
A Low-Cost Rescheduling Policy for Efficient
Mapping of Workflows on Grid Systems

Rizos Sakellariou and Henan Zhao
School of Computer Science, University of Manchester

Oxford Road, Manchester M13 9PL, UK

Abstract. Workflow management is emerging as an important service in Grid com-
puting. A simple model that can be used for the representation of certain workflows
is a directed acyclic graph. Although many heuristics have been proposed to schedule
such graphs on heterogeneous environments, most of them assume accurate predic-
tion of computation and communication costs. This limits their direct applicability to
a dynamically changing environment, such as the Grid. In this environment, an initial
schedule may be built based on estimates, but run-time rescheduling may be needed to
improve application performance. This paper presents a low-cost rescheduling policy,
which considers rescheduling at a few, carefully selected points during the execution.
This policy achieves performance results, which are comparable with those achieved
by a policy that dynamically attempts to reschedule before the execution of every task.

1 Introduction

Many use cases of Grid computing relate to applications that require complex workflows to
be mapped onto a range of distributed resources. Although the characteristics of workflows
may vary, a simple approach to model a workflow is by means of a directed acyclic graph
(DAG) [8, 10]. This model provides an easy way of addressing the mapping problem; a
schedule is built by assigning the nodes (the terms ‘task’ and ‘node’ are used interchangeably
throughout this paper) of the graph onto resources in a way that respects task dependences
and minimizes the overall execution time. In the general context of heterogeneous distributed
computing, a number of scheduling heuristics have been proposed (see [15, 17, 19] for an
extensive list of references). Typically, these heuristics assume that accurate prediction is
available for both the computation and the communication costs. However, in a real envi-
ronment and even more in the Grid, it is difficult to estimate accurately those values due
to the dynamic characteristics of the environment. Consequently, an initial schedule may be
built using inaccurate predictions; even though the schedule may be optimized with respect
to these predictions, run-time variations may affect the schedule’s performance significantly.

There are two main approaches to deal with unpredictability. One approach is to schedule
all tasks at run-time, as they become available; this may take place on a per task basis or
in groups of independent tasks (as in [7]). The other approach is to plan in advance, build a
static schedule using the available estimates, and possibly respond to changes that may occur
at run-time by rescheduling. In the context of the Grid, rescheduling of one kind or the other
has been considered by a number of projects, such as AppLeS [2, 6], Condor-G [9], Data
Grid [11] and Nimrod-G [4, 5]. However, all these projects consider the dynamic schedul-
ing of sets of independent tasks. For DAG rescheduling, a hybrid remapper based on list

2 A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems

scheduling algorithms was proposed in [14]. Taking a static schedule as the input, the hybrid
remapper uses the run-time information that obtained from the execution of precedence nodes
to make a prediction for subsequent nodes that is used for remapping.

Generally speaking, rescheduling adds an extra overhead to the scheduling and execution
process. This may be related to the cost of reevaluating the schedule as well as the cost of
transferring tasks across machines (in this paper, we do not consider pre-emptive policies at
the task execution level). This cost may be offset by gains in the execution of the schedule;
however, what appears to give an indication of a gain at a certain stage in the execution of a
schedule (which may trigger a rescheduling), may not turn to be good later in the schedule.
In this paper, we attempt to strike a balance between the cost of rescheduling and the perfor-
mance of the schedule. We propose a novel, low-cost, rescheduling policy, which improves
the initial static schedule of a DAG, by considering only selective tasks for rescheduling based
on measurable properties; as a result, we call this policy Selective Rescheduling (SR). Based
on simulation results (the results presented here complement and expand the results included
in the conference version of this paper [21]), this policy gives equally good performance with
policies that consider rescheduling for every task of the DAG, at a much lower cost. In our
experiments, SR considers less than 30% of the tasks of the DAG for rescheduling; in most
cases, this number is even less than 20%.

The remainder of this paper is organized as follows. Section 2 defines two criteria to
represent the robustness of a schedule, spare time and the slack. We use these two criteria
to make decisions for the Selective Rescheduling policy, presented in Section 3. Section 4
evaluates the performance of the policy. Finally, Section 5 concludes the paper.

