
On the Problem of Minimizing Workload

Execution Time in SMT Processors

Francisco J. Cazorla
Barcelona Supercomputing Center (BSC),

Spain. francisco.cazorla@bsc.es

Enrique Fernandez
University of Las Palmas of Gran

Canaria, Spain. efernandez@dis.ulpgc.es

Peter M.W. Knijnenburg
University of Amsterdam, The

Netherlands. peterk@science.uva.nl

Alex Ramirez
Universitat Politecnica de
Catalunya and BSC, Spain.

aramirez@ac.upc.edu

Rizos Sakellariou
University of Manchester, UK.

rizos @cs.man.ac.uk

Mateo Valero
Universitat Politecnica de
Catalunya and BSC, Spain.

mateo@ac.upc.edu

Abstract-Most research work on (Simultaneous Multi-
threading Processors) SMTs focuses on improving throughput
and/or fairness, or on prioritizing some threads over others
in a workload. In this paper, we discuss a new problem
not previously addressed in the SMT literature. We call this
problem Workload Execution Time (WET) minimization. It
consists of reducing the total execution time of all threads in a
workload. This problem arises in parallel applications, where
it is common for a single master thread to spawn several child
jobs. The master job cannot continue until all child jobs have
finished. Reducing the overall execution time is important to
speedup the application. This paper is a first step in analyzing
this problem. First, we analyze the WET provided by the
best fetch policies aimed at improving throughput/fairness.
We demonstrate that these policies achieve less than optimum
performance. We show that, on average, for the workloads
evaluated in this paper, there is space for improvement of up
to 18 percentage points. It follows that novel mechanisms trying
to reduce WET are required to speedup parallel applications.

I. INTRODUCTION

Current processors take advantage of Instruction Level
Parallelism (ILP) to execute several instructions from a
single stream in parallel. However, there is only a limited
amount of parallelism available in each thread, mainly due
to data and control dependences [25]. As a result, hardware
resources added to exploit this limited amount of ILP may
be utilized only occasionally, thus significantly degrading
the performance/cost ratio of these processors. A solution
to overcome this problem is to share hardware resources
between different threads. There exist different approaches
to resource sharing, ranging from chip multiprocessors [19]
to high performance SMTs [20] [23] [26]. In the former case,
only the higher levels of the cache hierarchy are shared.

Current trends in computer architecture show that many
future processors will have some form of multithreading.
This is mainly due to the fact that SMT processors have
a good performance/cost and performance/power consump-
tion ratios, which makes them suitable for many types of
computing systems. In high-performance systems we have

processors like the Intel Pentium4 Xeon [18], the IBM
Power5 [14] and the Sun Niagara TI [1]; while in real-
time embedded systems we have the Imagination Technolo-
gies Meta processor [16] and the Infineon TriCore 2 [6].
In embedded systems, in which processors must be low
in cost, obtaining as much performance as possible from
each resource is desirable. Hence, a viable option is a
simultaneous multithreading (SMT) processor, which shares
many resources between several threads for a good cost-
performance tradeoff.

Given this trend in processor design, many researchers
have focused their efforts on SMTs and, in particular, on
policies that deal with the different objectives that the Op-
erating System may impose on an SMT. We can distinguish
two main areas of interest.

Throughput and fairness: many papers on SMT attempt
to increase the total throughput and/or fairness [17] in SMT
processors. In order to achieve this objective, the proposed
policies focus on those situations in which the shared re-
sources of an SMT may be used inefficiently by threads,
that is, after branch mispredictions and loads that miss in
the outer cache levels. In the former case, those threads
that are supposed to experience a branch misprediction are
stalled [15] until that branch is resolved. In the latter case,
the policies act on threads that miss either in the LI cache
or in the L2 cache [7][8][9][22].

Prioritization and predictable performance: other papers
show that, even when throughput and fairness are acceptable
objectives, in many systems the OS may need to impose
additional objectives, like prioritizing some threads in a
workload [13][21] or, more restrictively, to ensure that cer-
tain threads in a workload execute at a minimum IPC speed,
that is, they can finish before a given deadline [I0][11].

