World Scientific

Parallel Processing Letters, Vol. 18, No. 3 (2008) 347-370 \\
www.worldscientific.com

(© World Scientific Publishing Company

AN IMPORTANCE-AWARE ARCHITECTURE
FOR LARGE-SCALE GRID INFORMATION SERVICES

SERAFEIM ZANIKOLAS and RIZOS SAKELLARIOU
School of Computer Science, The University of Manchester

Ozxford Road, Manchester M18 9PL, U.K.
{zanikolas,rizos} @cs.man.ac.uk

Received May 2008
Revised July 2008
Communicated by P. Fragopoulou

ABSTRACT

This paper is concerned with the scalability of large-scale grid monitoring and informa-
tion services, which are mainly used for the discovery of resources of interest. Large-scale
grid monitoring systems have to balance between three competing performance metrics:
query response time, imposed network overhead, and information freshness. Improving
one of the three metrics will affect another; any solution will be based on a trade-off. The
paper is motivated by the observation that existing grid monitoring systems can only be
manually configured for a trade-off among the three metrics, which applies equally to
all monitored resources; this implies that all resources in a grid are considered to be of
equal importance. Assuming that in a large-scale grid setting this is unlikely to hold, the
paper proposes an importance-based monitoring architecture for large-scale grid infor-
mation services, based on an adaptation of the web crawling paradigm. The main idea
is that, since not all resources are of equal importance, one can vary the trade-off based
on the relative importance of the monitored resources. The proposed architecture is de-
scribed and evaluated based on large-scale deployments of a prototype implementation
on PlanetLab.

Keywords: Grid Information Services, Large-Scale Grids, Importance-Aware Prefetching,
Grid Monitoring

1. Introduction

The state of Grid computing, despite significant advances, is far from the original
vision of a unified, worldwide Grid which would serve as a single platform for on-
line resource sharing. Numerous grids have been deployed across the world, but arc
being used in isolation. The fragmentation of existing grid deployments reduces the
overall value of the Grid as a sharing platform. This fragmentation of grids is due
to a number of both technical and political issucs that need to be addressed, such
as scalability and interoperability. Generally speaking, cxisting middlewarc appears
to be incapable of operating seamlessly for incrcasing numbers of grid administra-
tive domains, resources and users, whereas, there is a lack of integration between

347

http://www.worldscientific.com
http://ac.uk

348 S. Zanikolas & R. Sakellariou

competing or overlapping software development efforts.

Of the above issues, this paper focuses on the scalability problem, specifically
for grid monitoring and information services. Grid monitoring systems have to bal-
ance between three competing performance metrics (query response time, imposed
network overhead, and information freshness). Improving one of the three metrics
will affect another; any solution will be based on a trade-off. The key observation
underpinning the work in this paper is that existing grid monitoring systems arc
essentially configured to provide a specific trade-off among the three metrics that
applies cqually to all monitored resources. This implics that all resources in a grid
arc considered to be of equal importance. However, in a large grid this may not be
likely to hold; some resources may be more important than others.

Thus, the main contribution of this paper is a proposal for an importance-based
monitoring architccture for large-scale grid information services, which is based on
an adaptation of the web crawling paradigm. Since not all resources are of equal im-
portance, the key idea is that one can vary the trade-off separately for each resource,
depending on the importance of the monitored resources. This implics an increased
frequency of updatcs for the sites that host the most important resources, while
lower freshness is maintained for the sites hosting the lcast important resources. A
prototype of the proposed architecture has been implemented and experimentally
cvaluated.

The remainder of the paper is organised as follows. Section 2 provides some back-
ground related to the proposal in this paper and highlights some relevant work from
the literaturc. Section 3 presents the proposed architecture for importance-aware
grid monitoring and describes the functionality of different components. Section 4
cvaluates experimentally the proposed architecture, based on large-scale deploy-
ments of a prototype implementation on PlanctLab. Section 5 reviews the paper’s
contributions, and discusses potential future work.

2. Background and Related Work

Existing grid monitoring and information services typically have a hierarchical (i.c.,
tree) structure. High level nodes collect and republish resource information from
their child nodes (i.e., immediate descendants). Nodes at the lowest level (i.e., leaf
nodes of the tree) are typically responsible for collecting resource information from
a specific grid site. Users (with the right permissions) can query any of the nodes
in the hierarchy for specific resource information. Every node maintains a local
cache, where it caches resource information that it receives from its child nodes. A
node may be configured to periodically collect all the information that is available
from its child nodes, or may collect (and cache) resource information only upon the
arrival of a query. The former approach answers querics making usc of prefetching,
whereas the latter approach is based on just in time cvaluation of the query.

The performance of grid monitoring and information services is mainly measured
in terms of: (i) how quickly queries are answered (query response time); (ii) how

An Importance-Aware Architecture for Large-Scale Grid Information Services 349

much network traffic a service generates to answer user queries (network overhead);
and (iii) the extent that query results are fresh compared to the actual propertics
of the resources they describe (information freshness). A system cannot perform
well in all of the above metrics at the same time: design choices affect the perfor-
mance trade-offs. An information service can be considered perfectly scalable when
it can maintain low query response time, low network overhcad and high informa-
tion freshness, in the face of a large number of monitored resources and a large
number of queries.

The grid community has developed several monitoring and information services
[8, 17, 25, 24, 4, 1, 7]. These can be manually configured (e.g., via a static config-
uration file) for either prefetching or just-in-time evaluation (or a combination of
the two). They are also configured to support a trade-off among the aforementioned
performance metrics; this trade-off applies equally to all monitored grid resources.
The performance of grid monitoring and information services has been the sub-
ject of several experimental studies. Some studics evaluate a single implementation
[21, 16, 15], while others compare several systems {20, 19, 28, 29]. Some of the find-
ings indicate that current hierarchical structures cannot guarantce a consistently low
Query Response Time. Although prefetching may improve Query Responsc Time it
may impose a significant network overhead. Experimental studies indicate that the
latter can vary greatly across different Grid settings, depending on the number of
monitored resources, and that it grows in proportion to the number of cache misses,
query selectivity, and query match size. To strike a balance for overall good per-
formance, the predominant view is that hierarchical structures for grid information
services should be “rather narrow and deep” [29)].