2 Preliminaries

The model used in this paper to represent an application is the directed acyclic graph (DAG),
where nodes (or tasks) represent computation and edges represent communication (data flow)
between nodes. The DAG has a single entry node and a single exit node. There is also a set
of machines on which nodes can execute (with a different execution cost on each machine)
and which need different time to transmit data. A machine can execute only one task at a
time, and a task cannot start execution until all data from its parent nodes is available. The
scheduling problem is to assign the tasks onto machines so that precedence constraints are
respected and the makespan (i.e., the length of the schedule) is minimized. A solution to
this problem is found using an appropriately designed heuristic [15, 17, 19]; the solution,
called schedule, can be regarded as a quadruplet, which, for each task, specifies the machine
on which it has been scheduled for execution, as well as, start time and finish time. For an
example, see Figure 1.

Previous work has attempted to characterize the robustness of a schedule; in other words,
how robust the schedule would be if variations in the estimates used to build the schedule
were to occur at run-time [1, 3]. Although the robustness metric might be useful in evalu-
ating overall different schedules, it has little direct value for our purposes; here, we wish to
use specific criteria to select, at run-time, particular tasks before the execution of which it
would be beneficial to reschedule. To achieve this, we build on and extend two fundamental
quantities that have been used to measure robustness; the spare time, and the slack of a node.
The spare time, computed between a pair of dependent nodes that are either connected by an
edge in the DAG (data dependence), or are to be executed successively on the same machine

A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems 3

(a) an example graph

task m0 m1 m2 task m0 m1 m2
0 13 10 11 5 12 14 10
1 9 11 16 6 10 16 10
2 13 18 10 7 11 10 6
3 7 4 9 8 13 10 10
4 9 12 15

(b) the computation cost of nodes
on three different machines

machines time for a data unit
m0 - m1 1.5
m1 - m2 1.0
m0 - m2 2.0

(c) communication cost between the machines

(d) the schedule derived by the
HEFT algorithm

node start finish
time time

0 0 10
1 14.5 23.5
2 10 28
3 19 28
4 23.5 32.5
5 29.5 39.5
6 34 50
7 45.5 51.5
8 57.5 67.5

(e) the start time and finish time of each node
in (d)

Figure 1: An example: the schedule is generated using the HEFT algorithm [19].

(machine dependence), shows what is the maximal time that the source of dependence can
execute without affecting the start time of the sink of the dependence. The slack of a node is
defined as the minimum spare time on any path from this node to the exit node of the DAG.
This is the maximum delay that can be tolerated in the execution time of the node without
affecting the overall schedule length. If the slack of a node is zero, the node is called critical;
any delay on the execution time of this node will affect the makespan of the application.

A formal definition and an example follow below. We note that the definitions in [3] do
not take into account the communication cost between data dependent tasks, thereby limiting
their applicability. Our definitions are augmented to take into account communication.

4 A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems

2.1 Spare Time

Consider a schedule for a given DAG; the spare time between a node
�

and an immediate
successor � is defined as

�������
	���
���� ��� ����� ����� ������� � �!� �"� ��� �
where

���!� ��� is the expected start time of node � (on the machine where it has been scheduled
to), and �#� ��� ��� ��� is the time that all the data required by node � from node

�
will arrive on

the machine where node � executes. To illustrate this with an example, consider Figure 1
and the schedule in Figure 1(d) (derived using the HEFT heuristic [19]). In this example, the
finish time of task 4 is 32.5 and the data transfer time from task 4 (on machine 0) to task 7
(on machine 2) is 8 (4 * 2 = 8) time units, hence the arrival time of the data from task 4 to
task 7 is 40.5. The start time of task 7 is 45.5, therefore, the spare time between task 4 and
task 7 is 5. This is the maximal value that the finish time of task 4 can be delayed at machine
0 without changing the start time of task 7.