In parallel programming environments, a common situ-
ation is that a given job spawns (or 'forks') several child
jobs (threads). Every child job carries out some work and

1-4244-1058-4/07/$25.00 C 2007 IEEE 66

subsequently terminates. The parent job cannot continue
until all the child jobs have finished. Much work has been
done to balance the load of the different jobs between the
different execution units available. These proposals assume
that the execution units are single threaded and have similar
resources. However, if multithreaded execution units are
used, a different objective needs to be addressed by each
of these units; namely, execute all threads assigned to each
unit as fast as possible. If we assume that child jobs are
executed on an SMT processor, then this last requirement
represents another target objective that a system executing
parallel programs can request from an SMT processor. This
problem consists of reducing the total execution time of a
given workload, that is, reducing the time to execute all
threads in an entire workload. We call this problem Workload
Execution Time minimization or WET minimization.

In this paper, we evaluate the WET provided by the best
known policies designed to increase throughput and fairness.
We also show that current metrics used to measure through-
put and fairness are not adequate, and it is necessary to define
new metrics. Finally, we provide some early suggestions and
ideas on how we could reduce the WET.

This paper is structured as follows. Section 2 describes
and motivates the problem presented in this paper. Section
3 describe our experimental environment. Section 4 shows
the results achieved with the different mechanisms. Finally,
we draw some conclusions in Section 5.

II. WORKLOAD EXECUTION TIME MINIMIZATION: A NEW
REQUIREMENT FOR SMTs

The problem addressed in this paper originates from
parallel execution environments where a situation as shown
in Figure 1(a) is quite common. In this situation, a master job
spawns several child jobs. The master job cannot continue
until all the spawned jobs have finished, e.g. barrier and
collective functions. If we assume that spawned jobs will be
executed on an SMT, we have the following problem: given
a workload with N threads, minimize the time required to
execute all these threads. Note that if the number of spawned
threads is larger than the number of available contexts in
the SMT, another policy is needed to assemble workloads
for the SMT. This problem is called the workload selection
problem [13]. However, this problem is beyond the scope of
the present paper.

The problem mentioned above occurs in parallel execution
environments at different granularities. By granularity we
mean the number of instructions executed before commu-
nication between processes is required. At one extreme,
we may have loop parallelization where child jobs execute
blocks of iterations, each block containing (in the order
of) thousands of instructions. At a larger granularity, we
have parallelization using OpenMP [4] or MPI [2] where
large sections of code are running in parallel. For example,
using Paraver [3], it has been shown that 10 iterations of

time

Child job 1

Single-threaded Multi-threaded Single-threaded
region region region

(a) Thread spawning: a common situation
in parallel execution environments

-time
TO

tMT + tST WET

Tl
tMT

(b) WET for a workload with two threads
Fig. 1. Thread spawning and WET for a workload with 2 threads

the NAS BT [5] benchmark execute approximately 3 billion
instructions. If this program is parallelized using 4 child jobs,
each child job executes 0.75 billion instructions. In this case,
traces show that from 44 million to 77 million instructions
are executed between points where synchronization is re-
quired. Parallelization may also occur at the subroutine or
at the task level. In this paper, we assume parallelization
with a large granularity, which means that each child job
executes several millions of instructions.

A. Workload Execution Time (WET)
Workload Execution Time (WET) is defined as the amount

of time required to execute all threads in a given workload.
That is, the time until the last thread in the workload finishes.
For workloads with 2 threads, To and T1, this interval can
be split in two periods, as shown in Figure 1(b). The first
period is called the Multi-Threaded (MT) period and the
second period is called the Single-Threaded (ST) period.
During the multi-threaded period, both threads are executed
in multi-threaded mode until the fastest thread ends. During
the subsequent single-threaded mode, the remaining thread
is executed in isolation until it ends.

Let tisolated be the time that thread x requires to be
executed on the SMT in isolation, that is, its execution time
when it is run alone on the machine. Then the possible values
of WET are in the interval:

[max (tisolated tisolated A tisolated + tisolated]

The following observations can be made.

