i d , S i t e . t o t a l H o s t s , ClusterService.hasClusterServiceName 

SUM(SubCluster.hasSizeGB*SubCluster.hasNumberOfHosts) AS totalStorageGB 
SubCluster.hasRAMsizeMB*SubCluster.hasNumberOfHosts AS totalRAMsizeMB 

FROM S i t e , Clus te rServ ice , SubCluster 
WHERE S i t e . t o t a l H o s t s >= 128 

AND S i t e . i d = C lus t e rSe rv i ce . s i t e lD 
AND ClusterService . ID = SubCluster .servicelD 

GROUP BY Clus t e rSe rv i ce . s i t e lD 
HAVING totalStorageGB >= 10000 

AND totalRAMsizeMB >= 10000 
ORDER BY S i t e . t o t a l H o s t s DESC LIMIT 100 

Fig. 4. Definition of the queries used in the evaluation. 

number of monitored events (because there may not be as many events occurring 
in the first place). Likewise, an increase of a certain order in the frequency of events 
per se docs not necessarily increase the network overhead at the same order, be­
cause the occurrence of more events does not guarantee that they will be monitored. 
For example, the ul setting, where updates are performed 5 times more frequently 
compared to uO, has approximately twice the differential network overhead of uO. 
Similarly, u3, in which updates are performed 3 times less frequently compared to 
uO, has less than half the differential network overhead of uO. Finally, with respect 
to making use of resource importance, u4 and u5 have, respectively, less than half, 
and about two thirds of the differential updates network overhead of the baseline 
setting. 

Average information freshness The plots in Figure 6 show how information 
freshness is affected by frequency of resource changes, grid size, and update fre­
quency. In Figure 6 (top plot) it can be seen that freshness increases proportionally 
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full + differential updates t i 
differential updates Erszra 

frequency of resource changes 

full + differential updates i " i 
differential updatea-e^ca 

m m ^ N m m 
s1 s2 s3 s4 

full + differential updates i : ' ,.',.) 
differential updates eiicsia 

uO u3 u 
update frequency of grid sites 

Fig. 5. Network overhead for several variations of the baseline setting. 
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Fig. 6. Average information freshness for several variations of the baseline setting. 



364 S. Zanikolas & R. Sakellariou 

to decreases of the frequency of resource changes. The middle plot indicates that 
freshness remains constant for different grid sizes, except when there is a large num­
ber of monitored service clusters, in which case it drops (settings s6, s8, s9). It has 
been found that this is implementation-specific and it is caused by high load at the 
main store. The bottom plot of Figure 6 shows the effect of update frequency to 
information freshness. In the ul setting, where updates occur on average 7.7 times 
faster than changes, average freshness is 75%. Average freshness drops to 56% and 
34% for uO and u3, respectively. The average freshness for u4 and u5 deserves fur­
ther analysis as, in these settings, freshness varies significantly across sites based on 
site importance. 

Thus, Figure 7 shows the average information freshness of the resources of a 
site compared to the importance of that site, in three different experiment settings: 
baseline (uO), topn (u4), and inversely proportional (u5). In the baseline experi­
ment (top plot in Figure 7), all sites arc updated every 15 minutes. Thus, average 
freshness is approximately the same for all sites. The middle plot shows that sites 
are distinguished in two groups; the smaller group has higher average information 
freshness. In the u5 experiment (bottom plot in Figure 7) the update frequency 
of a site is inversely proportional to its importance, and is mapped in the range 
[1, 15] minutes. It is interesting to observe that the average information freshness 
in this case shows some power-law connection with the site's importance: very few 
sites (with high importance) exhibit high information freshness, whereas many sites 
(with low importance) exhibit lower information freshness. 

Average query response t ime Figures 8 and 9 show how QRT is affected by 
variations in all of the considered problem settings. It can be seen in the top plot 
of Figure 8 that the difference of QRT between cl and cO is significant, as the 
latter has to calculate some aggregate values on the fly and has more conditions. 
On the other hand, QRT in cO is very close to that of c3, despite the difference 
in query selectivity. The middle plot shows how QRT is affected by the number 
and distribution of query arrivals. The relative difference between ql and qO on 
the one hand (2000 and 4000 queries respectively, uniform), and q3 and q4 on the 
other (2000 and 4000 queries respectively, 10 bursts), is negligible (less than 3%). 
The pattern of query arrivals however makes a significant difference (17% relative 
difference between ql and q3; 15% between qO and q4). The bottom plot at Figure 8 
indicates that the frequency of resource changes (which affects the imposed update 
load at the main store) does affect QRT but not significantly. The same holds for 
the effect of update frequency of grid sites (bottom plot of Figure 9). Finally, the 
top plot in Figure 9 shows that the relation of grid size (and as a result database 
size) and QRT tends to be proportional. 