In addition, for tasks
�

and � , which are adjacent in the execution order of a particular
machine (and task

�
executes first), the spare time is defined as

���$�%�&	�')(+*�,.-/(+021�� �"� �3�4� �5��� �3���76 ��� � � �
where 6 �!� � � is the finish time of node

�
in the given schedule. In Figure 1, for example, task 3

finishes at time 28, and task 5 starts at time 29.5; both on machine 2. The spare time between
them is 1.5. In this case, if the execution time of task 3 delays for no more than 1.5 , the start
time of task 5 will not be affected. However, one may notice that even a delay of less than 1.5
may cause some delay in the start time of task 6; to take this into account, we introduce one
more parameter.

To represent the minimal spare time for each node, i.e., the maximal delay in the execution
of the node that will not affect the start time of any of its dependent nodes (both on the DAG
or on the machine), we introduce 8 �:9 ���$�%�&	 , which is defined as

8 �:9 �������
	%� � �;�=<#>@?A"BDC �FE �������
	%� �"� ���
where �!G is the set of the tasks that includes the immediate successors of task

�
in the

DAG and the next task in the execution order of the machine where task
�

is executed, and�������&	%� �"� �3� is the minimum of
�������&	
��
H��� �"� ��� and

�������
	�')(+*�,.-/(+021�� ��� ��� .
2.2 The Slack of a Node

In a similar way to the definition in [3], the slack of a node
�

is computed as the minimum
spare time on any path from this node to the exit node. This is recursively computed, in an
upwards fashion (i.e., starting from the exit node) as follows:

��I2��JLK�� � �4�=<M>N?A"BDC �FE �:��I2��JLK�� �3�PO ���$�%�&	%� ��� ���"�DQ
The slack for the exit node is set equal to

��I2�%JRK�� � ,TS GVUW���YX�Q

A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems 5

Input: an application graph � and a schedule
���

produced by an algorithm �
(any algorithm for DAG scheduling onto heterogeneous systems may be used)

/* This variant makes use of the
��I2�%JRK

value to decide whether to reschedule.
Another variant could be based on 8 �:9 ���$�%�&	 (in this case, all three occurrences
of
��I2��JLK

below would be replaced by 8 �:9 �������
). */
Selective rescheduling policy:
(1) Mark all tasks in

���
as unexecuted, Unexecuted[]�����

the real, post-execution schedule (initially empty)
(2) Compute for each task

�
from

���
,
��I2�%JRK�� � �

(3) While (Unexecuted[] is not empty)	 �
first task in

���
, which is in Unexecuted[] and whose input data are available
 �

the allocated machine for
	

in schedule
���

if (
	

is not the entry task in �)� �����
the expected start time of

	
in schedule

�
�
� �5���

the real start time of
	

on
 in
���

� 	�I2����� � ���
-
� �5�

if (
� 	�IT����� �4I2�%JLK�� 	 �)����� � (Unexecuted[],

��� � /* reschedule remaining tasks */
compute

��I2��JLK
for all tasks in

�
�
, also in Unexecuted[]	 �

first task in
���

, which is in Unexecuted[]
 �
the allocated machine for

	
in schedule

���
endif

endif
execute task

	
on machine
����� �������3� 	 �
 ���

remove task
	

from the Unexecuted[] set
endwhile

Figure 2: The Selective Rescheduler.

The slack of each task indicates the maximal value that can be added to the execution
time of this task without affecting the overall makespan of the schedule. Considering again
the example in Figure 1, the slack of node 8 is 0; the slack of node 7 is also zero (computed
as the slack of node 8 plus the spare time between 7 and 8, which is zero). Node 5 has a spare
time of 6 with node 7 and a spare time of 9 with node 8 (its two immediate successors in the
DAG and the machine where it is executing). Since the slack of both nodes 7 and 8 is 0, then
the slack of node 5 is 6. Indeed, this is the maximal time that the finish time of node 5 can be
delayed without affecting the schedule’s makespan.

Clearly, if the execution of a task will start at a time which is greater than the statically
estimated starting time plus the slack, the overall makespan (assuming the execution time of
all other tasks that follow remains the same) will change. Our rescheduling policy is based
on this observation and will selectively apply rescheduling based on the values of slack (or
spare time). This is presented in the next section.

6 A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems

(a) Fork-Join (b) Laplace equation solver (c) FFT

Figure 3: Small-sized versions of 3 different types of DAGs.