67

The minimum time required to execute a workload
equals tisolated where slowest denotes the slowest
thread in the workload, thread To in Figure l(b). That
is, we execute the workload so that the slowest thread
is not delayed with respect to the time it requires when
it is run in isolation. In addition, the fastest thread is
executed using the resources not used by the slowest
thread. We assume that between synchronization points
threads do not share the same address space as it is the
case for example in MPI applications. That is, a thread
cannot 'prefetch' data to another thread, and hence the
minimum time to execute a thread, Ti, in multi-threaded
mode is tisolated
If we assume that the SMT always provides perfor-
mance improvement, that is, executing several threads
in SMT mode is more effective than executing them in
sequential mode, then the upper bound of WET equals
Visolated + tisolated

Current fetch and resource allocation policies are designed
either to increase throughput/fairness or to provide certain
guarantees to a given high priority thread. In both cases, a

common characteristic of existing research is that during the
evaluation of proposed techniques, the number of running
threads remains constant during the whole execution. In the
former case, the simulation ends when the fastest thread ends
and at that point throughput/fairness is computed. In the
latter case, when the high priority thread ends, the simulation
ends. If any of the low priority threads ends earlier, it is re-

executed.
In the evaluation of our solution to the problem addressed

in this paper, the situation is different as the number of
running threads can change dynamically. For a workload
of N threads, the number of running threads can change
from N to 0 as threads gradually finish. This requires that
policies dynamically need to adapt the resource allocation
for the running threads as other threads finish. As a result,
the problem of minimizing the workload execution time
addressed in this paper is not equivalent to the problem of
maximizing throughput.

B. WET additional remarks

In some scenarios child (spawned) threads execute the
same number of instructions in order to reduce synchroniza-
tion cost. In this case the problem of WET minimization
is just a matter of evenly split shared hardware resources

between threads so that the execute at the same speed.
However, there are also scenarios in which some threads

do more work than others. Even more, in those situations in
which child threads have the same number of instructions
the number of L2 caches misses of each thread may vary

what makes some threads take longer to execute than others.
For example, let say that we are making some computations
with a matrix a we divide the matrix into sub-matrices so

that each child thread work on each sub-matrix. Even if

TABLE I
BASELINE CONFIGURATION

Pipeline depth 12 stages
Number of contexts 2
Fetch/Issue/Commit Width 8
Queues Entries 32 int, 32 fp, 32 Id/st
Execution Units 6 int, 3 fp, 4 Id/st
Physical Registers 256 integer, 256 fp
ROB size(per thread) 256
Branch Predictor 16K entries gshare
Branch Target Buffer 256-entry, 4-way
RAS 256 entries

Memory Configuration
Icache, Dcache 64 Kbytes, 2-way, 8-bank,

64-byte lines, 1 cycle ac-

cess

L2 cache 512 Kbytes, 8-way, 8-
bank, 64-byte lines, 10 cy-

cle access

Memory latency 100 cycles
TLB miss penalty 160 cycles

the different sub-matrices have the same size, the values in
each are different what may change the computation done by
each thread. In this case, the WET minimization is a more

complex problem.
On the other hand, in a normal situation once one thread

finishes that context is free for other threads. For example,
TI in the situation depicted in figure l(b) finishes before
TO, so the Operating System schedules a new task in that
context. In that case the WET minimization problem is
even worse because TO executes with another thread till its
finalization what increments its execution time. In this paper,

for simplicity reasons we assume that ones the first thread
in a workload finishes this context is not used by the OS to
schedule a new task.

III. EXPERIMENTAL SETUP

In this section, we discuss the simulator we have used in
this study as well as the metrics and benchmarks we used
for that purpose.

To evaluate the performance of different policies, we use

a trace driven SMT simulator derived from smtsim [24]. The
simulator consists of our own trace driven front-end and
an improved version of smtsim's back-end. The simulator
allows executing wrong path instructions by using a separate
basic block dictionary that contains all static instructions. Ta-
ble I shows the main parameters of the simulated processor.

This processor configuration represents a standard and fair
configuration of a 2-context SMT according to state-of-the-
art papers.