Going beyond the current state-of-the-art, the architecture proposed in this pa-
per aims to provide additional flexibility by using centrally-controlled prefetching,
which makes use of a dynamically adjusted frequency of updates for cach grid site,
depending on the site’s importance. The proposals in [14, 12] are similar to the one
in this paper in that they also collect grid-wide resource information at a central
relational database. However, both proposals collect detailed host and network re-
lated information (as opposed to the collections per grid site used in our proposal)
and do not prescribe how monitoring is performed nor do they cope with varying
frequencies of updates. Sundaresan et al. [23, 22] proposc a host monitor in which
the frequency of updates is dynamically adjusted, and information freshness is cx-
plicitly measured. The frequency of updates is adjusted after every update, based
on whether the previously monitored value is up to date compared to the value
retrieved from the latest update; thus, the frequency of updates becomes corrclated
to the frequency of resource changes, something that may not be desirable in the
case of frequently changing properties. In contrast, our proposal provides more flex-
ibility by adjusting the frequency of updates based on specific information about
the importance of the resources of a grid site. None of the cited systems has a notion
of resource importance, and hence none allows to treat resources differently based

350 S. Zanikolas & R. Sakellariou

ClusterA ClusterB ClusterA ClusterB
Legend

Symbol Description

grid sites
I
|
/
|
|

site boundaries

host boundaries

RDEF/XML
over HTTP

program

direction of data flow

GIS Grid Information Service

monitoring site

Fig. 1. Overall system architecture.

on their importance.

An important feature of this paper’s proposal is the trade-off between informa-
tion freshness on the one hand and network overhead on the other. A relevant effort
in the context of the web [9, 5] cvaluates adaptive combinations of push and pull
data acquisition methods to explore the trade-offs among freshness tolerance, com-
putational and network overheads and resiliency. Freshness tolerance refers to the
acceptable deviation of the monitored value from the actual value, or the maximum
age of non-fresh values (e.g., a uscr may assert that “non-fresh values arc acceptable
but only for up to 5 minutes”). The work in [9, 5] is concerned with the frequency of
change of a single monitored value and the acceptable tolerance of lack of freshness.
This approach is not easily applicable in the grid context, as one would have to
consider the frequency of change and freshness tolerance for all monitored resource
properties. Instead, the present paper assumes that user expectations about infor-
mation freshness vary based on the importance of a resource, i.e., that users are
morec likely to tolerate stale information when it refers to less important resources.

3. An Architecture Based on Importance-Aware Prefetching

Assuming that in a large-scale grid one may rcasonably expect that not all resources
are of equal importance, one can redefine the large-scale grid monitoring problem
by allowing the information freshness versus network overhead trade-off to be dealt
with at a site-level basis, taking into account the importance of grid resources at
cevery site. This would imply an increased frequency of updates (hence, maintaining
higher freshness) for the sites that host the most important resources, while lower
freshness is maintained for the sites hosting the least important resources. Further-
more, the frequency of updates per site can be dynamically adjusted by periodically
re-cvaluating the importance of all known grid resources.

This approach has been realized by the architecture shown in Figure 1. In its

An Importance-Aware Architecture for Large-Scale Grid Information Services 351

abstract form, this can be seen as an adaptation of the web crawling paradigm
[3] for the purpose of large-scale grid monitoring [10, 11, 27]. In the figure, boxes
with solid lines denote administrative boundaries; boxes with dashed lines denote
hosts; boxes with rounded corners denote software programs. The architecturce dis-
tinguishes between two kinds of administrative domains: grid sites, which host grid
resources, and one (or more) monitoring site, which monitors the resources across
grid sites. These two kinds of sites, and the functionality therein are explained next.

3.1. Grid Sites

Administrative domains that host grid resources are referred as grid sites. A grid site
is one or morc networks and resources therein with a common sharing policy, and
at least one grid information service. Every grid site is expected to host a proxy. A
prozy periodically collects information about the resources in its site, cither directly
from resources themselves or via the site’s information service(s) (the latter case
is shown in Figure 1). The purpose of proxies is to provide a contact point with
a consistent network interface and resource representation for cvery grid sitc. The
proposed architecture is intended to operate on top of existing information scrvices;
thus, to overcome interoperability problems due to the diversity of cxisting grid
information services, a simplified version of the GLUE information model [2] has
been adapted (see [26, Scction 4.4}).

Proxics provide information about their local resources upon request, via stan-
dard HTTP (HyperText Transfer Protocol). Four types of queries to proxies can
be made: (i) provide all available resource information; (ii) provide all available in-
formation about a specific resource; (iii) provide all available resource information,
excluding data that has not changed since a specified timestamp; and (iv) provide
all available information about a specific resource, excluding data (about this re-
source) that has not changed since a specified timestamp. The response to queries
of the first two types is a full update (either for all the resources or for specific
resources), whereas the response to queries of the last two types is a differential up-
date. Differential updates are implemented using a standard if~modified-since HT'T'P
header. Their purpose is to minimize the network overhead by not collecting the
same information more than oncc; that is, information that is alrcady available at
the monitoring site and has not changed since the last query to the proxy was made
(hence, it is up to date). A differential update may include three types of events:
(i) a change of information that has been previously collected; (ii) an addition of
new resources, and thus newly available information that has to be collected; (iii) a
removal of previously monitored resources, in which case the relevant information
about the removed resources at the monitoring sitc has to be discarded.

3.2. Monitoring Sites

The purpose of monitoring sites is to provide large-scale information services for
grid resources. To do so, a monitoring site has to systematically collect resource

352 S. Zanikolas & R. Sakellariou

1 retrieve proxy addresses, importance of sites,

2 timestamp of previous update at every site

3 while true {

4 for every site {

5 if site has not been visited before {

6 request full update from proxy

7 store received update in temporary store

8 } else if now - timestamp of previous site update

9 + window > site update interval {

10 request differential update from proxy

11 store received update in temporary store

12 }

13 }

14 if a notification was received from the importance evaluator {
15 retrieve latest site importance values from main store

16 re-evaluate the update interval of every site

17 }

18 }

Fig. 2. High-level pseudo-code of the crawler.

information from proxies throughout the Grid, keep it up to date, and perform
any necessary pre-processing to enable high-performance querying of information
about all known grid resources. This work does not explicitly deal with proxy dis-
covery by the monitoring sites. In the simplest case, it can be assumed that grid
site administrators manually submit their sites’ proxy addresses to a monitoring
site. Alternatively, a monitoring site could use an automated method that scans IP
addresses for certain services (e.g., [6]).

The remainder of this section describes the software infrastructure of a monitor-
ing site: a crawler, a data manager, an importance evaluator, a database front-cnd,
and the relevant storage requirements (Figure 1).

Crawler The crawler is responsible for collecting resource information from
proxics. At the core, the present implementation of the crawler is a HT'TP client
that uses non-blocking I/0O for high performance, and implements policics to deter-
mine the frequency of requests to every proxy. Figure 2 shows a highly abstracted
description of the crawler’s logic (which does not account for the complex network-
ing functionality).