3 A Selective Rescheduling Policy

The key idea of the selective rescheduling policy is to evaluate, at run-time, before each
task starts execution, the starting time of each node against its estimated starting time in
the static schedule and the slack (or the minimal spare time), in order to make a decision
for rescheduling. The input of this rescheduler is a DAG, with its associated values, and a
static schedule computed by any DAG scheduling algorithm. The objective of the policy is
to optimize the makespan of the schedule while minimizing the frequency of rescheduling
attempts.

As the tasks of the DAG are executed, the rescheduler maintains two schedules,
���

and���
.
���

is based on the static construction of the schedule using estimated values;
���

keeps
track of what the schedule looked like for the tasks that have been executed (i.e., it contains
information about only the tasks that have finished execution). Before each task (except the
entry node) can start execution, its (real) start time can be considered as known. Comparing
the start time that was statically estimated in the construction of

���
and the slack (or the

minimal spare time), a decision for rescheduling is taken. The algorithm will proceed to a
rescheduling action if any delay between the real and the expected start time (in

���
) of the

task is greater than the value of the Slack (or, in a variant of the policy, the MinSpare). This
indicates that, in the first variant (Slack), the makespan is expected to be affected, whereas, in
the second variant, the start time of the successors of the current task will be affected (but not
necessarily the overall makespan). Once rescheduling is decided, the set of unexecuted tasks
(and their associated information) and the already known information about the tasks whose
execution has been completed (stored in

���
) are fed to the scheduling algorithm used to build

a new schedule, which is stored in
���

. The values of Slack (or MinSpare), for each task, are
subsequently recomputed from

���
. The policy is illustrated in Figure 2.

4 Simulation Results

4.1 The Setting

To evaluate the performance of our rescheduling policy, we simulated both variants of our
rescheduling policy (i.e., based on spare time and the slack) using four different DAG schedul-
ing algorithms: Fastest Critical Path (FCP) [16], Dynamic Level Scheduling (DLS) [18],
Hybrid Balanced Minimum Completion Time (HBMCT) [17], and Heterogeneous Earliest
Finish Time (HEFT) [19]. Each algorithm generates the initial static schedule and is called

A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems 7

 1745

 1750

 1755

 1760

 1765

 1770

 1775

 1780

 1785

 1790

 1795

 1800

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(a) FCP

 1250

 1300

 1350

 1400

 1450

 1500

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(c) HBMCT

 1320

 1340

 1360

 1380

 1400

 1420

 1440

 1460

 1480

 1500

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(b) DLS

 1340

 1360

 1380

 1400

 1420

 1440

 1460

 1480

 1500

 1520

 1540

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(d) HEFT

Figure 4: Average makespan (over 100 runs on Laplace DAGs with 25-225 tasks and 3-8 machines) of four
scheduling algorithms with dynamic rescheduling and our rescheduling policy.

again when the rescheduler decides to remap tasks.
We have evaluated, separately, the behaviour of our rescheduling policy with each of

the four different algorithms, both in terms of the performance of the final schedule and in
terms of the running time. We used three different types of DAGs: FFT [12, 19], Fork-Join
Graphs [12], and Laplace [12]. Small-sized versions of each different type of DAG are shown
in Figure 3. Each of the resulting 12 experiments was carried out 100 times and average
values were considered. In each case, we selected, randomly, the number of tasks in the DAG,
and we generated a schedule using a number of machines randomly chosen between 3 to 8
(with equal probability). The static estimates for the execution of each task on each different
machine are randomly generated from a uniform distribution in the interval [50,100], while
the communication-to-computation ratio (CCR) is randomly chosen from the interval [0.1,1].
For the actual execution time of each task we adopt the approach in [6], and we use the notion
of Quality of Information (QoI). This represents an upper bound on the percentage of error
that the static estimate may have with respect to the actual execution time. So, for example,
a percentage error of 10% would indicate that the (simulated) run-time execution time of a
task will be within 10% (plus or minus) of the static estimate for the task. In our experiments
we consider an error of up to 50%.