In this paper, we compare the WET of different fetch
policies oriented toward throughput improvement. For this
initial, proof-of-concept study, we did not use parallel pro-

grams. Instead, we used independent single-threaded SPEC

68

Processor Configuration

CPU 2000 benchmarks. We assume that the 'fork' operation
has already been performed by the master job, and that
these independent programs are the child jobs. In an MPI
environment we assume that what we execute is the code
between to communication points. If the number of spawned
threads is greater than the number of available contexts in
the SMT, two in our case, a job balancer balances the jobs
over the available processing units. For each experiment, we
consider two jobs that have to be executed as fast as possible.
The simulation ends when both threads have finished.
A key parameter in our simulations is the ratio between

the execution time of threads when executed in isolation. We
call this measure execution time ratio or ETratio. This ratio
is defined in Equation (1).

tisolated

ETratitO= ,lated (1)
tTl

where ETthreadX denotes the execution time of thread,
when run in isolation.
We use the integer and floating point SPEC CPU 2000

benchmarks. We have built 48 different workloads based
on their ETratios. We have split workloads into 2 different
groups, depending on this parameter. Without loss of gen-
erality, in all experiments we assume that To has a longer
execution time than T1. For the first group, the ETratios of
the threads in a workload are in the range [1, ... , 2). This
means that their execution times do not differ significantly.
In the second group, the range of ETratios is [2,, o).
In this group, the difference between the execution times of
both threads is higher. Based on these parameters, we built
the workloads shown in Tables 11(a) and 11(b). In order to
obtain different ETratios, we vary the number of instructions
a thread has to execute.

A. Metrics

Obviously, the ultimate metric we use is execution time.
For example, if we want to know the execution time im-
provement that a policy PA achieves over a policy PB we
have to compute

ETPA\
ETreduction (1 ETP) .100% (2)

In some situations, it may happen that the ETratio is very low
due to the characteristics of the threads under consideration.
For example, assume that we have a workload with two
threads, To and T1, whose execution times when executed
in isolation is 100 million and 1 million cycles, respectively.
The maximum variation (in millions of cycles) of the WET
is given by

[max (tso tsl) < WET < (tWz' + tis)] (3)

In this case, [max(100, 1) < WET < 100 + 1]
[100 < WET < 101] and hence the maximum improvement
that the policy PA may achieve over the policy PB is

1%. This could hide the real improvement of a policy over
other policies. This effect is more profound when ETpA is
much greater ETpB, or vice versa, that is, as the difference
ETpA -ETpB increases.

IV. RESULTS

In this section, we first evaluate some existing approaches.
Next, we discuss the relation between throughput and WET.
Finally, we discuss how much space for improvement exist-
ing approaches leave.

A. Existing approaches

Here, we show the results obtained from the best known
fetch and resource allocation policies that improve through-
put/fairness. We have evaluated the following policies:
icount [23], dwarn [8], stall [22], flush [22], flush++ [7],
and dcra [9].
The Icount policy prioritizes threads with fewer instruc-

tions in the pre-issue stages, and presents good results
for threads with high ILP. However, SMT has difficulties
with threads that experience many loads that miss in L2.
When this situation happens, then icount does not realize
that a thread can be blocked on an L2 miss and will not
make forward progress for many cycles. Depending on the
amount of instructions dependent of the blocked load, many
processor resources may be blocked and the total throughput
suffers from a serious slowdown.

Stall is built on top of icount to avoid the problems
caused by threads with a high cache miss rate. It detects
that a thread has a pending L2 miss and prevents the
thread from fetching further instructions to avoid resource
abuse. However, L2 miss detection already may be too late
to prevent a thread from occupying most of the available
resources. Furthermore, it is possible that the resources
allocated to a thread are not required by any other thread,
and so the thread could very well continue fetching instead
of stalling, producing resource under-use.

Flush is an extension of stall that tries to correct the case
in which an L2 miss is detected too late by deallocating all
the resources of the offending thread, making them available
to the other executing threads. However, it is still possible
that the missing thread is being punished without reason, as
the deallocated resources may not be used (or fully used) by
the other threads. Furthermore, by flushing all instructions
from the missing thread, a vast amount of extra fetch and
power is required to redo the work for that thread.