At launch time, the crawler (lines 1-2 in Figure 2) retricves from the main
store (as discussed in the paragraph “Storage” of this section, this is a rclational
database): (i) the address of every site’s proxy; (ii) the importance of cvery site;
and, (iii) the timestamp of the latest update that has been received from every
site (a special value is used to denote that a site has never been visited). The
timestamp of the latest update of every site is renewed as soon as the crawler
performs a new update at that site. The crawling process is described in lincs 3-13
of Figurc 2. The crawler iterates over the list of proxy addresses. If a site has never
been visited before, a full update is requested. Otherwise, the crawler requests from

An Importance-Aware Architecture for Large-Scale Grid Information Services 353

the proxy a differential update, on the condition that the time since the previous
update from that proxy plus a predefined window exceeds the update interval for the
specific site (the window is meant to mitigate potential delays between requesting
an update from a proxy until a response has been received.) The if-modified-since
HTTP header for the differential update is set to the timestamp of the previous
update that has been received from the specific site.

The importance evaluator notifies the crawler whenever the former re-evaluates
the importance of all sites. On this occasion, the crawler retricves the latest site
importance values. These values are between 0 and 1 and they arc used to re-
calculate the update interval of every site (lines 14-17 in Figure 2). In other words,
the frequency of visits per site is determined based on site importance, the gencral
principle being that the freshness of the information about a resource should be
proportional to the importance of the resource the information refers to.

The crawler implements two ways of mapping site importance to frequency of
updates: topn and proportional. In topn mode, the crawler operator specifies the
frequency of updates for (i) the top N% most important sites; and (ii) the remaining
100—N% less important sites (e.g., update the top 10% of sites every 5 minutes, and
the remaining 90% cvery 20 minutes). In proportional mode, the crawler operator
specifies the minimum and maximum allowed frequency (say mins and mazy) and
the crawler dynamically maps importance (say imp) to an appropriate frequency
(say f) between the minimum and maximum. This is based on standard lincar
mapping, i.e., f = miny + (1 — imp) x (mazy — ming).

Data Manager The resource information, as provided by proxics, is encoded in
RDF/XML, a standard way to notate RDF triples in XML. However the current
state of the art for querying RDF cannot deliver the low query response time that
is required in grid-wide information services. On this basis, resource information is
transformed for storage in a relational database. Specifically, a data manager uses
the incoming RDF /XML resource updates to generate the appropriate SQL insert,
update and delete statements. The data manager constructs such statcments on the
fly based on a predefined mapping between the source RDF schema and the target
rclational schema.

Importance Fvaluator The importance evaluator (or simply evaluator) is the
program that calculates the importance of all sites based on a predetermined cri-
terion. This criterion is orthogonal to the description of the architecture and the
reader is referred to [26, Ch. 5] for further information. In this paper, we only need
to assume that importance values range from 0 (least important) to 1 (most im-
portant). The importance values are periodically re-evaluated to reflect potential
changes that can affect a site’s importance (e.g. the addition of a new cluster ser-
vice). The assumption is that the importance of sites may vary over time, and that
has to be taken into account for the adjustment of the update frequency of every

354 S. Zanikolas & R. Sakellariou

site. Upon completion of re-evaluating resource importance, the evaluator notifies
the crawler to retrieve the latest importance of all sites and re-cvaluate accordingly
the frequency of updates per grid site.

Storage The crawler stores proxy responses (i.e., full and differential updates)
in a temporary store, along with the time at which they are downloaded. The data
manager processes the updates as a FCFS queue (i.c., ordered by time of arrival
and starting from the oldest). Both the temporary storc and the main storc are
RDBMS:s, although a filesystem could also be used for the temporary store. The
main store, however, is required to have the query expressivencss of SQL. The
RDF/XML updates in the temporary store are processed by the data manager
to generate the appropriate SQL statements for inserting, updating and removing
resource information to and from the main store. Conventional databasc replication
techniques can be used to distribute the query load imposed on the main store
across several databases.

Database Front-end The database front-end is a program that accepts query
identifiers via a TCP port, and forks a message handler thread for every incoming
message. A message handler thread submits the query that corresponds to the
identifier that is specified in the received message, to the main store, and records
QRT upon the completion of the query. The database front-end is located at the
same host as the main store. In a setting where the main store would be replicated,
the database front-end should also perform load-balancing.

3.3. Example Operation

To exemplify, this section describes the opcration of the described architecture in a
hypothetical scenario. The following assumptions are made: (i) the monitoring site
has a list of proxy addresses; (ii) the crawler opcrates in topn mode, in which the top
10% sites are updated every 5 minutes and the remaining 90% of sites are updated
every 20 minutes; and, (iii) the importance evaluator re-evaluates the importance
of sites every 24 hours.

At launch time, the crawler retrieves the addresses of all known proxies. For
simplicity, the discussion assumes that all sites have not been monitored before.
The crawler requests from every proxy a full update (containing data about all
resources at every site). Every update that is received is stored by the crawler at
the temporary store. Some proxies may occasionally timeout, in which case the
crawler resets the corresponding connections and re-sends the request. This process
is performed until all proxies have responded with a full update.

At the same time, the data manager constructs SQL INSERT statements to
populate the main store based on the full updates that arc placed at the temporary
store by the crawler. As soon as all updates are received by the crawler and processed
by the data manager, the latter notifies the importance evaluator. The importance

An Importance-Aware Architecture for Large-Scale Grid Information Services 355

cvaluator calculates every site’s importance, stores the outcome at the main store,
and notifies the crawler.

The crawler retrieves from the main store the latest importance valucs of all sites.
The valucs arc used to rank the sites. Based on the ranking the crawler determines
whether a site should be updated every 5 or 20 minutes. Eventually, at 295 seconds
(5 minutes minus a window of 5 seconds) after the reccipt of the full update of every
onc of top 10% most important sites, a new request is sent to each of the topn sites.
The request is conditional, using the timestamp of every site’s previous update as
the value for the if-modified-since header. The crawler stores the differential updates
at the temporary store as soon as they arrive. The data manager uses the differential
updates to construct the equivalent SQL UPDATE statcments.

The same process is performed two more times (at 10 and 15 minutes since the
initial crawl) until minute 20, at which point all proxies, including the 90% least
important, are contacted for differential updates. In the mean time, some sites may
host new cluster services while others may seize to host previously offered cluster
services. These additions and removals are reported by proxies in differential up-
dates. In these cases, the data manager constructs SQL INSERT and SQL DELETE
statements to keep up to date the main store. After the user-specified 24 hour in-
terval, the importance evaluator re-evaluates the importance of all sites, taking into
account potential changes in the cluster service offerings at every site. Once again,
the crawler is notified by the importance evaluator, and re-calculates the update
interval per site accordingly.