8 A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems

 1300

 1320

 1340

 1360

 1380

 1400

 1420

 1440

 1460

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(a) FCP

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 1140

 1160

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(c) HBMCT

 900

 950

 1000

 1050

 1100

 1150

 1200

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(b) DLS

 950

 1000

 1050

 1100

 1150

 1200

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(d) HEFT

Figure 5: Average makespan (over 100 runs on Fork-Join DAGs with 7-229 tasks and 3-8 machines) of four
scheduling algorithms with dynamic rescheduling and our rescheduling policy.

4.2 Scheduling Performance

In order to evaluate the performance of our rescheduling policy, in terms of optimising the
length of the schedule produced, we implemented both the spare time and the slack vari-
ants, and compared the schedule length they generate with three other approaches; these are
denoted by static, ideal, and always. Static refers to the actual run-time performance of the
original schedule (which was constructed using the static performance estimates); that is, no
change in the original static schedule takes place at run-time. Ideal refers to a schedule, which
is built post mortem; that is, the schedule is built after the run-time execution of each task
is known. This serves as a reasonable lower bound to the makespan that rescheduling can
achieve. Finally, always refers to a scheme that reschedules all remaining non-executed tasks
each time a task is about to start execution.

The results, for each of the four different algorithms considered, and each different type
of DAGs are shown in Figures 4, 5, 6. We considered a QoI percentage error between 10%
and 50 %. As expected, larger values of the QoI result in larger differences between the static
and the ideal. The values of the three different rescheduling approaches (i.e., always, and
the two variants of the rescheduling policy proposed in this paper, slack, spare) are roughly
comparable. However, this is achieved at a significant benefit, since our policy attempts to
reschedule only in a relatively small number of cases rather than always.

A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems 9

 1720

 1730

 1740

 1750

 1760

 1770

 1780

 1790

 1800

 1810

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(a) FCP

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(c) HBMCT

 1100

 1150

 1200

 1250

 1300

 1350

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(b) DLS

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 m
ak

es
pa

n

QoI error bound(%)

static
ideal

always
Slack
Spare

(d) HEFT

Figure 6: Average makespan (over 100 runs on FFT DAGs with 15-223 tasks and 3-8 machines) of four schedul-
ing algorithms with dynamic rescheduling and our rescheduling policy.

Another interesting remark from the figures is that rescheduling falls short of what can be
considered to be the ideal time; this is in line with the results in [14]. The results also indi-
cate that even for relatively high percentage errors, it is still the behaviour of the scheduling
algorithm chosen that has the highest impact on the makespan. For instance, in all three types
of DAGs, even the ideal makespan obtained with FCP is worse than the static makespan (i.e.,
no rescheduling), obtained with the other three scheduling heuristics.

4.3 Running Time

Although the three rescheduling approaches that were compared in the previous section per-
form similarly, the approaches based on the policy proposed in this paper (i.e., slack and
spare) achieve the same result (with always) at a significantly reduced cost. Table 1 shows
the running time of each of the 3 approaches and for each different algorithm, averaged over
50 runs on all three types of DAGs with about 100 tasks each, using QoI 20%, and scheduling
on 5 machines (column R.T in the table). It can be seen that the two variants of our policy run
at no more than 43% of the time that is needed when rescheduling is performed after each
task. Also, the two variants of our policy attempt to reschedule tasks at no more than 30%
of the time (note that always would attempt to reschedule all the tasks except the entry node,

10 A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems

Always Slack Spare
R.T. #R #C R.T. #R #C R.T. #R #C

HBMCT 3917.7 99 63.0 390.2 13.1 43.6 480.5 16.9 42.9
Laplace FCP 1862.9 99 38.8 256.0 10.7 39.3 333.0 13.8 45.5

(100 tasks) DLS 4971.4 99 72.1 393.7 12.1 40.3 568.0 17.4 51.1
HEFT 1898.5 99 39.6 609.2 23.6 54.6 811.7 29.7 59.7
HBMCT 4258.4 102 23.8 244.0 6.8 7.6 348.6 9.4 7.8

Fork-Join FCP 2075.5 102 39.7 411.5 9.8 41.3 483.9 11.6 49.6
(103 tasks) DLS 5684.8 102 32.4 366.4 8.3 12.3 446.9 10.5 13.4