Flush++ is based on the idea that stall performs better
than flush for workloads that do not put a high pressure
on resources, that is, workloads with few threads that have
high L2 miss rate. Conversely, flush performs better when
a workload has threads that often miss in the L2 cache,
and hence the pressure on the resources is high. flush++
combines flush and stall: it uses cache behavior of threads

69

TABLE II
WORKLOAD DESCRIPTION

Workloads 1 ipczTto dT Instr. (Millions) T ET-
-Th. 0 | Th.1 Th. 0 Th. 1 Th. 0 | Th.1 I ratio]
bzip2 bzip2 4.111 4.111 300 300 1.00
crafty perl 2.87 3.665 300 300 1.28
gap gcc 2.054 2.569 300 300 1.25
vortex eon 2.233 3.141 300 300 1.41
bzip2 applu 4.111 2.729 300 200 1.00
gzip mgrid 2.855 2.051 300 150 1.44
mesa vortex 3.871 2.233 300 100 1.73
wupwise gap 3.092 2.054 300 200 1.00
twolf twolf 1.286 1.286 300 300 1.00
vpr twolf 1.254 1.286 300 300 1.03
vpr parser 1.254 1.614 300 300 1.29
mcf twolf 0.147 1.286 57 300 1.66
lucas mcf 1.037 0.147 300 33 1.29
twolf art 1.286 1.565 300 300 1.22
vpr equake 1.254 0.905 300 200 1.08
lucas parser 1.037 1.614 200 300 1.04
twolf eon 1.286 3.141 208 300 1.69
vpr vortex 1.254 2.233 300 280 1.91
gzip twolf 2.855 1.286 300 100 1.35
parser perl 1.614 3.665 150 300 1.14
mgrid twolf 2.051 1.286 300 150 1.25
galgel vpr 2.305 1.254 300 150 1.09
parser art 1.614 1.565 300 150 1.94
swim gcc 1.273 2.569 180 300 1.20

(a) Execution ratio [1, ..., 2) (range 1)

to switch among flush and stall in order to provide better
performance.

Unlike previous policies, dwarn does not squash instruc-
tions in the pipeline. Furthermore, it adapts to pressure on
resources reducing resource underuse. Dwarn uses LI data
cache misses as indicators of a possible L2 miss. Threads
experiencing an LI data cache miss are given lower fetch
priority than threads with no data cache misses. The key idea
is to prevent the damage before it occurs, instead of waiting
until an L2 miss is produced, when probably some damage
has already been done.
Dcra dynamically partitions resources based on memory

performance. Threads with frequent LI cache misses are
given large partitions, allowing them to exploit parallelism
beyond stalled memory operations. Threads that cache-miss
infrequently are guaranteed some resource share since stalled
threads are not allowed beyond their partitions. Hence,
dcra prevents resource clog by containing stalled threads.
Moreover, dcra computes partitions based on the threads
anticipated resource needs, increasing distribution to the
threads that can use resources most efficiently.

Figures 2(a) shows the reduction in WET that the policies
considered in this section achieve over icount. These reduc-
tions are averaged over the 48 different workloads discussed
above. We can see that on average all policies improve
icount, except stall, although the differences are small. We
observe from Figure 2(a) that the difference between the
policies for low ETratios is higher than for high ETratios. It
follows from Equation (3) that the maximum improvement a
policy can achieve over another policy is lower for workloads
with a high ETratio.