4. Evaluation of the Proposed Architecture
4.1. Prototype Implementation and Deployment Issues

The proposed architecture has been implemented as a prototype. The crawler, data
manager, importance evaluator, proxics, database front-end and query generator
are implemented in Java using JDK version 1.5. The programs that intcract with
any of the two databases (namely, crawler, data manager, importance generator,
and database front-end) use MySQL Connector version 3.1.8. The monitoring site’s
crawler, data manager, importance evaluator and databases are deployed across 4
hosts, as shown in Figure 1. Thesc hosts are located at the University of Manch-
cster, and are interconnected via a 100 Mbps LAN. The main store is MySQL,
version 4.1.12-standard. The PC hosting the main storc is a Pentium 4 at 2.4 GHz,
with 512 KB cache size, 512 MB RAM, running Linux 2.4.20-31.9. The prototypc’s
behaviour has been validated, for a number of settings [26, Section 6.2.2].

In order to assess the performance trends of the proposed architecture for various
problem settings and grid sizes in realistic conditions, PlanctLab [18] has been
used to deploy proxies in up to 100 hosts across North America, Europe, Australia
and Asia. PlanctLab is a worldwide testbed for experimenting with Internet-scale
services, with more than 800 nodes over about 400 sites as of mid-2007. Evcry
PlanetLab node is potentially used by many users, and no guarantccs are made

356 S. Zanikolas & R. Sakellariou

about host availability or performance (e.g., hosts may be rebooted or get overloaded
at any time). As a result, the successful completion of an experiment that involves
a large number of nodes is non-trivial. PlanetLab is a suitable evaluation platform
for the present work, because it exhibits a dynamic behaviour, similar to what one
would expect from geographically distributed servers that host grid information
services.

To case the execution of experiments, we run 50 proxy instances per Planct-
Lab host. The collocation of many proxies per host does not have any significant
impact on the measured performance metrics because proxies arc not computation-
ally intensive. (Proxies’ main tasks are to keep track of information regarding local
resources, and to respond to fairly infrequent HT'TP requests from crawlers.) For
efficiency reasons, primarily memory usage, all proxy instances located in one host
are running within a single Java Virtual Machine (JVM). Nevertheless, proxy in-
stances within the same JVM are independent: they have distinct state and threads
of execution, maintain a separate log file, and listen to a different TCP port.

The first task performed by every JVM is to synchronize its clock with the
clock of the data manager (which has a thread specifically for this purpose) at the
monitoring site. This time synchronisation is nceessary for the following reasons:
(i) information freshness is calculated based on timestamped logs of proxics and
the data manager; (ii) PlanetLab hosts are located in different time zones; and
(iii) although PlanetLab hosts are meant to be synchronised (using the Network
Time Protocol) this is not always the case.

The launch script runs remotely a script (via non-intcractive ssh) on every Plan-
ctLab host; the latter script launches the main Java program that forks a given
number of proxy instances on every PlanetLab host. Once all proxics are up and
running at a host and the TCP ports at which they listen to are known, the crawler
is run to perform a full update on all proxies. Once all information for all sites
has been retricved and inscrted into the database, one can then launch the actual
experiment. This involves: (i) Launch of the data manager for processing the RDF-
encoded differential updates that are downloaded by the crawler. (ii) Re-launch of
the crawler, this time requesting from proxies exclusively differential updates. (iii)
Launch of the importance evaluator. (iv) Initiation of resource event gencration: all
proxies are notified to start generating resource changes according to a pre-specified
setting. (v) Launch of the database front-end: a program that accepts identifiers of
predefined queries, submits the associated queries to the database, and records the
response time to every query. The database front-end is hosted at the same nodce
as the main RDBMS for performance reasons. (vi) Launch of the query generator,
which emulates a specified query workload (submitted from the users). A query
workload determines the type, number and arrival pattern of querics that should
be submitted to the database front-end. Finally, it is noted that all experiments
terminate after 60 minutes.

For the purpose of the experiments, proxies do not actually collect data from

An Importance-Aware Architecture for Large-Scale Grid Information Services 357

deployed information services, as this would have had many practical complications.
Instead, proxies generate synthetic site profiles (i.e., information about a site and
the cluster services hosted therein) in RDF/XML according to the adapted GLUE
model. For every cluster service of a grid site, the site profile includes information
about properties of this cluster service, such as hardware and software configura-
tion, load status, ctc. The work in [13] has been used to generate the hardware
configuration, whereas a number of basic assumptions have been made with respect
to other propertics. It is noted that, at this stage, the aim is to cvaluatc the be-
haviour of the architecture with respect to changes of these propertics as opposed
to the precise fine-grain modelling of these properties.

With respect to cvents that denote changes in the status of resources and their
properties, a separate thread in every proxy, the EventGenerator, is used. Whenever
a new event occurs, the EventGenerator notifies the main proxy thread to update
its RDF representation of site profile. The average time between consecutive occur-
rences of every cvent type is predetermined.

4.2. Performance Melrics

As already stated in Section 2, the performance of a grid information service is
mecasured primarily according to three performance metrics: network overhead, in-
formation freshness and query response time. In the context of our experiments
these are measured as follows.

Network Overhead Network overhead is measured as the number of bytes that
the crawler downloads during an experiment. Essentially, this is the sum of the
number of bytes downloaded for each update of the monitoring site carricd out by
the crawler. We further distinguish the network overhead to the network overhead
due to: (i) full updates that the crawler carries out when it first visits every site; and,
(ii) differential updates that the crawler carries out after it has visited at least once
a site and where only information that has changed since the last visit is collected.
Clearly, the total network overhead is the sum of the two.

Information Freshness A value for a particular resource property stored at a
monitoring site is considered fresh, at a given point in time, if it is synchronised
with its real-world equivalent value at the grid site (that is, both values arc the
same). Thus, information freshness, at time t, of a collection of resources C' that
has k resource property values p; is given by:

1 k-1
Foo= T ;ij,t (1)

where F(p;,t) is 1, if the property value p; is up to date at time ¢, and 0 other-
wise. This implies that, at a given time, the information freshness of a collection
of properties indicates the percentage of resource properties that arc up to date at

358 S. Zanikolas & R. Sakellariou

that point in time. To mecasure information freshness throughout an experiment, it
is useful to define time-average information freshness or simply average freshness
as the average of the information freshness at j consecutive cqually-distanced time
points during a time interval T (e.g., the duration of the experiment). Thus:

j-1
For = l.ZFC,t- (2)

J =0
The prototype keeps timestamped logs of resource changces in cvery proxy, and of
database updates by the data manager. At the end of an expcriment, all proxy logs
arc collccted at a single host. By processing the proxies’ logs and the data manager’s
logs, a script calculates information freshness for every property of every resource,
at consccutive periods of 1 minute, using the formulas above. The results reported
next refer to average information freshness. It is noted that only the 5 properties
that do change during experiments are taken into account in the calculation of
freshness. This makes it casier to study the behaviour of this metric; including
all properties would produce significantly higher values for freshness and smaller

deviations between different measurements.