Discussion This section evaluated a prototype implementation of the proposed 
architecture using PlanetLab. Several problem settings were considered, including 
configurations of up to 5000 sites and 50000 cluster services. The results of the 
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Fig. 7. Average information freshness per site versus site importance, in the baseline (top), u4 
(middle), and u5 (bottom) settings. 



366 S. Zanikolas & R. Sakellariou 

250 

150 

100 

50 

1 

• 

• 

i i 

1 

-

-

-

-

query complexity and selectivity 

1 

8 1 
I 

ra
ge

 

* 
nj 

300 

250 

200 

150 

100 

50 

' 

. 

-

' 

-

• 

. 

. 

-

q1 qO q3 q4 
number of queries and query arrivals 

frequency of resource changes 

Fig. 8. Average QRT for variations of the baseline setting in terms of query complexity and 
selectivity (top), number of queries and query arrivals (middle), and frequency of resource changes 
(bottom). 



An Importance-Aware Architecture for Large-Scale Grid Information Services 367 

n fl n 1 11 1 11 11 I 
s1 s2 s3 s4 sO s6 s7 s8 s9 

grid size 

300 

250 -

? 
i 2 0 ° -
9! 

I 150 -

$ 
i 
S 100 • 

n 

50 -

0 ' 1 1 1 ' ' 1 1 1 1 
U1 uO u3 u4 u5 

update frequency of grid sites 

Fig. 9. Average QRT for variations of the baseline setting in terms of grid size (top) and update 
frequency of grid sites (bottom). 

PlanetLab experiments have been promising. Despite the highly volatile nature of 
PlanetLab (whose hosts are shared at the same time by many users), the prototype 
behaves as expected. Thus: (i) the network overhead increases proportionally with 
the frequency of resource changes, the inverse of the frequency of updates as well 
as with the number of sites and services; (ii) the average information freshness 
depends on the frequency of resource changes and updates; and, (iii) the query 
response time is primarily affected by query complexity and selectivity. In addition, 
implementation decisions appear to make an impact only on information freshness 
and large sizes (this is related to the ability of the data manager to scale with an 
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increasing number of incoming updates; however, this could be improved by using 
multiple databases). Finally, the results obtained when updates arc adjusted based 
on resource importance demonstrate the potential of the architecture to provide 
high information freshness for those resources deemed to be important. 

5. Conclusion 

This paper has redefined the problem of large-scale grid information services by 
making it possible to adjust the information freshness versus network overhead 
trade-off on a site-level basis. The proposed architecture, based on importance-aware 
prefetching, collects information in advance of query arrivals. Thus, it achieves low 
query response times, while at the same time it has the capability to: (i) main­
tain high information freshness for sites that are considered to be important; and 
(ii) control the imposed network overhead. Evaluation results of a prototype imple­
mentation on PlanetLab demonstrate the performance trade-offs between network 
overhead, frequency of resource changes, and frequency of updates for several set­
tings. 

Further work could consider additional evaluation settings; as already mentioned 
the possible evaluation space is potentially too large. Such work could provide more 
informative answers to questions such as 'what is the required frequency of updates 
to attain a certain level of information freshness', or 'how to choose update fre­
quencies so that the network overhead does not exceed a certain value'. Porting 
the implementation onto existing grid platforms and comparing with existing im­
plementations of grid information services would also provide more insight. Early 
experiences based on performance models [26] suggest that the approach proposed 
in this paper has the potential to outperform existing hierarchical, just-in-timc, im­
plementations of grid information services, both in terms of the network overhead 
and query response time; however, this also needs further investigations. Finally, 
an important direction that has not been addressed in this paper relates to differ­
ent definitions of resource importance that can be adapted on-the-fly as it may be 
required. 

Acknowledgements 

This research work is carried out partially under the FP6 Network of Excellence 
CorcGRID funded by the European Commission (Contract IST-2002-004265). 