Workloads] IPCTX lated 1 Instr. (Millions) [ET-
Th.0 h.1 Th. 0 | Th. 1 Th. 0 Th.1 ratio
vortex perl 2.233 3.665 300 200 2.46
gcc bzip2 2.569 4.111 300 200 2.40
vortex gzip 2.233 2.855 300 100 3.84
gap crafty 2.054 2.87 300 70 5.99
gcc applu 2.569 2.729 300 100 3.19
vortex wupwise 2.233 3.092 300 200 2.08
fma3d eon 2.305 3.141 300 200 2.04
apsi crafty 2.943 2.87 300 100 2.93
twolf vpr 1.286 1.254 300 100 2.93
vpr parser 1.254 1.614 300 100 3.86
twolf twolf 1.286 1.286 300 100 3.00
mcf parser 0.141 1.614 160 300 6.10
swim twolf 1.273 1.286 300 80 3.79
art parser 1.565 1.614 300 80 3.87
mcf equake 0.141 0.905 200 300 4.28
vpr lucas 1.254 1.037 300 100 2.48
twolf bzip2 1.286 4.111 300 200 4.80
vpr eon 1.254 3.141 300 100 7.51
mcf gcc 0.141 2.569 134 300 8.14
parser crafty 1.614 2.87 300 200 2.67
vpr mesa 1.254 3.871 300 200 4.63
galgel twolf 2.305 1.286 300 80 2.09
perlbmlk apsi 3.665 2.943 300 100 2.41
fma3d gap 2.305 2.054 300 100 2.67

(b) for execution ratio [2, ..., xo) (range 2)

B. Correlation with throughput

In this section, we discuss the relation between through-
put, that is, the sum of the IPCs of the threads in the
multithreaded period, and WET. Figure 2(b) shows the
throughput improvement of each policy over icount. Analo-
gously, Figure 2(b) shows the WET reduction of each policy
over icount. We see that, roughly speaking, the higher the
throughput improvement of a policy is, the higher its WET
reduction is. However, we can see that this is not always
the case. For example, if we compare icount and stall, we
observe that stall achieves higher throughput than icount,
but icount achieves a better Workload Execution Time than
stall. This indicates that improving throughput does not
necessarily lead to the shortest WET. In other words, given
two policies PA and PB, if PA achieves higher throughput
than PB during the MT period, this does not necessarily
imply that the WET of PA is better than the WET of PB.
Now we show a real-life example. We have two bench-

marks mcf and gcc. mcf runs for 134 million instruc-
tions at an IPC of 0.147. Analogously, gcc runs for 300
million instructions at an IPC of 2.569. In this case, we
execute a workload composed of gcc and mcf using the
fetch policies stall and flush. The execution proceeds as
shown in Figure 3. We observe that during the MT period,
which takes 148 million cycles, the flush policy obtains an
IPC of 0.106 + 2.298 = 2.404. For the stall policy, the
MT period takes 128 million cycles and the throughput is
0.118 + 1.984 = 2.102. Hence, stall suffers a slowdown of
8.4% in throughput compared to flush. However, we observe
that stall reduces WET by 0.5% compared to flush. This

70

8
7 * Work

E Work

o5

0)3

*E2

(Ol

-2

25
(loads in range 1
(loads in range 2

Dwarn Stall Flush Flush++ DCRA

(a) Workloads with ETratio in range 1 and range 2

0020 ILo

a)
E 15a)

Throughput improvement

E ET reduction

0)

-5

Dwarn Stall Flush Flush++ DCRA

(b) Throughput improvement and WET reduction for all workloads

Fig. 2. Comparing throughput and WET for several policies

tme m

IPC=078 0.148
mcf D

I 937,615,218

gccCC
cycle =148,31 1,440

mcf

flush

0.106

2298 1

128,018,491

Fig. 3. Execution of the mcf and gcc benchmarks using the flush and stall policies

indicates that reducing WET is not always just a matter of
increasing the throughput of the workload during the MT
period. Hence, new mechanisms, other than those improving
throughput, have to be proposed in order to provide reduced
WET.