Query Response Time Query Response Time is measured as the server-side cost,
i.e., the interval from the receipt of a query identifier by the database front-end until
the time at which the query results are rcady to be sent back to the user who set the
query. The database front-end keeps a log-file with the response time of each query
processed during an experiment. Same as before, it is helpful to usc the average
query response time to denote the average value of the set of Query Response Time
values in the database front-end’s log-file at the end of a given experiment.

4.3. Ezploring the Evaluation Space / Settings

The evaluation is carried out for several problem settings that are defined in terms of
the following parameters: grid size (i.e., number of grid sites and cluster scrvices per
sitc); event generation mode (i.e., frequency of changes per event type); frequency
of updates; total number of queries and distribution of query arrivals; and query
complexity and selectivity. It is noted that the number of possible problem scttings
is potentially too large. The evaluation considers 20 different settings: a baseline
setting, and 19 settings that differ from the baseline only in terms of one param-
cter. The purpose of this is to investigate performance trends for each parameter
separately.

The rationale for choosing parameter values is as follows. The baseline represents
the average case, and at least two morc values are considered for cvery parameter:
onc more and another less demanding than the baseline setting. The exact paramcter
values that are chosen are not particularly important, as long as they represent a
rcasonably wide problem space.

The bascline setting has the following parameter values: (i} grid size: 2000 grid

An Importance-Aware Architecture for Large-Scale Grid Information Services 359

] setting id | value of varied property l

grid size (number of grid sites and cluster services per site)
sl 500 grid sites; 1 cluster service per site
s2 500; 5 .
83 500; 10
sd 20005 1
s0 2000; 5
s6 2000; 10
s7 5000; 1
s8 50005 5
s9 5000; 10
average frequency of resource changes (per event type)
rl all 5 event types every 1 minute
r0 every 1, 2.5, 5, 10, 20 minutes, respectively
r3 all 5 event types every 10 minutes
update frequency of grid sites
ul all sites every 1 minute
u0 all sites every 5 minutes
u3 all sites every 15 minutes
u4 10% of sites every 5 minutes; 90% of sites every 15 minutes
ub between 1 and 15, determined proportionally to site importance
number of queries and query arrivals
ql 2000 queries uniformly distributed
q0 4000 queries uniformly distributed
q3 2000 queries distributed uniformly over 10 bursts
qd 4000 queries distributed uniformly over 10 bursts
query complexity and selectivity
cl low-complexity queries
c0 high-complexity queries with high selectivity (40%)
c3 high-complexity with low selectivity (10%)

Fig. 3. Problem settings considered in the evaluation.

sites and 5 cluster services per site; (ii) event generation mode: resource changes
for 5 event types (each one corresponding to a different resource property) occur
on average every 1, 2.5, 5, 10, 20 minutes, respectively; for instance, property A
changes on avcrage every 1 minute, property B cvery 2.5 minutes, and so on; (iii)
update frequency: all sites are visited by the crawler every 5 minutcs; (iv) number of
queries and query arrivals: 4000 queries uniformly distributed over the experiment
duration; (v) query complexity and selectivity: high complexity query with high
sclectivity (described below).

The 19 variations of the baseline setting are shown in Figure 3. In the “sctting
id” column of the table, every parameter is denoted with a different letter; every
value that is considered for a parameter is indicated with a distinctive number. The
baseline value for a given parameter is indicated with the number zero. For example,
the letter ‘s’ indicates the grid size parameter, and ‘s0’ indicates the bascline setting
for grid size.

For grid size, we considered 500, 2000 and 5000 sites. Each of these values was
also considered with 1, 5 and 10 cluster services per site (s1-s9 Figurc 3). In terms

360 S. Zanikolas & R. Sakellariou

of the frequency of resource changes, in addition to the bascline, two more cases
were considered: that all cvent types oceur every 1 minute (rl) or every 10 minutes
(r3). Proxies were queried by the crawler for differential updates, every 1 or 15
minutes in the ul and u3 scttings. Resource importance was considered in the ud
and u5 settings (i.e., topn and proportional modes, as described in Section 3.2). With
respect to query workload, we considered 2000 or 4000 queries uniformly distributed
throughout the experiment duration (ql and baseline settings, respectively). In
settings 3 and g4, queries are evenly distributed in 10 bursts. For instance, in q3
(resp. q4) cvery burst consists of 200 (resp. 400) queries. The bursts arc evenly
distributed across the experiment duration, with the restriction that the last burst
must occur 5 minutes before the end of the experiment. The queries of a burst that
starts at time ¢ arc scheduled at time ¢ + d where d is normally distributed with
u = 0,0 = 30 seconds.

The queries used in the cvaluation are listed in Figure 4. It is assumed that
query complexity is affected by the number of conditions in a SELECT query and
the potential use of aggregate conditions (i.e., conditions on features that arc not
explicitly stored and have to be calculated on the fly using GROUP BY and HAV-
ING clauses). The ¢l query is considered low-complexity as it has only onc condition
and onc join. ¢l matches subclusters of at least 64 hosts cach, which arc ordered by
subcluster size. The c0 and ¢3 queries have more conditions, two of which are aggre-
gate. c0 (resp. ¢3) matches sites that host at least 64 (resp. 128) hosts (regardless
of whether they belong to more than one cluster service), and have at least 10TB
of aggregate storage and at least 10 GB of aggregate RAM. The qucrics ¢0 and ¢3
arc identical, except that c0 sclects cluster services at sites that have in total at
least 64 hosts, as opposed to 128 in ¢3. These numbers were chosen to adjust the
sclectivity of the queries to approximately 40% and 10%, respectively.

4.4. Results

Network overhead The plots in Figure 5 show how the nctwork overhead that
is imposed by monitoring is affected by frequency of resource changes, grid size,
and frequency of updates (respectively, top, middle and bottom plots). Every plot
has onc bar per setting, and cvery bar is separated in two parts, which indicate:
(i) the total network overhead, and (ii) only the overhead of differential updates
(i.e., excluding the overhead for the initial full updates). More important is the
network overhead of differential updates, as the full updates are performed only the
first time a proxy is visited.