References 

[1] S. Andreozzi, N. Dc Bortoli, S. Fantinel, A. Ghisclli, G. L. Rubini, G. Tortonc, and 
M. C. Vistoli. GridlCE: a Monitoring Service for Grid Systems. Future Generation 
Computer Systems, 21(4):559-571, 2005. 

[2] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Konya, M. Mambclli, J. M. 
Schopf, M. Viljoen, and A. Wilson. GLUE Schema Specification, version 1.2. 
http://infnforge.cnaf.infn.it/glucinfomodel. 

http://infnforge.cnaf.infn.it/glucinfomodel


An Importance-Aware Architecture for Large-Scale Grid Information Services 369 

[3] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan. Searching the 
Web. ACM Transactions on Internet Technology, l ( l) :2-43, 2001. 

[4] Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajda. From Cluster Monitoring to 
Grid Monitoring Based on GRM. In R. Sakellariou et al., editors, Proceedings of the 
7th International Euro-Par Conference, volume 2150 of Lecture Notes in Computer 
Science, pages 874-881, Manchester, UK, August 2001. Springer-Verlag. 

[5] M. Bhidc, P. Dcolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shcnoy. 
Adaptive Push-Pull: Disseminating Dynamic Web Data. IEEE Trans. Comput., 
51(6):652-668, 2002. 

[6] F. Bonnassieux, R. Harakaly, and P. Primet. Automatic Services Discovery, Moni­
toring and Visualization of Grid Environments: the MapCenter Approach. In F. F. 
Rivera, M. Bubak, A. G. Tato, and R. Doallo, editors, Proceedings of the 1st European 
Across Grids conference, volume 2970 of Lecture Notes in Computer Science, pages 
222-229, Santiago dc Compostela, Spain, February 13-14 2004. Springer-Verlag. 

[7] A. W. Cooke, A. J. G. Gray, W. Nutt, J. Magowan, M. Ocvcrs, P. Taylor, R. Corde-
nonsi, R. Byrom, L. Cornwall, A. Djaoui, L. Field, S. M. Fisher, S. Hicks, J. Leake, 
R. Middleton, A. Wilson, X. Zhu, N. Podhorszki, B. Coghlan, S. Kenny, D. O. 
Callaghan, and J. Ryan. The Relational Grid Monitoring Architecture: Mediating 
Information about the Grid. Journal of Grid Computing, 2(4):323-339, December 
2004. 

[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services 
for Distributed Resource Sharing. In Proceedings of the 10th IEEE International Sym­
posium on High-Performance Distributed Computing (HPDC-10), pages 181-194, San 
Francisco, CA, 7-9 August 2001. IEEE Computer Society Press. 

[9] P. Dcolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Adaptive 
Push-Pull: Disseminating Dynamic Web Data. In Proceedings of the 10th Interna­
tional Conference on World Wide Web, pages 265-274, Hong Kong, Hong Kong, 
2001. ACM Press. 

[10] M. Dikaiakos, Y. Ioannidis, and R. Sakellariou. Search Engines for the Grid: A Re­
search Agenda. In F. F. Rivera, M. Bubak, A. G. Tato, and R. Doallo, editors, Pro­
ceedings of the 1st European Across Grids Conference, volume 2970 of Lecture Notes 
in Computer Science, pages 49-58, Santiago de Compostela, Spain, February 13-14 
2004. Springer-Verlag. 

[11] M. Dikaiakos, R. Sakellariou, and Y. Ioannidis. Information Services for Large-scale 
Grids: A Case for a Grid Search Engine. In J. Dongarra, H. Zima, A. Hoisic, L. Yang, 
and B. DiMartino, editors, Engineering the Grid: Status and Perspectives. American 
Scientific Publishers, January 2006. 

[12] P. Dinda and D. Lu. Fast Compositional Queries in a Relational Grid Information 
Service. Journal of Grid Computing, 3:131-150, June 2005. 

[13] Y. S. Kee, H. Casanova, and A. A. Chien. Realistic Modeling and Synthesis of Re­
sources for Computational Grids. In Supercomputing 2004, November 6-12 2004. 

[14] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. Chien. Efficient Resource 
Description and High Quality Selection for Virtual Grids. In Proceedings of the 5th 
IEEE Symposium on Cluster Computing and the Grid (CCGrid'05). IEEE, 2005. 