C. The Need for WET Optimization

The next point is to determine by how much the WET
can potentially be reduced. This is an important point since
it could be the case that the WET obtained from standard
throughput oriented policies is already (almost) the shortest
WET that can be obtained, in which case, it would not make
sense to devise any WET oriented policies. If we assume that
executing several threads in MT mode is more efficient than
executing them in sequential mode, then the upper bound for
the WET is ti,olated + tisolated. Hence, values of the WET
are in the interval:

[max (tiolI tisl) <WET < (tTsoi + tisol)
The maximum WET improvement is given by:

MaxWETimprov I
max (tisol. tisol.)

tisol. + tisolTo T,

Figure 4 shows the WET achieved by the best eval-
uated policy, dcra, and the MaxWETimprovement given
by Equation (4). We see that in some workloads, dcra is
near the maximum improvement of 2%, although in others

the difference is significant. For example, for workload 5
in Figure 4(a) the difference is 50 -5 = 45 percentage
point. On average, the difference between dcra and the
best possible improvement is 24 percentage point for the
workloads in range 1, and 12 percentage point for workloads
in range 2, with an average of 18 percentage point. We
conclude that there is a lot of space for improvement if
we want to reduce Workload Execution Times, given the
state-of-the-art in instruction fetch and resource allocation
policies. New policies could improve WET by as much as

20 percentage point on average.

Please, note that the solution to WET minimization is
not as simple as giving high priority to the thread that
spends more time to be executed. This is because as noted
in [12] when prioritizing a thread we can lead to a situation
where performance is heavily affected. That is, let us say

that we have two threads TO and TI where TO requires
longer to be executed and that we execute both thread
at the same time on an SMT processor and TO runs at
I_pcoMT and TI at IPcjSMT. Further assume that we

design a policy that bias the execution towards TO so that
it finishes earlier. In that case TO runs at IPCT/ITbiasTo
and TI at IPCT1STbias TO. The point is that it is likely that
I PC/SMTbiasTo/I_PCMTpTIPC /IPC TbiasTO

what means that the IPC degradation of TI incurred by prior-
itizing TO is much higher that the performance improvement
of TO. In this case the WET could be worse.

71

time

stall

07148 _

942,736,218

---T--r

_l ~
dk- lir

-EPR- Mir

LI DCRA
* Max WET improvement

N1- N'-

(a)Work wit Erati, o oo in rang 1 N N N N

(a) Workloads with ETratio in range I

*I DCRA
Max WET improvement

N- N N N N

(b) Workloads with ETratio in range 2

Fig. 4. Maximum improvement and dcra improvement over the worst WET

72

- 60
0-

w
g 50
cn
0

. 40

.

30c:
0

20
a) 20E

.o 10
0
a)
xwO

- 60
0-

w
g 50
cn
0

. 40

.

30c:
0

20
a) 20E

.o 10
0
a)
xwO

Therefore, we believe it is important to try to find new
policies that are specifically geared toward WET mini-
mization in order to improve the applicability of SMT for
OpenMP and MPI-like applications in which the threads in
a workload are derived from forking within one application
instead of having completely independent threads, as is
currently the case.

V. CONCLUSION

In this paper, we have discussed a problem that has
not been previously addressed in the SMT literature. The
problem consists of reducing the total execution time of
all threads in a workload. We call this problem WET
(Workload Execution Time) minimization. Since SMTs are
being used more and more in parallel systems, this problem
will be important in order to deal with situations where
a master thread can spawn several child threads and may
proceed only when all these child threads have finished.
In our analysis, we have demonstrated that the best fetch
policies that improve throughput achieve less than optimum
performance for this problem. We also presented new metrics
to evaluate the WET reduction. For the workloads evaluated
in this paper, we have shown that the space for improvement
can be as high as 45 percentage point, with 18 percentage
point on average. We have demonstrated that improving
throughput does not always cause a reduction in WET.

VI. FUTURE WORK

This paper is just a first step toward analyzing the problem
and finding solutions for reducing the WET. It remains
to be discussed whether the gap between the theoretical
optimum execution time and the results obtained by using the
different policies investigated in the paper can be closed, i.e.
whether policies leveraging the remaining potential speedup
are feasible.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Science
and Technology of Spain under contracts TIN-2004-07739-
C02-01, the HiPEAC European Network of Excellence,
and an IBM fellowship. The authors would like to thank
Germain Rodriguez and Roberto Gioiosa for their technical
comments. Authors would like to thank Oliverio J. Santana,
Ayose Falcon, and Fernando Latorre for their work in the
simulation tool.