As cxpected, the middle plot in Figure 5 shows that the network overhead in-
creases linearly with the number of monitored cluster services. Conversely, the net-
work overhead decreases linearly as the frequency of resource changes increases.
The same is also true when it comes to the frequency of updates (bottom plot in
Figurc 5). It is interesting to note here that an increasc of a certain order in the
frequency of updates does not guarantee an increase of exactly the same order in the

An Importance-Aware Architecture for Large-Scale Grid Information Services 361

cl: low complexity query
SELECT ClusterService.siteID, ClusterService.hasClusterServiceName,
SubCluster.hasNumberOfHosts FROM ClusterService, SubCluster
WHERE SubCluster.hasNumberOfHosts >= 64
AND ClusterService.id = SubCluster.serviceID
ORDER BY SubCluster.hasNumberOfHosts DESC LIMIT 100

c0: high complexity query with high selectivity (approximately 40%)

SELECT Site.id, Site.totalHosts, ClusterService.hasClusterServiceName
SUM(SubCluster.hasSizeGB*SubCluster.hasNumberOfHosts) AS totalStorageGB
SubCluster.hasRAMsizeMB*SubCluster.hasNumberOfHosts AS totalRAMsizeMB

FROM Site, ClusterService, SubCluster

WHERE Site.totalHosts >= 64
AND Site.id = ClusterService.siteID
AND ClusterService.ID = SubCluster.serviceID

GROUP BY ClusterService.sitelID

HAVING totalStorageGB >= 10000
AND totalRAMsizeMB >= 10000

ORDER BY Site.totalHosts DESC LIMIT 100

c3: high complexity query with low selectivity (approximately 10%)

SELECT Site.id, Site.totalHosts, ClusterService.hasClusterServiceName
SUM(SubCluster.hasSizeGB*SubCluster.hasNumberOfHosts) AS totalStorageGB
SubCluster.hasRAMsizeMB*SubCluster.hasNumberOfHosts AS totalRAMsizeMB

FROM Site, ClusterService, SubCluster

WHERE Site.totalHosts >= 128
AND Site.id = ClusterService.siteID
AND ClusterService.ID = SubCluster.servicelD

GROUP BY ClusterService.sitelID

HAVING totalStorageGB >= 10000
AND totalRAMsizeMB >= 10000

ORDER BY Site.totalHosts DESC LIMIT 100

Fig. 4. Definition of the queries used in the evaluation.

number of monitored events {because there may not be as many events occurring
in the first place). Likewise, an increase of a certain order in the frequency of events
per se docs not necessarily increase the network overhead at the same order, be-
cause the occurrence of more events does not guarantec that they will be monitored.
For example, the ul setting, where updates are performed 5 times more frequently
compared to u0, has approximately twice the differential network overhead of u0.
Similarly, u3, in which updates are performed 3 times less frequently compared to
u0, has less than half the differential network overhead of u0. Finally, with respect
to making use of resource importance, u4 and ub have, respectively, less than half,
and about two thirds of the differential updates network overhead of the baseline
setting.

Average information freshness The plots in Figure 6 show how information
freshness is affected by frequency of resource changes, grid size, and update fre-
quency. In Figure 6 (top plot) it can be seen that freshness incrcases proportionally

350

362 S. Zanikolas & R. Sakellariou

T T — : — . T T T . r T T v T T T
: 14 Z ﬂ. mﬂum R o R At o o E E
a [IS PR el et I @
23 23 R IR 23 I
25 83 i ORI
aa aa l 8 & 'W
33 55 T T S5
2% ISR == I RS 23
== et et S8 ileieloltelalieisotes I 28
I SR =
L& & GeRestdetsteet N §8 S5
o8 SRy © g8 o] 28
55 Sy |55 e ©s
+ NSO - R @ +
E] " E] 2
2 DTSR,
TSNS
5 s @
5
ERGEReReaneses B "
X S SN AR A AR K A A, 2
ISR I N I PN KRR, 3 SN B
S SO R eI, L e o @
RIS R @ e ® = I
ettt e et ettt e %Y 14 k
R ooty S u sty ot I =
g e
2 e
o 2 LA T, <,
2 RS G TS K
= K REEEE K o
o 3 [ETniatid
AT Ty ot v o er v n e S s S s - e SIS
e S S R SIS St *
e R O S PRSI R T TS5
R N N IS o
e R TR otediiid =
BRI " 4% T TSI
e A R KR H0]
Setteaivaltertatatenieinidsviestotey I
o S N R S o X o e e R 0,
- m ﬂ
. L n i L
" L L , L . - s = + - =~ - \ A . ‘ . . ; :
b= (=] Q (=] (=3 Q (=3 <o i=3 =] =] o < o (=] [= Q f= (= f=] <
©o N (>3 =] 0 =] I w =] o
g & § &8 g =& 8 g 3 s g § B § ®8 & &8 8

(W) peewaAo yiomsu (W) PeaLaA0 somau (8IN) PeaLIaAD oMU

update frequency of grid sites

Network overhead for several variations of the baseline setting.

Fig. 5.

An Importance-Aware Architecture for Large-Scale Grid Information Services 363

0.6 | 4

04 F -

average information freshness

0.2 4

" ro ¢
fraquency of resource changes

0.8 | 4

04 | -

average information freshness

0.2 =

s1 s2 s3 34 s0 s6 s7 s8 s9
grid size

08 1

04 b

average information freshness

0.2 1

ut u0 ul u4d us
update frequency of grid sites

Fig. 6. Average information freshness for several variations of the baseline setting.

364 S. Zanikolas & R. Sakellariou

to decrcases of the frequency of resource changes. The middle plot indicates that
freshness remains constant for different grid sizes, except when there is a large num-
ber of monitored service clusters, in which case it drops (settings s6, s8, s9). It has
been found that this is implementation-specific and it is caused by high load at the
main store. The bottom plot of Figure 6 shows the effect of update frequency to
information freshness. In the ul setting, where updates occur on average 7.7 timces
faster than changes, average freshness is 75%. Average freshness drops to 56% and
34% for u0 and u3, respectively. The average freshness for u4 and ub deserves fur-
ther analysis as, in these settings, freshness varies significantly across sites based on
site importance.

Thus, Figure 7 shows the average information freshness of the resources of a
site compared to the importance of that site, in three different experiment settings:
bascline (u0), topn (u4), and inversely proportional (u5). In the bascline experi-
ment (top plot in Figure 7), all sites arc updated every 15 minutes. Thus, average
freshness is approximately the same for all sites. The middle plot shows that sites
are distinguished in two groups; the smaller group has higher average information
freshness. In the ub experiment (bottom plot in Figure 7) the update frequency
of a site is inverscly proportional to its importance, and is mapped in the range
[1, 15] minutes. It is interesting to observe that the average information freshness
in this case shows some power-law connection with the site’s importance: very few
sites (with high importance) exhibit high information freshness, whercas many sites
(with low importance) exhibit lower information freshness.