HEFT 2154.0 102 24.3 461.9 12.8 14.4 493.9 14.4 15.7
HBMCT 3546.0 94 39.1 361.7 16.0 24.6 392.9 17.5 23.5

FFT FCP 1663.9 94 34.5 432.9 18.2 64.0 621.3 21.6 64.2
(95 tasks) DLS 4189.2 94 52.3 428.5 13.4 31.8 500.3 15.4 33.5

HEFT 1706.6 94 36.3 543.8 22.0 59.0 563.1 23.1 61.3

Table 1: Average values of running time (R.T.) in msec, number of times rescheduling is attempted (#R) and
number of tasks that moved to another machine compared to the machine they were allocated to in the original
static schedule (#C) for each of three rescheduling approaches using four algorithms. The average is calcu-
lated over 50 runs using 3 different types of DAGs each with around 100 tasks, QoI 20% and scheduling on 5
machines.

hence the value of column #R in this case is equal to the number of tasks minus 1). Finally, it
is interesting to notice that the number of tasks that are executed by a different machine than
the one they were allocated to in the original static schedule appears to be dependent on the
scheduling heuristic used and the type of DAGs considered (column #C in the table). In terms
of algorithm performance, HEFT triggers rescheduling more times than the other three DAG
scheduling algorithms. Furthermore, with either variant of our rescheduling policy, HBMCT
appears to be resulting in fewer changes of the machine that would execute each task compar-
ing to the static schedule (see column #C; especially visible in the case of Fork-Join DAGs).
This is probably due to its good performance [17], an observation that would support an argu-
ment that those heuristics with good performance using statically estimated execution times
appear to perform better also when there are run-time deviations from the static execution
times.

Figure 7 shows how the running time varies if Fork-Join DAGs with up to 151 nodes are
used. It can be seen that attempting to rescheduling always leads to faster increases in the
running time than our policy. It is worth noting that the slack variant is slightly faster than
the spare variant; this is because the slack is cumulative and refers to the makespan of the
schedule (as opposed to the spare time) and, as a result, it will lead to fewer rescheduling
attempts (something that can also be observed from Table 1).

5 Conclusion

This paper presented a novel rescheduling policy for DAGs, which attempts to reschedule
selectively (hence, without incurring a high overhead), yet achieving results comparable with
those obtained when rescheduling is attempted for every task of the DAG. The approach is
based on evaluating two metrics, the minimal spare time and the slack, and is generic, in that
it can be applied to any scheduling algorithm.

Although there has been significant work in static scheduling heuristics, limited work

A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems 11

 0

 1

 2

 3

 4

 5

 6

 7

 20 40 60 80 100 120 140

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(s

ec
)

Number of Nodes

always
Spare
Slack

(a) FCP

 0

 5

 10

 15

 20

 25

 20 40 60 80 100 120 140

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(s

ec
)

Number of Nodes

always
Spare
Slack

(c) HBMCT

 0

 5

 10

 15

 20

 25

 30

 35

 20 40 60 80 100 120 140

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(s

ec
)

Number of Nodes

always
Spare
Slack

(b) DLS

 0

 1

 2

 3

 4

 5

 6

 7

 20 40 60 80 100 120 140

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(s

ec
)

Number of Nodes

always
Spare
Slack

(d) HEFT

Figure 7: Average running time (over 100 runs on Fork-Join DAGs with 7-151 tasks and 5 machines) of four
scheduling algorithms with dynamic rescheduling and our rescheduling policy.

exists in trying to understand how dynamic, run-time changes can affect a statically prede-
termined schedule. The emergence of workflows as important use cases in Grid computing
as well as new ideas and approaches related to scheduling [13] are expected to motivate fur-
ther and more elaborate research into different aspects related to the management of run-time
information.

References

[1] S. Ali, A. A. Maciejewski, H. J. Siegel and J-K. Kim, Definition of a Robustness Metric for Resource
Allocation, Proceedings of IPDPS 2003 (2003).

[2] F. Berman, and R. Wolski. The AppLeS project: a status report. Proceedings of 8th NEC Research
Symposium, Berlin, Germany, 1997.

[3] L. Boloni, and D. C. Marinescu. Robust scheduling of metaprograms. In Journal of Scheduling, 5:395-
412, 2002.