REFERENCES

[1] http:Hopensparc-t .sunsource.net/.
[2] http://www-unix.mcs.anl.gov/mpi/.
[3] http://www.cepba.upc.es/paraver/.
[4] http://www.openmp.org.
[5] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and

M. Yarrow. The NAS parallel benchmarks 2.0. In Proc. of the
International Journal of Supercomputer Applications, 1995.

[6] Max Baron. Two threads for tricore 2. Microprocessor Report, Sep
2003.

[7] F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero. Improving
memory latency aware fetch policies for SMT processors. Proc. of
the 5th International Symposium on High Performance Computing,
October 2003.

[8] F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero. DCache
Warn: an I-Fetch policy to increase SMT efficiency. Proc. of the
International Parallel and Distributed Processing Symposium, April
2004.

[9] F.J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero. Dynamically
controlled resource allocation in smt processors. Proc. of the 37th
Annual ACM/IEEE Intl. Symposium on Microarchitecture, pages 171-
182, 2004.

[10] F.J. Cazorla, P.M.W. Knijnenburg, E. Fernandez, R. Sakellariou,
A. Ramirez, and M. Valero. Predictable performance in SMT
processors. ACM International Conference on Computing Frontiers,
2004.

[11] F.J. Cazorla, P.M.W. Knijnenburg, E. Fernandez, R. Sakellariou,
A. Ramirez, and M. Valero. Architectural support for real-time task
scheduling in smt processors. In proceedings of the International
CASES-2005, pages 166-176, September 2005.

[12] F.J. Cazorla, P.M.W. Knijnenburg, E. Fernandez, R. Sakellariou,
A. Ramirez, and M. Valero. Predictable performance in SMT
processors: Synergy between the OS and SMTs. In IEEE Transaction
on Computers, 2006.

[13] R. Jain, C.J. Hughes, and S.V. Adve. Soft real-time scheduling on
simultaneous multithreaded processors. Proc. of the 23th International
Symposium on Real-Time Systems Symposium, pages 134-145, Dec
2002.

[14] R. Kalla, B. Sinharoy, and J. Tendler. SMT implementation in
POWER 5. Hot Chips, 15, Aug 2003.

[15] P.M.W. Knijnenburg, A. Ramirez, J. Larriba, and M. Valero. Branch
classification for SMT fetch gating. Proc. of the 6th Workshop on
Multithreaded Execution, Architecture, and Compilation, pages 49-
56, 2002.

[16] Markus Levy. Multithreaded technologies disclosed at MPF. Micro-
processor Report, Nov 2003.

[17] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and
fairness in SMT processors. Proc. of the ISPASS, November 2001.

[18] D. T. Marr, F. Binns, D.L. Hill, G. Hinton, D.A. Koufaty, J. A.
Miller, and M. Upton. Hyper-threading technology architecture and
microarchitecture. Intel Technology Journal, 6(1), Feb 2002.

[19] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.
The case for a single-chip multiprocessor. Proceedings of the seventh
international conference on Architectural support for programming
languages and operating systems, 1996.

[20] M. J. Serrano, R. Wood, and M. Nemirovsky. A study on multi-
streamed superscalar processors. Technical Report 93-05, University
of California Santa Barbara, 1993.

[21] A. Snavely, D.M. Tullsen, and G. Voelker. Symbiotic job scheduling
with priorities for a simultaneous multithreaded processor. ACM
SIGMETRICS, June 2002.

[22] D. Tullsen and J. Brown. Handling long-latency loads in a simulta-
neous multithreaded processor. Proc. of the 34th MICRO, December
2001.

[23] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.
Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. Proc. of the 23th Annual Intl.
Symposium on Computer Architecture, pages 191-202, April 1996.

[24] D.M. Tullsen, S. Eggers, and H. M. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. Proc. of the 22th Annual ISCA,
1995.

[25] D. W. Wall. Limits of instruction-level parallelism. Proceedings
of the fourth international conference on Architectural support for
programming languages and operating systems, 1991.

[26] W. Yamamoto and M. Nemirovsky. Increasing superscalar perfor-
mance through multistreaming. Proc. of the 1st Intl. Conf on High
Performance Computer Architecture, pages 49-58, June 1995.

73