Average query response time Figures 8 and 9 show how QRT is affected by
variations in all of the considered problem settings. It can be seen in the top plot
of Figure 8 that the difference of QRT between cl and cO is significant, as the
latter has to calculate some aggregate values on the fly and has more conditions.
On the other hand, QRT in c0 is very close to that of c¢3, despite the difference
in query selectivity. The middle plot shows how QRT is affected by the number
and distribution of query arrivals. The relative difference between gl and g0 on
the one hand (2000 and 4000 queries respectively, uniform), and g3 and g4 on the
other (2000 and 4000 queries respectively, 10 bursts), is negligible (less than 3%).
The pattern of query arrivals however makes a significant difference (17% relative
difference between gl and ¢3; 15% between q0 and g4). The bottom plot at Figure 8
indicates that the frequency of resource changes (which affects the imposed update
load at the main store) does affect QRT but not significantly. The same holds for
the effect of update frequency of grid sites (bottom plot of Figure 9). Finally, the
top plot in Figure 9 shows that the relation of grid size (and as a result database
size) and QRT tends to be proportional.

Discussion This section cvaluated a prototype implementation of the proposed
architecture using PlanetLab. Several problem settings were considered, including
configurations of up to 5000 sites and 50000 cluster services. The results of the

An Importance-Aware Architecture for Large-Scale Grid Information Services 365

08|

08 |

0.7 |

06

05 |

site importance

02

01

0.8 1

09 | e p
0.8 |- + ';gu i
07 f 4 d
06 |

05 |

site importance

03

02|

) L
0 0.2 04 0.6 0.8 1
freshness of site-specific information

09 | +4:+

08 -

0.6 |-

05

site Importance

04 F

03|

021
HE 2
bt 4
L
+
0 . L " :
0 0.2 0.4 06 0.8 1
freshness of site-specific information

oA

Fig. 7. Average information freshness per site versus site importance, in the baseline (top), u4
(middle), and u5 (bottom) settings.

366 S. Zanikolas & R. Sakellariou

300

250 |

200 |

150 F

average query response time (ms)

50 |

el <0 c3
query complexity and selectivity

350 .

300 4

150 | 4

average query response time (ms)

100 4

50 -

q1 q0 q3 q4
number of queries and query amivals

300 T T T

200 | 4

150 | 1

100 - -

average query response time (ms)

50 |- 4

r r0 3
frequency of resource changes

Fig. 8. Average QRT for variations of the baseline setting in terms of query complexity and
selectivity (top), number of queries and query arrivals (middle), and frequency of resource changes
(bottom).

An Importance-Aware Architecture for Large-Scale Grid Information Services 367

1400 T T T T T T T T T

1200
g 1000 |- 1
o
E
-]
% 800 - 1
§ eoof E
&
4
- 400 4

200 | 4

0)
s1 s2 s3 s4 s0 s6 s7 s8 s9
grid size
300 T T T T T
(rrrr—— —

250 |-
E 200 | E
]
§ 150 -
&
@
g 100 g
L3

50 |- 4

0
wi u0 ud ud us

update frequency of grid sites

Fig. 9. Average QRT for variations of the baseline setting in terms of grid size (top) and update
frequency of grid sites (bottom).

PlanetLab cxperiments have been promising. Despite the highly volatile naturc of
PlanetLab (whose hosts are shared at the same time by many users), the prototype
behaves as expected. Thus: (1) the network overhead increases proportionally with
the frequency of resource changes, the inverse of the frequency of updates as well
as with the number of sites and services; (ii) the average information freshness
depends on the frequency of resource changes and updates; and, (iii) the query
response time is primarily affected by query complexity and selectivity. In addition,
implementation decisions appear to make an impact only on information freshness
and large sizes (this is related to the ability of the data manager to scale with an

368 S. Zanikolas & R. Sakellariou

increasing number of incoming updates; however, this could be improved by using
multiple databases). Finally, the results obtained when updates are adjusted based
on resource importance demonstrate the potential of the architecture to provide
high information freshness for those resources deemed to be important.

5. Conclusion

This paper has redefined the problem of large-scale grid information services by
making it possible to adjust the information freshness versus network overhcad
trade-off on a site-level basis. The proposed architecture, based on importance-aware
prefetching, collects information in advance of query arrivals. Thus, it achieves low
query response times, while at the same time it has the capability to: (i) main-
tain high information freshness for sites that are considered to be important; and
(ii) control the imposed network overhead. Evaluation results of a prototype imple-
mentation on PlanetLab demonstrate the performance trade-offs between network
overhead, frequency of resource changes, and frequency of updates for sceveral set-
tings.

Further work could consider additional evaluation settings; as already mentioned
the possible evaluation space is potentially too large. Such work could provide more
informative answers to questions such as ‘what is the required frequency of updates
to attain a ccrtain level of information freshness’, or ‘how to choosc update fre-
quencies so that the network overhead does not excced a certain value’. Porting
the implementation onto existing grid platforms and comparing with cxisting im-
plementations of grid information services would also provide more insight. Early
experiences based on performance models [26] suggest that the approach proposcd
in this paper has the potential to outperform existing hierarchical, just-in-time, im-
plementations of grid information services, both in terms of the network overhcad
and query response time; however, this also neceds further investigations. Finally,
an important direction that has not been addressed in this paper relates to differ-
ent definitions of resource importance that can be adapted on-the-fly as it may be
required.

Acknowledgements

This research work is carried out partially under the FP6 Network of Excellence
CoreGRID funded by the European Commission (Contract IST-2002-004265).

References

[1] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. L. Rubini, G. Tortone, and
M. C. Vistoli. GridICE: a Monitoring Service for Grid Systcms. Future Generation
Computer Systems, 21(4):559-571, 2005.

[2] S. Andreozzi, S. Burke, L. Ficld, S. Fisher, B. Konya, M. Mambelli, J. M.
Schopf, M. Viljoen, and A. Wilson. GLUE Schema Specification, version 1.2.
http://infnforge.cnaf.infn.it/glucinfomodel.

http://infnforge.cnaf.infn.it/glucinfomodel

(3]
(4]

7l

]

[10]

An Importance-Aware Architecture for Large-Scale Grid Information Services 369

A. Arasu, J. Cho, H. Garcia-Molina, A. Pacpcke, and S. Raghavan. Scarching the
Web. ACM Transactions on Internet Technology, 1(1):2-43, 2001.

Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajda. From Cluster Monitoring to
Grid Monitoring Based on GRM. In R. Sakellariou et al., editors, Proceedings of the
7th International Euro-Par Conference, volume 2150 of Lecture Notes in Computer
Science, pages 874-881, Manchester, UK, August 2001. Springer-Verlag.

M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shcnoy.
Adaptive Push-Pull: Disseminating Dynamic Web Data. IEEE Trans. Comput.,
51(6):652-668, 2002.