[4] R. Buyya, D. Abramson and J. Giddy. Nimrod-G: an architecture for a resource management and schedul-
ing system in a global Computational Grid. In International Conference on High Performance Computing
in Asia-Pacific Region (HPC Asia 2000), Beijing, China.

12 A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems

[5] R. Buyya, J. Giddy and D. Abramson, An evaluation of economy-based resource trading and scheduling
on computational power Grids for parameter sweep applications, Proceedings of the 2nd International
Workshop on Active Middleware Service (AMS 2000), Kluwer Academic Press (2000), 221–230.

[6] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, Heuristics for scheduling parameter sweep ap-
plications in Grid environments, Proceedings of the 9th Heterogeneous Computing Workshop (HCW’00),
IEEE Computer Society Press (2000), 349–363.

[7] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, M. Livny, Pegasus:
Mapping Scientific Workflows onto the Grid, Proceedings of the 2nd AcrossGrids Conference, Cyprus,
Springer-Verlag, LNCS 3165 (2004).

[8] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A. Lazzarini, A. Arbree,
R. Cavanaugh and S. Koranda, Mapping Abstract Complex Workflows onto Grid Environments, Journal
of Grid Computing, 1:25-39, 2003.

[9] J. Frey, T. Tannenbaum, I. Foster, M. Livny and S. Tuecke. Condor-G: a computation management agent
for multi-institutional Grids. Journal of Cluster Computing, 5:237-246, 2002.

[10] A. Hoheisel and U. Der, An XML-Based Framework for Loosely Coupled Applications on Grid Environ-
ments, Proceedings of ICCS 2003, Springer-Verlag, LNCS 2657 (2003), 245–254.

[11] H. Hoschek, J. J. Martinez, A. Samar, H. Stockinger and K. Stockinger, Data management in an interna-
tional Data Grid project, Proceedings of the First IEEE/ACM International Workshop on Grid Computing,
(2000), 77–90.

[12] Y. K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph scheduling algorithms.
Journal of Parallel and Distributed Computing, 59:381–422, 1999.

[13] J. MacLaren, R. Sakellariou, K. T. Krishnakumar, J. Garibaldi and D. Ouelhadj, Towards Service Level
Agreement Based Scheduling on the Grid, Proceedings of the Workshop on Planning and Scheduling for
Web and Grid Services (2004) 100–102.

[14] M. Maheswaran and H. J. Siegel, A dynamic matching and scheduling algorithm for heterogeneous com-
puting systems, Proceedings of the 7th Heterogeneous Computing Workshop (HCW’98) (1998) 57–69.

[15] A. Radulescu and A.J.C. van Gemund. Low-Cost Task Scheduling for Distributed-Memory Machines.
IEEE Transactions on Parallel and Distributed Systems, 13(6), pp. 648-658, June 2002.

[16] A. Radulescu and A. J. C. van Gemund, On the complexity of list scheduling algorithms for distributed
memory systems, Proceedings of the 13th ACM International Conference on Supercomputing, ACM Press
(1999), 68–75.

[17] R. Sakellariou and H. Zhao, A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems, Pro-
ceedings of the 13th Heterogeneous Computing Workshop (HCW’04) (2004).

[18] G. C. Sih and E. A. Lee, A compile-time scheduling heuristic for interconnection-constrained hetero-
geneous processor architecture, IEEE Transactions on Parallel and Distributed Systems, 4(2):175–187,
February 1993.

[19] H. Topcuoglu, S. Hariri, and M. Wu, Performance-effective and low-complexity task scheduling for het-
erogeneous computing, IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274, March
2002.

[20] H. Zhao and R. Sakellariou, An experimental investigation into the rank function of the heterogeneous
earliest finish time scheduling algorithm, Proceedings of Euro-Par 2003, Springer-Verlag, LNCS 2790
(2003) 189–194.

[21] H. Zhao and R. Sakellariou, A Low-Cost Rescheduling Policy for Dependent Tasks on Grid Computing
Systems, Proceedings of the 2nd Across Grids Conference, Springer-Verlag, LNCS 3165 (2004).