[15] H.N.L.C. Kcung, J.R.D. Dyson, S.A. Jarvis, and G.R. Nudd. Performance Evaluation 
of a Grid Resource Monitoring and Discovery Service. IEE Proceedings-Software, 
150(4):243-251, August 2003. 

[16] H.N.L.C. Keung, J.R.D. Dyson, S.A. Jarvis, and G.R. Nudd. Predicting the Per­
formance of Globus Monitoring and Discovery Service (MDS-2) Queries. In Fourth 
International Workshop on Grid Computing, pages 176-183. IEEE, 2003. 



370 S. Zanikolas & R. Sakellariou 

[17] M. L. Massie, B. N. Chun, and D. E. Culler. Ganglia Distributed Monitoring System: 
Design, Implementation, and Experience. Parallel Computing, 30(7), July 2004. 

[18] L. Peterson, T. Anderson, D. Culler, and T. Roscoc. A Blueprint for Introducing Dis­
ruptive Technology into the Internet. SIGCOMM Comput. Comrnun. Rev., 33(1) :59-
64, 2003. 

[19] B. Plale, C. Jacobs, S. Jensen, Y. Liu, C. Moad, R. Parab, and P. Vaidya. Understand­
ing Grid Resource Information Management through a Synthetic Database Bench­
mark/Workload. In 4th IEEE/ACM International Symposium on Cluster Computing 
and the Grid (CCGrid2004), pages 277-284, April 19-22 2004. 

[20] B. Plalc, C. Jacobs, Y. Liu, C. Moad, R. Parab, and P. Vaidya. Benchmark Details of 
Synthetic Database Benchmark/Workload for Grid Resource Information. Technical 
Report TR583, Indiana University, Computer Science, August 2003. 

[21] W. Smith, A. Waheed, D. Meyers, and J. Yan. An Evaluation of Alternative Designs 
for a Grid Information Service. In Proceedings of the Ninth International Symposium 
on High-Performance Distributed Computing, pages 185-192. IEEE, 2000. 

[22] R. Sundaresanand, T. Kurcand, M. Lauria, S. Parthasarathyand, and J. Saltz. A 
Slacker Coherence Protocol for Pull-based Monitoring of On-line Data Sources. In 
Proceeedings of 3rd International Symposium on IEEE/ACM Cluster Computing and 
the Grid (CCGrid03), pages 250-257, Tokyo, Japan, May 12-15 2003. IEEE Com­
puter Society Press. 

[23] R. Sundaresanand, M. Lauriaand, T. Kurcand, S. Parthasarathyand, and J. Saltz. 
Adaptive Polling of Grid Resource Monitors Using a Slacker Coherence Model. In 
12th IEEE International Symposium on High Performance Distributed Computing 
(HPDC'03), page 260, Seattle, Washington, June 22-24 2003. IEEE Computer Society 
Press. 

[24] H. L. Truong and T. Fahringer. SCALEA-G: A Unified Monitoring and Performance 
Analysis System for the Grid. Scientific Programming, 12(4):225-237, 2004. 

[25] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed 
Resource Performance Forecasting Service for Metacomputing. Future Generation 
Computer Systems, 15(5-6):757-768, October 1999. 

[26] S. Zanikolas. Importance-Aware Monitoring for Large-Scale Grid Information Ser­
vices. PhD thesis, School of Computer Science, University of Manchester, 2007. 

[27] S. Zanikolas and R. Sakellariou. Towards a Monitoring Framework for Worldwide 
Grid Information Services. In 10th International Euro-Par Conference, volume 3149 of 
Lecture Notes in Computer Science, pages 417-422, Pisa, Italy, August 31-Septembcr 
3 2004. Springer-Verlag. 

[28] X. Zhang, J. Freschl, and J. Schopf. A Performance Study of Monitoring and Infor­
mation Services for Distributed Systems. In Proceedings of 12th IEEE High Perfor­
mance Distributed Computing (HPDC-12 2003), pages 270-282, Seattle, WA, USA, 
22-24 June 2003. IEEE Computer Society Press. 

[29] X. Zhang, J. L. Freschl, and J. M. Schopf. Scalability Analysis of Three Monitoring 
and Information Systems: MDS2, R-GMA, and Hawkeye. Journal of Parallel and 
Distributed Computing, 67:883-902, August 2007. 