F. Bonnassicux, R. Harakaly, and P. Primet. Automatic Services Discovery, Moni-
toring and Visualization of Grid Environments: the MapCenter Approach. In F. F.
Rivcra, M. Bubak, A. G. Tato, and R. Doallo, editors, Proceedings of the 1st European
Across Grids conference, volume 2970 of Lecture Notes in Computer Science, pages
222-229, Santiago de Compostela, Spain, February 13-14 2004. Springer-Verlag.

A. W. Cooke, A. J. G. Gray, W. Nutt, J. Magowan, M. Oecvers, P. Taylor, R. Corde-
nonsi, R. Byrom, L. Cornwall, A. Djaocui, L. Field, S. M. Fisher, S. Hicks, J. Leake,
R. Middleton, A. Wilson, X. Zhu, N. Podhorszki, B. Coghlan, S. Kenny, D. O.
Callaghan, and J. Ryan. The Relational Grid Monitoring Architecture: Mediating
Information about the Grid. Journal of Grid Computing, 2(4):323-339, December
2004.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Scrvices
for Distributed Resource Sharing. In Proceedings of the 10th IEEE International Sym-
posium on High-Performance Distributed Computing (HPDC-10), pages 181~194, San
Francisca, CA, 7-9 August 2001. IEEE Computer Socicty Press.

P. Deolasce, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Adaptive
Push-Pull: Disseminating Dynamic Web Data. In Proceedings of the 10th Interna-
tional Conference on World Wide Web, pages 265-274, Hong Kong, Hong Kong,
2001. ACM Press.

M. Dikaiakos, Y. Ioannidis, and R. Sakellariou. Search Engines for the Grid: A Re-
search Agenda. In F. F. Rivera, M. Bubak, A. G. Tato, and R. Doallo, cditors, Pro-
ceedings of the 1st European Across Grids Conference, volume 2970 of Lecture Notes
in Computer Sctence, pages 49-58, Santiago de Compostela, Spain, February 13-14
2004. Springer-Verlag.

M. Dikajakos, R. Sakellariou, and Y. Ioannidis. Information Services for Large-scale
Grids: A Case for a Grid Search Engine. In J. Dongarra, H. Zima, A. Hoisic, L. Yang,
and B. DiMartino, editors, Engineering the Grid: Status and Perspectives. American
Scientific Publishers, January 2006.

P. Dinda and D. Lu. Fast Compositional Queries in a Relational Grid Information
Service. Journal of Grid Computing, 3:131-150, June 2005.

Y. S. Kee, H. Casanova, and A. A. Chien. Realistic Modeling and Synthesis of Re-
sources for Computational Grids. In Supercomputing 2004, November 6-12 2004.
Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. Chien. Efficient Resource
Description and High Quality Selection for Virtual Grids. In Proceedings of the 5th
IEEE Symposium on Cluster Computing and the Grid (CCGrid’05). IEEE, 2005.
H.N.L.C. Kcung, J.R.D. Dyson, S.A. Jarvis, and G.R. Nudd. Performance Evaluation
of a Grid Resource Monitoring and Discovery Secrvice. IEE Proceedings-Software,
150(4):243-251, August 2003.

H.N.L.C. Keung, J.R.D. Dyson, S.A. Jarvis, and G.R. Nudd. Predicting the Per-
formance of Globus Monitoring and Discovery Service (MDS-2) Queries. In Fourth
International Workshop on Grid Computing, pages 176-183. IEEE, 2003.

370

[17)

(18]

[19]

[20]

23]

(24]

[25]

(26]

27]

S. Zanikolas & R. Sakellariou

M. L. Massie, B. N. Chun, and D. E. Culler. Ganglia Distributed Monitoring System:
Design, Implementation, and Experience. Parallel Computing, 30(7), July 2004.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introducing Dis-
ruptive Technology into the Internet. SIGCOMM Comput. Commun. Rev., 33(1):59-
64, 2003.

B. Plale, C. Jacobs, S. Jensen, Y. Liu, C. Moad, R. Parab, and P. Vaidya. Understand-
ing Grid Resource Information Management through a Synthetic Database Bench-
mark/Workload. In 4th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid2004), pages 277-284, April 19-22 2004.

B. Plale, C. Jacobs, Y. Liu, C. Moad, R. Parab, and P. Vaidya. Benchmark Details of
Synthetic Database Benchmark/Workload for Grid Resource Information. Technical
Report TR583, Indiana University, Computer Scicnce, August 2003.

W. Smith, A. Waheed, D. Meyers, and J. Yan. An Evaluation of Alternative Designs
for a Grid Information Service. In Proceedings of the Ninth International Symposium
on High-Performance Distributed Computing, pages 185-192. IEEE, 2000.

R. Sundaresanand, T. Kurcand, M. Lauria, S. Parthasarathyand, and J. Saltz. A
Slacker Coherence Protocol for Pull-based Monitoring of On-line Data Sources. In
Proceeedings of 3rd International Symposium on IEEE/ACM Cluster Computing and
the Grid (CCGrid03), pages 250-257, Tokyo, Japan, May 12-15 2003. IEEE Com-
puter Socicty Press.

R. Sundarcsanand, M. Lauriaand, T. Kurcand, S. Parthasarathyand, and J. Saltz.
Adaptive Polling of Grid Resource Monitors Using a Slacker Coherence Model. In
12th IEEE International Symposium on High Performance Distributed Computing
(HPDC’03), page 260, Scattle, Washington, June 22-24 2003. IEEE Computer Socicty
Press.

H. L. Truong and T. Fahringer. SCALEA-G: A Unified Monitoring and Performance
Analysis System for the Grid. Scientific Programming, 12(4):225-237, 2004.

R. Wolski, N. Spring, and J. Haycs. The Nctwork Weather Scrvice: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future Generation
Computer Systems, 15(5-6):757-768, October 1999.

S. Zanikolas. Importance-Aware Monitoring for Large-Scale Grid Information Ser-
vices. PhD thesis, School of Computer Science, University of Manchester, 2007.

S. Zanikolas and R. Sakellariou. Towards a Monitoring Framework for Worldwide
Grid Information Services. In 10th International Euro-Par Conference, volume 3149 of
Lecture Notes in Computer Science, pages 417-422, Pisa, Italy, August 31-September
3 2004. Springer-Verlag.

X. Zhang, J. Freschl, and J. Schopf. A Performance Study of Monitoring and Infor-
mation Services for Distributed Systems. In Proceedings of 12th IEEE High Perfor-
mance Distributed Computing (HPDC-12 2003), pages 270-282, Scattle, WA, USA,
22-24 June 2003. IEEE Computer Society Press.

X. Zhang, J. L. Freschl, and J. M. Schopf. Scalability Analysis of Threce Monitoring
and Information Systems: MDS2, R-GMA, and Hawkeye. Journal of Parallel and
Distributed Computing, 67:883-902, August 2007.

